
A Java/CORBA based Visual Program Composition
Environment for PSEs

Matthew S. Shields, Omer F. Rana, David W. Walker, Maozhen Li,
Department of Computer Science,
Cardi� University, POBox 916,

Cardi� CF24 3XF, UK

David Golby
Department of Mathematical Modelling,

British Aerospace Sowerby Research Center,
PO Box 5, Filton, Bristol, BS34 7QW, UK

Abstract

A Problem Solving Environment (PSE) is a complete, integrated com-
puting environment for composing, compiling and running applications
in a speci�c problem area or domain. Parts of the PSE are domain in-
dependent, such as the Visual Programming Composition Environment
(VPCE), which may be used for constructing application in a number of
di�erent domains, however, other parts are domain speci�c, such as rules
to support particular types of components. A domain independent VPCE
is �rst described, which serves as a user interface for a PSE, and uses Java
and CORBA to provide a framework of tools to enable the construction
of scienti�c applications from components.

The VPCE consists of a component repository, from which the user
can select o�-the-shelf or in-house components, a graphical composition
area on which components can be combined, various tools that facilitate
the con�guration of components, the integration of legacy codes into com-
ponents and the design and building of new components.

The VPCE produces output using dataow techniques in the form of a
task graph, annotated with a performance model plus constraints for each
component, expressed in XML. In addition, the VPCE supports a domain
speci�c expert system based on JESS [9] to guide the user in component
selection and to perform integrity checking.

Keywords: Problem Solving Environments, Visual Programming,
Intelligent Interfaces, Scienti�c Computing, Java/CORBA

1 Introduction

A CORBA-based domain-independent problem solving environment for scien-
ti�c computations and large-scale simulations is described. In this PSE, a user
can visually construct domain speci�c applications by plugging together soft-
ware components which are independent of location, programming language or
platform. A neural network based data analysis application is constructed where

1

a pre-existing MPI-based neural network is used for analysing data, without the
user requiring to download any part of the neural network code. The complete
application can be wrapped as a component, with the distinct tasks of data re-
trieval, sampling and storing being performed by other components. Wrapping
applications is a method of encapsulation that provides clients with pre-de�ned
interfaces for accessing server applications or components. The principal advan-
tage is that behind the interface, the client need not know the exact implemen-
tation details. Wrapping can be accomplished at multiple levels: around data,
individual modules, subsystems, or the entire system.

Novel aspects of this work include an infrastructure for application devel-
opment that allows for third party software components, an XML based com-
ponent model for wrapping legacy codes, a rule base for supporting a user in
selecting components, and support for computational steering. Previous work
closely related to our e�orts is outlined in section 2, and on which some of the
techniques used in the PSE are based. An architecture for the PSE is presented
in section 3, which illustrates the various sub-systems that constitute the PSE.
A standard component model for the PSE is presented in section 3.1, which is
de�ned as a collection of XML tags that all components must use. A prototype
of a visual programming tool for building mathematical equations is described
in section 3.2 and a neural network application is presented as an illustrative
example in section 4.

2 Previous work

A Problem Solving Environment (PSE) is a complete, integrated computing
environment for composing, compiling, and running applications in a speci�c
area [10]. PSEs have been available for several years for certain speci�c domains,
but most of these have supported di�erent phases of application development,
and cannot be used cooperatively to improve a programmer's productivity, pri-
marily due to the lack of a framework for tool integration and ease-of-use con-
siderations. Extensions to current scienti�c programs such as Matlab, Maple,
and Mathematica are particular pertinent examples of this scenario. Develop-
ing extensions to such environments enables the reuse of existing code, but may
severely restrict the ability to integrate routines that are developed in other
ways or using other applications. Multi-Matlab [14] is an example of one such
extension for parallel computing platforms.

The modern concept of a PSE for computational science [11] is based on the
availability of high performance computing resources, coupled with advances in
software tools and infrastructure which make the creation of such PSEs for com-
putational science a practical goal. PSEs have the potential to greatly improve
the productivity of scientists and engineers, particularly with the advent of web-
based technologies, such as CORBA and Java, for accessing remote computers
and databases. At a 1995 NSF workshop on PSEs [15], the need to develop and
evaluate PSE infrastructure and tools was stressed. Subsequently a number of
prototype PSEs have been developed. Many early PSEs focus on linear algebra

2

computations [4] and the solution of partial di�erential equations, and as yet
only a few prototype PSEs have been developed especially for science and engi-
neering applications [6, 16]. However, this is likely to change over the next few
years. Tools for building speci�c types of PSEs have been developed, such as
PDELab [18], a system for building PSEs for solving PDEs, and PSEWare [1],
a toolkit for building PSEs for symbolic computations. More generic infrastruc-
ture for building PSEs is also under development, ranging from fairly simple
RPC-based tools for controlling remote execution to more ambitious and so-
phisticated systems such as Globus [7] and Legion [12] for integrating geograph-
ically distributed computational and information resources. However, most of
these PSEs lack the ability to build up scienti�c applications by connecting and
plugging software components together.

