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Abstract

Several Java bindings to Message Passing Interface (MPI) software
have been developed recently. Message bu�ers have usually been restricted
to arrays with elements of primitive type. We discuss adoption of the Java
object serialization model for marshalling general communication data in
MPI-like APIs. This approach is compared with a Java transcription of
the standard MPI derived datatype mechanism. We describe an imple-
mentation of the mpiJava interface to MPI that incorporates automatic
object serialization. Benchmark results con�rm that current JDK im-
plementations of serialization are not fast enough for high performance
messaging applications. Means of solving this problem are discussed, and
benchmarks for greatly improved schemes are presented.

1 Introduction

The Message Passing Interface standard, MPI [15], de�nes an interface for par-
allel programming that is portable across a wide range of supercomputers and
workstation clusters. The MPI Forum de�ned bindings for Fortran, C and C++.
Since those bindings were de�ned, Java has emerged as a major language for dis-
tributed programming, and there are reasons to believe that Java may rapidly
become an important language for scienti�c and parallel computing [8, 9, 10].
Over the past two years several groups have independently developed Java bind-
ings to MPI and Java implementations of MPI subsets. With support of several
groups working in the area, the Java Grande Forum drafted an initial proposal
for a common MPI-like API for Java [4].

A characteristic feature of MPI is its exible method for describing message
bu�ers containing mixed primitive �elds scattered, possibly non-contiguously,
over the local memory of a processor. These bu�ers are described through spe-
cial objects called derived datatypes|run-time analogues of the user-de�ned



types supported by modern procedural languages. The standard MPI ap-
proach does not map very naturally into Java. In [2, 3, 1] we suggested a
Java-compatible restriction of the general MPI derived datatype mechanism,
in which all primitive elements of a message bu�er have the same type, and
they are selected from the elements of a one-dimensional Java array passed as
the bu�er argument. This approach preserves some of the functionality of the
original MPI mechanism|for example the ability to describe strided sections
of a one dimensional bu�er argument, and to represent a subset of elements
selected from the bu�er argument by an indirection vector. But it does not
allow description of bu�ers containing elements of mixed primitive types.

This version of the MPI derived datatype mechanism was retained in the ini-
tial draft of [4], but its value is not yet certain. A more promising approach may
be the addition a new basic datatype to MPI representing a serializable object.
The bu�er array passed to communication functions is still a one-dimensional
array, but as well as allowing arrays with elements of primitive type, the el-
ement type is allowed to be Object. The serialization paradigm of Java can
be adopted to transparently serialize bu�er elements at source and unserialize
them at destination. An immediate application is to multidimensional arrays.
A Java multidimensional array is an array of arrays, and an array is an object.
Therefore a multidimensional array is a one-dimensional array of objects and it
can be passed directly as a bu�er array. The options for representing sections
of such an array are limited, but at least one can communicate whole multidi-
mensional arrays without explicitly copying them (though there may be copying
inside the implementation).

1.1 Overview of this article.

This article discusses our current work on use of object serialization to marshal
arguments of MPI communication operations. It builds on earlier work on the
mpiJava interface to MPI [1], which is implemented as a set of JNI wrappers to
native C MPI packages for various platforms. The original implementation of
mpiJava supported MPI derived datatypes, but not object types.

Section 2 reviews the parts of the API of [4] relating to derived datatypes
and object serialization. Section 3 describes an implementation of automatic ob-
ject serialization in mpiJava. In section 4 we discuss benchmarks for this initial
implementation. The results con�rm that naive use of existing Java serializa-
tion technology does not provide the performance needed for high performance
message passing environments. Section 5 illustrates how various overheads of
serialization can be eliminated by customizing the object serialization stream
classes. The �nal section relates these results to other work, and draws some
conclusion.

1.2 Related work

Early work by the current authors on Java MPI bindings is reported in [2]. A
comparable approach to creating full Java MPI interfaces has been taken by
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Getov and Mintchev [17, 11]. A subset of MPI is implemented in the DOGMA
system for Java-based parallel programming [13, 14]. A pure Java implementa-
tion of MPI built on top of JPVM has been described in [6] (JPVM is a pure
Java implementation of the Parallel Virtual Machine message-passing environ-
ment [7]). So far these systems have not attempted to use object serialization
for data marshalling.

For an extensive discussion of performance issues surrounding object serial-
ization see section 3 of [12] and references therein. Work of the Karlsruhe group
is also reported in [18]. The discussion there mainly relates to serialization in
the context of fast RMI (Remote Method Invocation) implementations. As we
may anticipate, the cost of serialization is an even more critical issue in MPI,
because the message-passing paradigm usually has lower overheads.

2 Datatypes in an MPI-like API for Java

The MPI standard is explicitly object-based. The C++ binding speci�ed in
the MPI 2 standard collects these objects into suitable class hierarchies and
de�nes most of the library functions as class member functions. The Java API
proposed in [4] follows this model, and lifts its class hierarchy directly from the
C++ binding of MPI.

In our Java version a class MPJ with only static members acts as a module
containing global services, such as initialization of the message-passing layer,
and many global constants including a default communicator COMM WORLD1. The
communicator class Comm is the single most important class in MPI. All com-
munication functions are members of Comm or its subclasses. Another class that
is relevant for the discussion below is the Datatype class. This describes the
type of the elements in the message bu�ers passed to send, receive, and other
communication functions. Various basic datatypes are prede�ned in the pack-
age. These mainly correspond to the primitive types of Java, shown in �gure
1.

The methods corresponding to standard send and receive operations of MPI
are members of Comm with interfaces

void send(Object buf, int offset, int count,

Datatype datatype, int dst, int tag)

Status recv(Object buf, int offset, int count,

Datatype datatype, int src, int tag)

In both cases the actual argument corresponding to buf must be a Java array
with element type compatible with the datatype argument. If the speci�ed
type corresponds to a primitive type, the bu�er must be a one-dimensional ar-
ray. Multidimensional arrays can be communicated directly if an object type

1It has been pointed out that if multiple MPI threads are allowed in the same Java VM,
the default communicator cannot be obtained from a static variable. The �nal version of the
API may change this convention.
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MPI datatype Java datatype
MPJ.BYTE byte

MPJ.CHAR char

MPJ.SHORT short

MPJ.BOOLEAN boolean

MPJ.INT int

MPJ.LONG long

MPJ.FLOAT float

MPJ.DOUBLE double

MPJ.OBJECT Object

Figure 1: Basic datatypes in proposed Java binding

is speci�ed, because an individual array can be treated as an object. Commu-
nication of object types implies some form of serialization and unserialization.
This could be the built-in serialization provided in current Java environments,
or (as we discuss at length in section 5) it could be some specialized serialization
tuned for message-passing.

Besides object types the draft Java binding proposal retains a model of MPI
derived datatypes. In C or Fortran bindings of MPI, derived datatypes have
two roles. One is to allow messages to contain mixed types. The other is to
allow noncontiguous data to be transmitted. The �rst role involves using the
MPI TYPE STRUCT derived data constructor, which allows one to describe the
physical layout of, say, a C struct containing mixed types. This will not work
in Java, because Java does not expose the low-level layout of its objects. In
C or Fortran MPI TYPE STRUCT also allows one to incorporate displacements
computed as di�erences between absolute addresses, so that parts of a single
message can come from separately declared arrays and other variables. Again
there is no very natural way to do this in Java. (But e�ects similar to these uses
of MPI TYPE STRUCT can be achieved by using MPJ.OBJECT as the bu�er type,
and relying on object serialization.)

We conclude that in the Java binding the �rst role of derived dataypes should
probably be abandoned|derived types can only include elements of a single
basic type. This leaves description of noncontiguous bu�ers as the remaining
role for derived data types. Every derived data type constructable in the Java
binding has a uniquely de�ned base type. This is one of the 9 basic types
enumerated above. A derived datatype is an object that speci�es two things: a
base type and a sequence of integer displacements. (In contrast to the C and
Fortran bindings the displacements can be interpreted in terms of subscripts in
the bu�er array argument, rather than as byte displacements.)

An MPI derived dataype constructor such as MPI TYPE INDEXED, which al-
lows an arbitray indirection array, has a potentially useful role in Java. It allows
to send (or receive) messages containing values scattered randomly in some one-
dimensional array. The draft proposal incorporates versions of this and other
type constructors from MPI including MPI TYPE VECTOR for strided sections.
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3 Adding serialization to the API

In this section we will discuss the other option for representing complex data
bu�ers in the Java API of [4]|introduction of an MPJ.OBJECT datatype.