Component-Based Software Engineering (CBSE)[2] is receiving increasing
interest in the software engineering community. The goal of CBSE is to reduce
development costs and improve software reuse. The question of how to apply
the technologies involved in CBSE to the construction of an e�ective framework
for PSEs is becoming increasingly important.

The Gateway project [8] introduces a similar idea to the system being de-
veloped here, in that a component based system implemented using JavaBeans
and utilising dataow techniques to represent the meta-application as a directed
graph is used. Unlike our system, which uses XML to de�ne both the interface
to all components within the system and the task graph that describes the
constructed application, the Gateway system chooses to use the Abstract Task
Descriptor (ATD) as its lowest level of granularity of instruction and to build
up the instructions that de�ne the application.

The Adaptive Distributed Virtual Computing Environment (ADViCE)
project [13] is another system that provides a graphical user interface that
enables a user to develop distributed applications and specify the computing
and communication requirements of each task within the task graph. Unlike
the Gateway system, but similar to our own, the ADViCE system has its own
scheduler that allocates tasks to resources at run time.

The Arcade project [5] uses a slightly di�erent approach in that the sys-
tem has a three tier architecture, with the �rst tier consisting of a number of
Java Applets that are used individually to specify the tasks (either visually or
through a scripting language), to specify resource needs, and to provide monitor-
ing and steering. Each of these Applets then interacts with a CORBA interface
which in turn interacts with the �nal execution user modules distributed over a
heterogeneous environment.

In the Gateway system, the ATD forms the lowest level instruction, and all
components must be de�ned in terms of ATDs. There is therefore no straight
forward way of wrapping legacy codes, or providing provision for existing exe-
cutables. We provide an XML wrapper, which requires far less e�ort from a user
than developing ATD de�nitions. However, we share the general design objec-
tive of constructing applications by linking sequential and parallel components.
The ADViCE system is a visual composition tool above all, and provides little
support for legacy applications. ADViCE does enable automatic selection of

3

PETPAT

NETWORK

Remote Component
Repository

 EXPERT
ADVISOR

PCT

DOMAIN SPECIFIC
KNOWLEDGE BASE

Local
Component Repository

VPCE

IRMS
CONNECTIVITY

GRAPH

Intrepid

Globus

Sun RunTime
 System

XML BASED

 ORB

THIRD PARTY
SOFTWARE

LEGACY
CODE

Wrapper Wrapper

(G-XML)

PCT: Program Composition Tool
PAT: Program Analysis Tool
PET: Program Evaluation/Execution Tool
IRMS: Intelligent Resource Management System
G-XML: Graph XML representation
C-XML: Component Description in XML

 VPCE
ARCHITECTURE

Also enables
new components
to be registered
locally

(WEB BASED)

C-XML

C-XML

Figure 1: Architecture of the PSE

components from a library, based on particular parallel libraries being available
to a user (such as PVM, MPI etc), and then sends this to a resource scheduler.
The Arcade project requires the construction of specialised Applets, and can
be restrictive due to security requirements of the Java sandbox. Our approach
is therefore more generic, in that we adopt XML for specifying an interface to
a component, and for encoding the connectivity graph. We also provide an
interface to a scheduling and resource management system.

3 PSE Software Architecture

The PSE architecture is illustrated in �gure 1. Within the PSE, the Visual
Program Composition Environment (VPCE) contains a Program Composition
Tool (PCT) to enable a user to construct scienti�c applications by combining
components, which connects to local or remote component repositories. If a user
is constructing a new application from existing components, then interaction is
primarily through the PCT, which provides a graphical interface to the user. If
new components are to be added, then the C-XML model must be used, and
in this instance the PCT provides an XML parser. Hence, all components have
interfaces de�ned in XML, based on a PSE-wide data model identi�ed as C-
XML. Component repositories must be statically connected to the PCT, prior
to launching the VPCE. A user can also register new components with the local
repositories which contain instances of local or remote components, provided
the interface to these compound components is de�ned in C-XML.

The user can obtain advice about the suitability of a component in a given

4

situation or advice as to the choices of components for a speci�c task, through
the use of the VPCE's Expert Advisor (EA). The EA provides its own user inter-
face, and can be invoked through the PCT or, as a stand-alone application using
a Web browser. The EA is a Java based expert system with rules that constrain
the types of data a component can handle, the internal data distribution that is
supported, licensing requirements and other restrictions. A database of known
facts is used to infer possible components that may be suitable within a partic-
ular application or library. The EA is also used by the Program Analysis Tool
(PAT) to check the validity of the connectivity graph. The connectivity graph
linking components together is de�ned in G-XML, as explained in section 3.1,
and is checked for correctness by the PAT.

The checked connectivity graph is then passed to the Program Evalua-
tion/Execution Tool (PET) for the run-time stage of the application. The
PET passes the G-XML graph to the Intelligent Resource Management System
(IRMS) to determine upon which computational resources to run the applica-
tion. Based on the resources available and a performance model of components,
it assigns di�erent tasks to di�erent computational resources. Using the IRMS,
an application built in the VPCE may be scheduled onto single or multiple pro-
cessor machines. The IRMS provides local scheduling and allocation for tasks
obtained from the PET, and negotiates with local scheduling systems such as
LSF and Codine, where available, to build a possible schedule. A pre-existing
program can be wrapped as a CORBA object, but services o�ered are main-
tained as in the original legacy application. Either the complete legacy appli-
cation may be wrapped as one object, or the application may be divided into
smaller objects, provided the structure of the application is known. The gran-
ularity of a wrapped application is therefore dependent on how much is known
about an application, whether the application can be successfully sub-divided,
and whether constraints on the interfaces of components of a sub-divided ap-
plications can be derived. The use of hierarchy in the VPCE facilitates the
sub-division and the use of wrappers.

The architecture of the PSE therefore consists of three tiers, where the �rst
tier contains the PCT and the EA, along with component repositories, and
associated with this tier is the C-XML model. The second tier consists of a
Program Analysis and Execution tool, and legacy applications wrapped as Java
or CORBA components. The interfaces to these applications are speci�ed in tier
one, using C-XML. The third tier consists of the intelligent resource manage-
ment system, and interfaces to third party resource management systems, such
as Globus. Hence, tiers one and two interact using C-XML, whereas tiers two
and three interact using G-XML. The VPCE is thus primarily used to construct
applications from software components. The VPCE has the following features:

1. A graphical user interface for the hierarchical construction of components
by connecting an outport of one component to the inport of another com-
ponent.

2. A facility for building new components from scratch in some appropriate

5

programming language, and wrapping them as Java beans. At present we
support components written in C, Fortran and Java.

3. A facility for building inports and outports from a component's input and
output interfaces. Although a component's interface cannot be changed,
inports (outports) can be constructed out of the data objects comprising
the input (output) interface. It should also be possible to replicate and
merge channels. Each component has a set of default inports and outports
de�ned by the author of the component.

4. A composition notation (or scripting language) providing control con-
structs such as loops and conditionals for managing the ow of execution
of components. This is not supported within the present implementation,
however the user has the capability to specify a pre-de�ned number of
iterations through the code using XML tags, as described in section 3.1.

5. A facility for displaying the hierarchical structure of a component.

6. A facility for viewing documentation on a component giving, for example,
its purpose, the algorithm used, the meaning of the input and output ar-
guments, etc. This documentation may be linked to an HTML document,
or other sources of information outside of the PSE.

The major sub-systems of the VPCE are as follows:

1. A Component Repository, containing a hierarchical set of folders for stor-
ing components that may be used in constructing other higher-level com-
ponents and/or applications. The component access permissions deter-
mine which components a particular user is able to see in the reposi-
tory. Speci�c and generic components are indicated by di�erent colours.
Template components, which are components which require missing sub-
components to be inserted by the composer, are indicated by a third
colour.

2. A composition tool, identi�ed as PCT above, that acts as a canvas, or
\scratch pad" where components are joined together by channels connect-
ing inports and outports. The composition tool will allow an outport to be
connected to an inport only if they are compatible. The resulting higher-
level components and applications may be inserted into the Component
Repository, and at this stage access permissions are set, and optional per-
formance model and explanatory information may be associated with the
component.

Two categories of users can be identi�ed for the proposed PSE: (1) appli-
cation users, such as physicists, chemists or biologists who are not interested
in creating new components (other than compound components) and therefore
do not directly alter the rule base; (2) application developers, mainly compu-
tational scientists, who create new components and therefore could potentially
require alteration to the rule base.

6

The VPCE provides two modes of execution, (1) an edit mode that enables
components to be assembled together, and (2) an execution mode, where the
constructed task graph is sent to the IRMS. In the second of these modes, the
user has the option to visualise execution of components, and thereby perform
computational steering.

3.1 Component model and XML tags

Each component is either a Java or CORBA object, with its interface speci�ed
in XML, according to a standard data model applied to all components within
the environment. Components are stored in the Component Repository using
this format, and any binary data associated with a component must also be
identi�ed by tags. XML tags may be used to automatically derive help on
particular components already present in the repository, or may be used to query
the availability of particular types of components. User-supplied components
must also have their interfaces de�ned in XML. Components have the following
properties:

1. The components conform to the Java Beans standard. They may be se-
quential codes written in Java, Fortran, or C, or they may be parallel
codes that make use of message passing libraries such as MPI, or they
may exploit array-based parallelism through language extensions such as
HPJava [3]. Legacy codes, in Fortran for instance, can be wrapped as
Java Beans.

2. The components themselves may be hierarchical (i.e., constructed from
other components) and be of arbitrary granularity. Thus, a component
may perform a simple task, such as �nding the average of a set of input
values, or it may be a complete application.