It is natural to assume that the elements of bu�ers passed to send and
other output operations are objects whose classes implement the Serializable
interface. There are at least two ways one may consider communicating object
types in the MPI interface

1. Use the standard ObjectOutputStream to convert the object bu�ers to
byte vectors, and communicate these byte vectors using the same method
as for primitive byte bu�ers (for example, this might involve a native
method call to C MPI functions). At the destination, use the standard
ObjectInputStream to rebuild the objects.

2. Replace naive use of serialization streams with more specialized code that
uses platform-speci�c knowledge to communicate data �elds e�ciently.
For example, one might modify the standard writeObject in such a way
that a native method creates an MPI derived datatype structure describing
the layout of data in the object, and this bu�er descriptor could be passed
to a native MPI Send function.

In the second case our implementation is responsible for prepending a suitable
type descriptor to the message, so that objects can be reconstructed at the
receiving end before data is copied to them.

The �rst implementation scheme is more straightforward, and this approach
will be considered in the remainder of this section. We discuss an implementa-
tion based on the mpiJava wrappers, combining standard JDK object serializa-
tion methods with a JNI interface to native MPI. Benchmark results presented
in the next section suggest that something like the second approach (or some
suitable combination of the two) deserves serious consideration, hence section 5
describes one realization of this scheme.

The original version of mpiJava was a direct Java wrapper for standard MPI.
Apart from adopting an object-oriented framework, it added only a modest
amount of code to the underlying C implementation of MPI. Derived datatype
constructors, for example, simply called the datatype constructors of the under-
lying implementation and returned a Java object containing a representation of
the C handle. A send operation or a wait operation, say, dispatched a single
C MPI call. Even exploiting standard JDK object serialization and a native
MPI package, uniform support for the MPJ.OBECT basic type complicates the
wrapper code signi�cantly.

In the new version of the wrapper, every send, receive, or collective commu-
nication operation tests if the base type of the datatype argument describing
a bu�er is OBJECT. If not|if the bu�er element type is a primitive type|the
native MPI operation is called directly, as in the old version. If the bu�er
is an array of objects, special actions must be taken in the wrapper. If the
bu�er is a send bu�er, the objects must be serialized. We also support MPI-like
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derived datatypes as described in the previous section. On grounds of unifor-
mity, these should be de�nable with base type OBJECT, just as for primitive
elements. The message is then some subset of the array of objects passed in
the bu�er argument, selected according to the displacement sequence of the de-
rived datatype. This case must be dealt with in the the Java wrapper, because
a native MPI Datatype entity cannot be constructed to directly represent Jave
objects. Thus when the base type is OBJECT the Java-side Datatype class re-
quires additional �elds; it explicitly maintains the displacement sequence as an
array of integers.

A further set of changes to the implementation arises because the size of the
serialized data is not known in advance, and cannot be computed at the receiv-
ing end from type information available there. Before the serialized data is sent,
the size of the data must be communicated to the receiver, so that a byte receive
bu�er can be allocated. We send two physical messages|a header containing
size information, followed by the data2. This, in turn, complicates the imple-
mentation of the various wait and test methods on communication request
objects, and the start methods on persistent communication requests, and
ends up requiring extra �elds in the Java Request class. Comparable changes
are needed in the collective communication wrappers. A gather operation, for
example, involving object types is implemented as an MPI GATHER operation
to collect all message lengths, followed by an MPI GATHERV to collect possibly
di�erent-sized data vectors.

These changes were made throughout the mpiJava API, and will be included
in the next release of the software.

4 Benchmark results for multidimensional ar-

rays

For the sake of concrete discussion we will make an assumption that, in the
kind of Grande applications where MPI is likely to be used, some of the most
pressing performance issues concern arrays and multidimensional arrays of small
objects|especially arrays of primitive elements such as ints and floats. For
benchmarks we therefore concentrated on the overheads introduced by object
serialization when the objects contain many arrays of primitive elements. Specif-
ically we concentrated on communication of two-dimensional arrays with prim-
itive elements3.