3. Components may be speci�c implementations that are bound into a higher-
level component within the VPCE, or they may be bound in later by the
resource locator of the IRMS. This latter case is useful when using com-
monly available software such as the BLAS. For example, if it was neces-
sary to perform a matrix-matrix multiplication it might be better to allow
the PSE to �nd the BLAS routine to do this on some platform, rather
than the program composer making the decision within the VPCE.

4. A component may have individual, group, or world access permissions to
specify who may use it.

5. Information is passed from one component to another via uni-directional
typed channels. A channel connects an outport of one component to an in-

port of another component. A component may have zero or more inports.
The set of data objects referenced by the channels connected to a compo-
nent's inport(s) together de�ne its input interface. Similarly, a component
may have zero or more outports, and the set of data objects referenced

7

by the channels connected to a component's outport(s) together de�ne its
output interface.

6. A set of constraints may be associated with each component indicating on
what platforms it may be run, and whether it requires generic software
such as MPI or the BLAS to be bound in later in order to run.

7. A performance model is optionally associated with each component. This
gives the run time of the component as a function of its input and machine,
communication, and network parameters.

8. Information on a component's purpose, the algorithms it uses, and other
pertinent explanatory data is optionally associated with a component.

The XML-based component model ensures uniformity across components,
and helps to abstract component structure and implementation from the com-
ponent interface. Our XML de�nition enables the division of a component
interface into a set of sections, where each section is enclosed within prede�ned
tags. A parser capable of understanding the structure of such a document can
identify and match components which meet this interface. The Document Type
De�nition (DTD) identifying valid tags does not need to be placed with each
interface, as it can be obtained from a URL reference placed in the document
header, and identi�ed by the href tag. The XML de�nition can be used to
perform information integrity checking (such as the total number of inports and
outports), check the suitability of a component for its intended use, the types
of platforms that may support the component and internal component struc-
ture, where available. The tags are divided into: context and header, ports,
execution speci�c detail, such as whether the component contains MPI code, a
user speci�ed help �le for the component, a configuration �le for initialising
a component, a performance model identifying costs of executing the compo-
nent for use by the resource manager, and an event handler, which permits
registering or recording of particular types of events. A component may also
contain specialised constraint tags in addition to the mandatory requirements
identi�ed above. Constraints can include security or license constraints, which
requires a component to run on a particular machine or cluster. For instance, a
data analysis component within the repository may be described as:

<?xml version="1.0" href=URL?>

<preface>

<name alt=DA id=DA01>Data Analyser</name>

<pse-type>Generic</pse-type>

<hierarchy id=parent>Tools.Data.Data Analyser</hierarchy>

<hierarchy id=child></hierarchy>

</preface>

<ports>

<inportnum>2</inportnum>

8

<outportnum>1</outputnum>

<inportype id=1>float</inportype>

<inport id=1 type=real>

<parameter=regression value=NIL/>

</inport>

<inport id=2 type=float>

<parameter=bayesian value=NIL/>

</inport>

<outportype> real </outportype>

</ports>

<execution id=software>

<type>parallel</type>

<type>MPI</type>

<type>SPMD</type>

<type>binary</type>

</execution>

<execution id=platform>

<type> </type>

</execution>

<help context=instantiate>

<href name=file:/home/pse/help/data-analyser.txt value=NIL>

</help>

The XML-based DTD contains the following types of tags:

� Context and header tags: used to identify a component and the types
of PSEs that a component may be usefully employed in. The component
name must be unique, with an alternative alphanumeric identi�er, however
any number of PSEs may be speci�ed. These details are grouped under
the preface tag, hence:

<!ELEMENT preface (name pse-type+)>

<!ELEMENT name (name-list+)>

<!ATTLIST name alt %PCDATA

id %PCDATA>

<!ELEMENT pse-type %PCDATA> ...

The hierarchy tag is used to identify parent and child components, and
works in a similar way to the Java package de�nition. A component can
have one parent, and multiple children. In the example, `DA01' has no
children, indicating that it is at the bottom of the hierarchy.

� Ports: used to identify the number of input and output ports, and their
types. An input port can accept multiple data types and this can be
speci�ed in a number of ways by the user. Input to (output from) a
component can also come from (go to) other types of sources, such as

9

�les or network streams. In this case, the inport and outport ports need
to de�ne an href tag, rather than a speci�c data type. The de�nition
for href is standardised to account for various scenarios where it may be
employed, such as:

<ports>

<inport id=1 parameter=regression type=stream value=NIL>

<parameter=regression value=NIL/>

<href name=http://www.cs.cf.ac.uk/PSE/ value=test.txt>

</inport>

</ports>

or when reading data from a �le, the href tag is changed to:

<ports>

<inport id=1 parameter=regression type=stream value=NIL>

<parameter=regression value=NIL/>

<href name=file:/home/pse/test.txt value=NIL>

</inport>

</ports>

This gives a user much more exibility in de�ning data sources, and using
components in a distributed environment. The user may also de�ne more
complex input types, such as a matrix, stream, or an array in a similar
way.