2A better protocol would be to eagerly send data for short messages in the header, assuming
some �xed-size bu�er is preallocated at the receiving end. The two-message protocol would
be reserved for long messages. This marginally complicates the implementation but does not
essentially change the rest of the discussion, or the benchmark results presented below, since
the latter concentrate on the asymptotic case. We are grateful to one of the referees for raising
this point.

3We note that there some debate about whether the Java model of multidimensional arrays
is the most appropriate one for high performance computing. There are various proposals for
optimized HPC array class libraries [16]. See section 6 for some further discussion.
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N2 oat vector

float [] buf = new float [N * N] ;

MPJ.COMM WORLD.send(buf, 0, N * N,

MPJ.FLOAT,

dst, tag) ;

float [] buf = new float [N * N] ;

MPJ.COMM WORLD.recv(buf, 0, N * N,

MPJ.FLOAT,

src, tag) ;

N � N oat array

float [] [] buf = new float [N] [N] ;

MPJ.COMM WORLD.send(buf, 0, N,

MPJ.OBJECT,

dst, tag) ;

float [] [] buf = new float [N] [] ;

MPJ.COMM WORLD.recv(buf, 0, N,

MPJ.OBJECT,

src, tag) ;

1�N2 oat array

float [] [] buf = new float [1] [N * N] ;

MPJ.COMM WORLD.send(buf, 0, 1,

MPJ.OBJECT,

dst, tag) ;

float [] [] buf = new float [1] [] ;

MPJ.COMM WORLD.recv(buf, 0, 1,

MPJ.OBJECT,

src, tag) ;

Figure 2: Send and receive operations for various array shapes.

The \ping-pong" method was used to time point-to-point communication
of an N by N array of primitive elements treated as a one dimensional array
of objects, and compare it with communication of an N2 array without using
serialization. As an intermediate case we also timed communication of a 1 by
N2 array treated as a one-dimensional (size 1) array of objects. This allows
us to extract an estimate of the overhead to \serialize" an individual primitive
element. The code for sending and receiving the various array shapes is given
schematically in Figure 2.

As a crude timing model for these benchmarks, one can assume that there
is a cost tTser to serialize each primitive element of type T, an additional cost tvecser

to serialize each subarray, similar constants tTunser and tvecunser for unserialization,
and a cost tTcom to physically tranfser each element of data. Then the total time
for benchmarked communications should be

tT[N
2] = c+ tTcomN

2 (1)

tT[1][N
2] = c0 + (tTser + tTcom + tTunser)N

2 (2)

tT[N][N] = c00 + (tvecser + tvecunser)N +

(tTser + tTcom + tTunser)N
2 (3)

These formulae do not attempt to explain the constant initial overhead, don't
take into account the extra bytes for type description that serialization in-
troduces into the stream, and ignore possible non-linear costs associated with
analysing object graphs, etc. Empirically these e�ects are small for the range
of N we consider.
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tbyteser = 0.043�s toatser = 2.1�s tvecser = 100�s

tbyteunser = 0.027�s toatunser = 1.4�s tvecunser = 53�s

tbytecom = 0:062�sy toatcom = 0:25�sy

tbytecom = 0:008�sx toatcom = 0:038�sx

Table 1: Estimated parameters in serialization and communication timing
model. The tTcom values are respectively for non-shared memory (y) and shared
memory (x) implementations of the underlying communication.

All measurements were performed on a cluster of 2-processor, 200 Mhz Ultra-
Sparc nodes connected through a SunATM-155/MMF network. The underlying
MPI implementation was Sun MPI 3.0 (part of the Sun HPC package). The
JDK was jdk1.2beta4. Shared memory results quoted are obtained by running
two processes on the processors of a single node. Non-shared-memory results
are obtained by running peer processes in di�erent nodes.

In a series of measurements, element serialization and unserialization timing
parameters were estimated by independent benchmarks of the serialization code.
The parameters tvecser and tvecunser were estimated by plotting the di�erence between
serialization and unserialization times for T[1][N2] and T[N][N]4. The raw

communication speed was estimated from ping-pong results for tT[N
2]. Table

1 contains the resulting estimates of the various parameters for byte and float

elements.
Figure 3 plots actual measured times from ping-pong benchmarks for the

mpiJava sends and receives of arrays with byte and float elements. In the
plots the array extent, N , ranges between 128 and 1024. The measured times for

tT[N
2], tT[1][N

2] and tT[N][N] are compared with the formulae given above
(setting the c constants to zero). The agreement is good, so our parametrization
is assumed to be realistic in the regime considered.