� Execution: a component may have execution speci�c details associated
with it, such as whether it contains MPI code, if it contains internal par-
allelism etc. If only a binary version of a component is available, then this
must be speci�ed by the user also. Such component-speci�c details may
be enclosed in any number of type tags. The execution tag is divided into
a software part and a platform part. The former is used to identify the
internal properties of the component, while the latter is used to identify a
suitable execution platform or a performance model.

� Help: a user can specify an external �le containing help on a particular
component. The help tags contains context options which enables the as-
sociation of a particular �le with a particular option, to enable the display
of a pre-speci�ed help �le at particular points in application construction.
The contexts are prede�ned, and all component interfaces must use these.
Alternatively, the user may leave the context �eld empty, suggesting that
the same �le is used every time help is requested on a particular compo-
nent. If no help �le is speci�ed, the XML de�nition of the component is
used to display component properties to a user. Help �les can be kept
locally, or they may be cross references using a URL. One or more help
�les may be invoked within a particular context, some of which may be
local.

10

� Con�guration: similar to the help tag, a user can specify a configuration
tag, which enables a component to load prede�ned values from a �le, from
a network address or by using a customiser or wizard program. This en-
ables a component to be pre-con�gured within a given context, to perform
a given action when a component is created or destroyed, for instance.
The configuration tag is particularly useful when the same component
needs to be used in di�erent applications, enabling a user to share parts
of a hierarchy, while de�ning local variations within a given context.

� Performancemodel: each component has an associated performance model,
and this can be speci�ed in a �le, using a similar approach to compo-
nent con�guration de�ned above. A performance model is enclosed in the
performance tag, and may range from being a numeric cost of running
the component on a given architecture, to being a parameterised model
that can account for the range and types of data it deals with to more
complex models that are speci�ed analytically.

The performance model is also used by the IRMS to �rst derive a schedule
and then dispatch tasks to particular machines. The use of a performance
model can also facilitate dynamic scheduling, whereby the task dispatcher
evaluates workload at each allocation instance to determine the best pro-
cessor to run a task.

� Event model: each component supports an event listener. Hence, if a
source component can generate an event of type XEvent, than any listener
(target) must implement an Xlistener interface. Listeners can either be
separate components that perform a well de�ned action { such as handling
exceptions, or can be more general and support methods that are invoked
when the given event occurs. An event tag is used to bind an event to a
method identi�er on a particular component.

<event target="ComponA" type="ouput" name="overflow" filter="filter">

<component id=XX> ... </component>

</event>

The target identi�es the component to initiate when an event of a given
type occurs on component with identity id, as de�ned in the preface

tag of a component. The name tag is used to di�erentiate di�erent events
of the same type, and the filter tag is a place-holder for JDK1.2 prop-
erty change and vetoable property change events support. Also, the �lter
attribute is used to indicate a speci�c method in the listener interface
through which the event must be received for a particular method to be
invoked.

Event handling may either be performed internally within a component,
where an event listener needs to be implemented for each component that
is placed in the PSE. This is a useful addition to a component model for
handling exceptions, and makes each component self-contained. Alterna-
tively, for legacy codes wrapped as components, separate event listeners

11

may be implemented as components, and may be shared between compo-
nents within the same PSE. Components that contain internal structure,
and support hierarchy, must be able to register their events at the highest
level in the hierarchy, if separate event listeners are to be implemented. A
simple example of an event listener is as follows:

<preface>

<name alt=DA id=DA02>Data Extractor</name>

<pse-type>Generic</pse-type>

<hierarchy id=parent>Tools.Data.Data_Extractor</hierarchy>

<hierarchy id=child></hierarchy>

</preface>

<event type="initialise" name="start" filter="">

<script>

<call-method target="DA01" name="bayesian">

</script>

</event>

The script tags are used to specify the method to invoke in another
component, when the given event occurs.

� Additional tags not part of the component model may be speci�ed by the
user in an

<add> ... </add>

section towards the end of each section. Variable tags are not supported
in the �rst version.

All applications that employ our PSE must adhere to this component model.
A user may specify the component model using tags, or may have it encoded
using a Component Model editor, which also acts as a wizard and enables cus-
tomisation. The editor works in a similar manner to an HTML editor, where
a user is presented with a menu based choice of available tags, and can either
choose one of these prede�ned tags, or (di�erent from an HTML editor) may
de�ne their own. The Component Model in XML forms the interface between
the VPCE and other parts of the PSE, and is used to store components in the
repository. The XML representation is therefore pervasive throughout the PSE,
and links the VPCE to the IRMS as illustrated in �gure 1. Various represen-
tations can be obtained from the XML description in Scheme, Python, Perl,
CORBA-IDL etc, for connection to other systems that may be attached to the
PSE.

The use of tags enables component de�nitions to be exchanged as web doc-
uments, with the structure available at either a single or at particular certi�ed
sites. Hence, changes to the DTD can be made without requiring changes to
component de�nitions held by application developers, and will be propagated
the next time a user utilises a component interface.

12

Component interconnectivity is also speci�ed in XML, in the form of a di-
rected graph. Component dependencies are enclosed in dependency tags and
include constructs such as parent-of, child-of and sibling-of, enabling dis-
tant relationships to be constructed from recursive applications of these three
basic types. Such dependencies can also be embedded within a JAR �le, for
instance, where multiple components may be stored in a single �le for transfer
over a network. Based on OSD [17], `push'-based applications can automati-
cally trigger the download of particular software components as new versions
are developed. Hence, a component within a data ow may be automatically
downloaded and installed, when a new or enhanced version of the component
is created. This approach is linked to event handlers, with speci�c events to
identify when a new version of a particular component is available.

The use of the component model also requires that each component has a
unique identi�er across the PSE workspace, and is registered with a component
repository. This is particularly signi�cant when handling events, as event types
will need to be based on component identities and their particular position in
the data ow. The component models mentioned here have been inuenced by
IBM's BeanML [19] and Microsoft's OSD [17] XML-based frameworks.

We do not make direct use of a CORBA or JavaBean component model as
these are more restrictive for our purpose. Both the CORBA and JavaBean
models require the de�nition of a component interface in terms of its I/O types.
We extend our component model to include additional parameters such as con-
straints on the execution platform and parallel libraries being employed. Such
constraints are required by the intelligent resource manager during application
scheduling. Our component model is therefore more generic, and the ports

tags (as de�ned above) can be translated to CORBA or Java IDL. Although
JavaBean component models allow for introspection and reexion, and enable
properties of a component to be modi�ed dynamically, they do not support the
extension of pre-de�ned types easily, or enable these to be enforced across all
components. We provide support for specialised requirements of parallel or se-
quential components, which may also be used to automatically document and
con�gure a component.

3.2 Prototype VPCE

A simple prototype has been built with a speci�c set of functions to demon-
strate some problems and possible solutions in the design and implementation
of a VPCE. The prototype is an elementary mathematical equation editor. It
has two components in the component repository, a display component and
an operator component. Using these components it is possible to build simple
arithmetic equations of arbitrary length.

An instance of the display component has one function used to display a
single value, the component can be either a source or a destination component
within an equation. An instance of the operator component takes two input
values, performs one of the four simple arithmetic operations on the inputs and
calculates an output value.

13

The prototype illustrates three initial problems that arise in attempting to
provide a dynamic environment. The �rst is to provide a mechanism by which
the environment can discover at design time the properties, methods, inports
and outports that a component provides. The second is to provide a mechanism
that can be used to dynamically create links between components, and the third
to provide dynamic method invocation on particular components within the
environment.

The solutions to date, using the Java programming language provide the
ability for the system to discover component properties at design time and dis-
play them via a simple \Object Inspector". i.e. for a display component to show
the value that is set for the component as an editable string, for the operator
component to show the two input values as editable strings and the operator
as a selection from a \drop-down list". The system can also dynamically cre-
ate links between two components and use these links to call \set methods" to
update the properties of a given component instance.

The Java language and in particular the JavaBean Model provide some use-
ful properties that are used in this prototype for the solutions to the above
problems. A JavaBean exposes to the outside world:

� Properties: Internal states that can be set and queried externally by an-
other program.

� Methods: Public methods that can be accessed by another program.

� Events: A bean may generate or receive events. A bean de�nes an event
if it provides methods for adding and removing event listeners from a list
of interested objects.

A VPCE must implement the following functions if it is to be able to ma-
nipulate JavaBeans:

� The ability to dynamically load an arbitrary class and instantiate an object
from that class.

� Use the Java facilities of introspection and reection to discover a compo-
nents properties, methods, and events.

� Provide a mechanism for dynamically creating the connection between two
components.

The value of an operator can be changed on one of the Operator Bean
instances. A \drop down" list on the Object Inspector displays all possible
values that can be selected. Figure 2 shows the property value of an Operand
Bean being changed. A value is typed into the Edit Box by the user. A partial
example of the G-XML description for the task graph described by the VPCE
is as follows.

14

Figure 2: Changing values on an Operator Bean Instance

<preface>

<name alt=OD id=OD01>Operand</name>

<pse-type>Generic</pse-type>

<hierarchy id=parent></hierarchy>

<hierarchy id=child>OP01</hierarchy>

</preface>

<preface>

<name alt=OP id=OP01>Operator</name>

<pse-type>Generic</pse-type>

<hierarchy id=parent>OD01</hierarchy>

<hierarchy id=child>OD02</hierarchy>

<hierarchy id=child>OD03</hierarchy>

</preface>

This brief extract from the XML task graph description, describes the re-
lationships between four components. The �rst section describes an Operand
component that has no parent { it is the root { and a single child. The second
section describes an Operator component that has a parent { the component
previously de�ned { and two children which are both Operand components.
The following types of user scenarios can be identi�ed that may be successfully
attempted with the VPCE:

15

� Running a legacy application as a wrapped component. The interface to
the legacy application is provided in C-XML. The application may be a
sequential code, or may contain internal parallelism using MPI or PVM.