According to table 1 the overhead of Java serialization nearly always domi-
nates other communication costs. In the worst case|oating point numbers|it
takes around 2 microseconds to serialize each number and a smaller but compa-
rable time to unserialize. But it only takes a few hundredths of a microsecond to
communicate the word through shared memory. Serialization slows communica-
tion by nearly two orders of magnitude. When the underlying communication is
over a fast network rather than through shared memory the raw communication
time is still only a fraction of a microsecond, and serialization still dominates
that time by about one order of magnitude. For byte elements serialization costs
are smaller, but still larger than the communication costs in the fast network
and still much larger than the communication cost through shared memory.

4Our timing model assumed the values of these parameters is independent of the element
type. This is only approximately true, and the values quoted in the table and used in the
plotted curves are averages. Separately measured values for byte arrays were smaller than
these averages, and for int and float arrays they were larger.
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Figure 3: Communication times from ping-pong benchmark in non-shared-
memory and shared-memory cases. The lines represent the model de�ned by
Equations 1 to 3 in the text, with parameters from Table 1.

Serialization costs for int elements are intermediate.
The constant overheads for serializing each subarray, characterized by the

parameters tvecser and tvecunser are also quite large, although, for the array sizes
considered here they only make a dominant contribution for the byte arrays,
where individual element serialization is relatively fast.

5 Reducing serialization overheads for arrays

The work of [18] and others has established that there is considerable scope to
optimize the JDK serialization software. Here we pursue an alternative that
is interesting from the point of view of ultimate e�ciency in messaging APIs,
namely to replace calls to the writeObject, readObject methods with special-
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data Vector

send buffer

Array-

Stream
Output-

receive buffer

Sender

MPI_RECV

MPI_TYPE_STRUCT

MPI_SEND

write array elements

reconstruct objects

"data-less" byte stream

element data

MPI_TYPE_STRUCT

data Vector

Receiver

Stream
Input-
Array-

Figure 4: Improved protocol for handling arrays of primitive elements.

ized, MPI-speci�c, functions. A call to standard writeObject, for example,
might be replaced with a native method that creates a native MPI derived
datatype structure describing the layout of data in the object. This would
provide the conceptually straightforward object serialization model at the user
level, while retaining the option of fast (\zero-copy") communication strategies
inside the implementation.

Implementing this general scheme for every kind of Java object is di�cult
or impractical because the JVM hides the internal representation of most ob-
jects. Less ambitiously, we can attempt to eliminate the serialization and copy
overheads for arrays of primitive elements embedded in the serialization stream.
The general idea is to produce specialized versions of ObjectOutputStream and
ObjectInputStream that yield byte streams identical to the standard version
except that array data is omitted from those streams. The \data-less" byte
stream is sent as a header. This allows the objects to be reconstructed at the
receiving end. The array data is then sent separately using, say, suitable native
MPI TYPE STRUCT types to send all the array data in one logical communication.
In this way the serialization overhead parameters measured in the benchmarks
of the previous section can be drastically reduced or eliminated. An implemen-
tation of this protocol is illustrated in Figure 4.

A customized version of ObjectOutputStream called ArrayOutputStream

behaves in exactly the same way as the original stream except when it encoun-
ters an array. When an array is encountered a small object of type ArrayProxy
is placed in the stream. This encodes the type and size of the array. The array
reference itself is placed in a separate container called the \data vector". When
serialization is complete, the data-less byte stream is sent to the receiver. A piece
of native code unravels the data vector and sets up a native derived type, then
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class ArrayOutputStream extends ObjectOutputStream f
Vector dataVector ;

public Object replaceObject(Object obj) f
if(obj instanceof int []) f

dataVector.addElement(obj)

return new ArrayIntProxy(((int []) obj).length) ;

g
... deal with other primitive array types ...

else

return obj

g
g

class ArrayInputStream extends ObjectInputStream f
Vector dataVector ;

public Object resolveObject(Object obj) f
if(obj instanceof ArrayIntProxy) f

int dat = new int [((ArrayIntProxy) obj).length] ;

dataVector.addElement(dat)

return dat ;

g
... deal with other array proxy types ...