� Performing parameter runs on existing or new applications, to study the
e�ect of parameter ranges. The same application code may be executed
multiple times by either running the same code in parallel with di�erent
parameter values, or where strong dependencies exist within the code,
running parts of the simulation in parallel. Partial results may be stored
in a temporary �le if dependencies are such that simulation needs to be
suspended.

� Combine various third party components to generate a new application.
The application can itself be stored as a separate component in the Com-
ponent Repository.

� Searching for suitable components in various repositories maintained on
the internet at a remote site, where each component adheres to the C-XML
speci�cation.

� Developing a new application using the EXPERT ADVISOR (EA) using
JESS, to either select new components, or develop an application on a
di�erent platform. In the latter case, the EA is used to analyse the e�ects
of platform constraints on a given application code.

� Visualising results of an application remotely. Enabling and supporting
computational steering. In this case, a user may change a particular pa-
rameter in the simulation and expect a corresponding change in the visual
output generated from the VPCE.

3.3 JESS based querying

The JESS based Expert Advisor (EA) is also provided as a component, with an
interface de�ned in XML, and provides the following functions:

� A standard interface to upload rule �les belonging to a particular ap-
plication domain. The rule base supports a frame based representation
scheme.

� A general user interface for enabling application users to interact with the
rule base for selecting components. Such users may also be interested in
why a particular type of component has been selected, and are provided
with the inference mechanism used.

� A conict resolution mechanism to maintain rule base integrity when new
rules are added.

� Identi�cation of constraints on data types and execution environment,
obtained from the XML description. The conict resolution mechanism

16

mentioned above must ensure user de�ned constraints are not violated
within a particular domain as new components are added.

� Component categorisation based on application domains or on perfor-
mance.

� Support for representing uncertainty or imprecise information, especially
when a given component may be suitable for more than one domain. In
this case, a domain developer must be able to express component member-
ship within single or multiple domains, and addition of new components
or changes to a component must ensure that these membership functions
are not violated { handled by the conict resolution mechanism.

A typical session with the EA will involve the user launching JESS via a web
browser, or as a stand-alone application, and going through a set of pre-de�ned
questions for identifying component types. Based on selections made by the
user, a pre-de�ned rule �le is loaded, being restricted to rules for components
within the particular application domain being considered by the user. Session 1
illustrates a user session with the EA Applet for the neural network application
described in section 4. A user may add new rules if additional components
are identi�ed, or if a compound component is created. The terms used within
the rule base correspond to XML tags listed in section 3.1. Although rule �les
may be dynamically loaded from various sites across the network, the inference
engine is run at a single place on the network.

There are three approaches to data mining:

Data Analysis;

Data Management; and

Visualisation.

Which of these do you wish to pursue?

Enter choice now (analysis, management or visualisation): analysis

Data Analysis selected

There are three categories of data type within the data analysis approach:

Symbolic (aka Textual);

Numeric; and

Combination (with characteristics of both other categories.

Which of these options best describes the elements

that comprise your data set? (symbolic, numeric or combination):

symbolic

17

You have selected the numeric data type. More info at URL.

You have to enter the assumptions underpinning your data set

Enter assumption now: restrict number of records to less than 10000

does your data file contain more 2000 records ? (yes or no):

no

Session 1: Expert Advisor User Session

4 A neural network based application

A neural network application has been developed to demonstrate the PSE ar-
chitecture. Figure 3 illustrates the GUI, where output is plotted using a graph
generator.

The neural network in this case also contains its own user interface. A typical
session would involve the user identifying the data source, loading the complete
or partial data set, running one or more analysis algorithms on the data set, and
generating a graphical output from the system. The user is given the option
of downloading an entire data set, or to send a �lename of a data source to
the remote host. Interactions between the GUI and the server implementing
the neural network are via Java RMI, for improved performance. Alternatively,
we may use the JDK ORB for communication between the GUI and the neural
server. When using Java RMI, the GUI and the neural server must be registered
individually, whereas when using the ORB, a name service must be supported.
We can consider the GUI together with the neural server to be a single com-
pound component in this case, with internal interaction using Java RMI. Data
distribution at the remote site is managed by a local run time system, and sent
as a parameter to the remote site by the client. The user can change parameters
locally, such as the number of iterations or the state of the neural network at
any part of the training phase. These parameters are immediately serialised and
sent to the remote neural network for analysis.

The client GUI o�ers a data browser for inspecting the contents of a remote
�le, and performing simple checks for outliers on data sets. Data integrity
is not performed at present, and left to the user or the underlying DBMS to
handle. The data source may be a at �le or a structured database. The use
of `View Derivation' components enables a part of a database to be extracted
reducing the size of data transfer to the analysis tool. All data does not need
to be replicated at the input of each component, as data selection is based on
component functionality and component position. Specialised components are
used to perform tasks such as data extraction, data retrieval and sampling.
Each of these components has interfaces de�ned in XML and can be connected
together into a dataow graph.