else

return obj

g
g

Figure 5: Pseudocode for ArrayOutputStream and ArrayInputStream

the array data is sent. At the receiving end a customized ArrayInputStream

behaves exactly like an ObjectInputStream, except that when it encounters an
ArrayProxy it allocates an array of the appropriate type and length and places
a handle to this array in the reconstructed object graph and in a data vector
container. When this phase is completed we have an object graph containing
uninitialized array elements and a data vector, created as a side e�ect of unseri-
alization. A native derived data type is constructed from the data vector in the
same way as at the sending end, and the data is received into the reconstructed
object in a single MPI operation.

Our implementationof ArrayOutputStreamand ArrayInputStream is straight-
forward. The standard ObjectOutputStream provides a method, replace-
Object, which can be overridden in subclasses. ObjectInputStream provides
a corresponding resolveObject method. Implementation of the customized
streams is sketched in Figure 5.

Figure 6 shows the e�ect this change of protocol has on the original timings.
As expected, eliminating the overheads of element serialization dramatically
speeds communication of oat arrays (for example) treated as objects, bringing
bandwidth close to the raw performance available with MPJ.FLOAT.

Each one-dimensional array in the stream needs some separate processing
here (associated with calls to replaceObject, resolveObject, and setting up
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Figure 6: Ping-pong timings with primitive array data sent separately (solid
points), compared with the unoptimized results from Figure 3 (open points).
Recall that the goal is to bring times for \object-oriented" sends of arrays down
to the \native" send times, most closely approximated by the triangular points.
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the native MPI TYPE STRUCT). Our fairly simple-minded prototype happened to
increase the constant overhead of communicating each subarray (parametrized
by tvecser and tvecunser in the previous section). As mentioned at the end of section 4,
this overhead typically dominates the time for communicating two-dimensional
byte arrays (where the element serialization cost is less extreme), so perfor-
mance there actually ends up being worse. A more highly tuned implementa-
tion could probably reduce this problem. Alternatively we can go a step further
with our protocol, and have the serialization stream object directly replace two-
dimensional arrays of primitive elements5. The bene�ts of this approach are
shown in Figure 7.

This process could continue almost inde�nitely|adding special cases for ar-
rays and other structures considered critical to Grande applications. Currently
we do not envisage pushing this approach any further than two-dimensional
array proxies. Of course three-dimensional arrays and higher will automati-
call bene�t from the optimization of their lower-dimensional component arrays.
Recognizing a rectangular two-dimensional arrays already adds some unwanted
complexity to the serialization process6.

6 Discussion

In Java, the object serialization model for data marshalling has various advan-
tages over the MPI derived type mechanism. It provides much (though not all)
of the exibility of derived types, and is presumably simpler to use. Object
serialization provides a natural way to deal with Java multidimensional arrays.
Such arrays are likely to be common in scienti�c programming.

Our initial attempt to add automatic object serialization to our MPI-like API
for Java was impaired by poor performance of the serialization code in the cur-
rent Java Development Kit. Bu�ers were serialized using standard technology
from the JDK. The benchmark results from section 4 showed that this imple-
mentation introduces very large overheads relative to underlying communication
speeds on fast networks and symmetric multiprocessors. Similar problems were
reported in the context of RMI implementations in [12]. In the context of fast
message-passing environments (not surprisingly) the issue is even more critical.
Overall communication performance can easily be downgraded by an order of
magnitude or more.

In our benchmarks and tests the organization of primitive elements|their
byte-order, in particular|was the same in sender and receiver. This is com-
monly the case in MPI applications, which are often run on homogenous clusters

5De�ned to be arrays of objects, each element being an array of primitive type of the same
type and length.

6It can also introduce some unexpected behaviour. Our version subtly alters the semantics
of serialization, because it does not detect aliasing of rows (either with other rows of the same
two-dimensional array, or with one-dimensional primitive arrays elsewhere in the stream).
Hence the reconstructed object graph at the receiving end will not reproduce such aliasing.
Whether this is a serious problem is unclear.
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Figure 7: Timings allowing two-dimensional array proxies in the object stream
(solid points), compared with the unoptimized results from Figure 3 (open
points). Sends of two-dimensional Java arrays (solid circles) are now much closer
to the native bandwidth (of which the triangular points are representative).
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of computers. Hence it should be possible to send the bytes with no format con-
version at all. More generally an MPI-like package can be assumed to know in
advance if sender and receiver have di�erent layouts, and need only convert to
an external representation in the case that they do. Presuming we are building
on an underlying native MPI in the �rst place, then, a reasonable assumption is
that the conversions necessary for, say, communication of oat arrays between
little-endian and big-endian machines in a heterogenous cluster are dealt with
inside the native MPI. This may degrade the e�ective native bandwidth to a
greater or lesser extent, but should not impact the Java wrapper code. In any
case, to exploit these features in the native library, we need a way to marshal
Java arrays that avoids performing conversions ine�ciently in the Java layer.

The standard Java serialization framework allows the programmer to pro-
vide optimized serialization and unserialization methods for particular classes,
but in scienti�c programming we are often more concerned with the speed of
operations on arrays, and especially arrays of primitive types. The standard
Java framework for serialization does not provide a direct way to handle ar-
rays, but in section 5 we customized the object streams themselves by suitably
de�ning the replaceObject, resolveObject methods. Primitive array data
was removed from the serialization stream and sent separately using native de-
rived datatype mechanisms of the underlying MPI, without explicit conversion
or explicit copying. This dramatically reduced the overheads of treating Java
arrays uniformly as objects at the API level. Order of magnitude degradations
in bandwidth were typically replaced by fractional overheads.

A somewhat di�erent approach was taken by the authors of [18]. Their
remote method invocation software, KaRMI, incorporates an extensive reimple-
mention of the JDK serialization code, to better support their optimized RMI.
Their ideas for optimizing serialization can certainly bene�t message-based APIs
as well, and KaRMI does also reduce copying compared with standard RMI. But
we believe they do not immediately support the \zero-copy" strategy we strive
for here, whereby large arrays are removed from the serialization stream and
dealt with separately by platform-speci�c software7. In our case the platform-
speci�c software was a native MPI binding, but similar strategies could apply to
other devices, such as a binding to the new industry standard Virtual Interface
Architecture, VIA8.

Given that the e�ciency of object serialization can be improved dramatically|
although probably it will always introduce a non-zero overhead|a reasonable
question is whether an MPI-like API for Java needs to retain anything like the

7Our use of the phrase \zero-copy" has been criticized on the basis that a number of
existing JVMs always copy arrays that are passed through the JNI interface, in which case
there is always at least one copy. To our knowledge, there is nothing in the JVM speci�cation
that requires such behaviour, and other existing JVMs pin the storage inside the JVM and
return a pointer to the actual storage to the native method, rather than copying. But it is
true that the phrase zero-copymust be understoodmodulo the behaviour JNI implementation
associated with the JVM and garbage collector that one is using.

8We should add that KaRMI can also use speci�c communication hardware such as VIA
for its transport layer, and in principle could even plug in native MPI-routines in this layer.
We believe it would nevertheless serialize data �rst.
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old derived datatype mechanism of MPI at all?
The MPI mechanism still allows non-contiguous sections of a bu�er array to

be sent directly. Although implementations of MPI derived types, even in the
C domain, have often had disappointing performance in the past, we note that
VIA provides some low-level support for communicating non-contiguous bu�ers,
and recently there has been interest in producing Java bindings of VIA [5, 19].
So perhaps in the future it will become possible to support derived types quite
e�ciently in Java. We have emphasized the use of object serialization as a way
of dealing with communication of Java multidimensional arrays. Assuming the
Java model of multidimensional arrays (as arrays of arrays), we suspect serializa-
tion is the most natural way of communicating them. On the other hand there is
an active discussion (especially in Numerics Working Group of the Java Grande
Forum) about how Fortran-like multidimensional rectangular arrays could best
be supported into Java. A reasonable guess is that multidimensional array sec-
tions would be represented as strided sections of some standard one-dimensional
Java array. In this case the best choice for communicating array sections may
come back to using MPI-like derived datatypes similar to MPI TYPE VECTOR.

In any case|whether or not a version of MPI derived data types survive in
Java|the need to support object serialization in a message-passing API seems
relatively clear.
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