18

Figure 3: GUI for neural network application

19

5 Conclusion

Problem Solving Environments based on the emergence of software tools to
support heterogeneous meta-computing, are currently an active area of research.
Current advances in networking and distributed object technologies provide the
infrastructure to make a general purpose distributed PSE a reality.

Our system is similar in some ways to other projects in this area. The ma-
jority use the dataow paradigm together with a graphical component based
composition tool with which to build meta-applications. Many are now us-
ing third party systems for the underlying communication, security and local
resource management and scheduling. For example, many of the systems men-
tioned in section 2 use Globus [7] for their communications and security infras-
tructure, and many provide the means to connect to resource managers such as
Codine, LSF or the Sun Run-Time system. The di�erence in our approach is
the pervasive use of XML throughout the system, from the de�nition of com-
ponent interfaces, through to the self documentation aspect of components, to
the task graph output of the VPCE which is passed to the IRMS for scheduling
and execution. The bene�ts of this approach are the ability to enforce a single
interface model that all components must adhere to, which enable component
properties to be searched based on rules, enable checks on data types and data
distributions between connected components, and can facilitate the develop-
ment of a component catalogue. De�ning an interface in XML provides a richer
model than CORBA IDL, consequently also supporting integration of compo-
nents in di�erent programming languages. The dis-advantage is the additional
requirement of de�ning an XML interface, a necessity for all users submitting
new components to the Component Repository. Particular user categories for
a PSE are identi�ed, and the use of a rule based tool for advising users on the
suitability of components within a particular problem domain is suggested.

In summary, this paper provides a synopsis of features necessary for a do-
main independent PSE. Various sub-systems within the PSE are identi�ed, and
prototype versions of some of these components are illustrated.

References

[1] R. Bramley and D. Gannon. PSEWare. See web site at:
http://www.extreme.indiana.edu/pseware.

[2] Alan W. Brown and Kurt C. Wallnau. The Current State of CBSE. IEEE

Software, September 1998.

[3] B. Carpenter, G. Fox, D. Leskiw, X. Li, and Y. Wen. Language Bindings for a
Data-Parallel Runtime. NPAC - Syracuse University, Syracuse, New York 13244,
1997.

[4] H. Casanova and J. J. Dongarra. NetSolve: A Network-Enabled Server for Solving
Computational Science Problems. Int. Journal of Supercomputing Applications,
11(3), 1997.

20

[5] Zhikai Chen, Kurt Maly, Piyush Mehrotra, and Mohammad Zubair. Arcade:
A Web-Java Based Framework for Distributed Computing. See web site at:
http://www.icase.edu:8080/.

[6] K. M. Decker and B. J. N. Wylie. Software Tools for Scalable Multilevel Appli-
cation Engineering. IEEE Computational Science and Engineering, 11(3), 1997.

[7] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
Int. Journal of Supercomputing Applications, 11(2), 1997.

[8] Geo�rey Fox, Tomasz Haupt, Erol Akarsu, Alexey Kalinichenko, Kang-Seok Kim,
Praveen Sheethalnath, and Choon-Han Youn. The Gateway System: Uniform
Web Based Access to Remote Resources. Proceedings of JavaGrande Conference,
1999.

[9] Ernest Friedman-Hill. Jess: The Java Expert System Shell. See web site at:
http://herzberg.ca.sandia.gov/jess/, 1999.

[10] E. Gallopoulos, E. N. Houstis, and J. R. Rice. Computer as Thinker/Doer
:Problem-Solving Environments for Computational Science. IEEE Computational

Science and Engineering, 1(2), 1994.

[11] E. Gallopoulos, E. N. Houstis, and J. R. Rice. Workshop on Problem-Solving
Environment: Findings and Recommendations. ACM Computing Surveys, 27(2),
1994.

[12] A. S. Grimshaw. Campus-Wide Computing: Early Results Using Legion at the
University of Virginia. Int. Journal of Supercomputing Applications, 11(2), 1997.

[13] Salim Hariri, Haluk Topcuoglu, Wojtek Furmanski, Dongmin Kim, Yoon-
hee Kim, Ilkyeun Ra, Xue Bing, Bouqing Ye, and Jon Valente. Prob-

lem Solving Environments, chapter A Problem Solving Environment for
Network Computing. IEEE Computer Society, 1998. See web site at:
http://www.ece.arizona.edu/~hpdc/projects/ADViCE/papers/bkch.html.

[14] Vijay Menon and Anne E. Trefethen. MultiMATLAB: Integrating MATLAB with
High-Performance Parallel Computing. Proceedings of SuperComputing97, 1997.

[15] J. R. Rice and R. F. Boisvert. From Scienti�c Software Libraries to Problem-
Solving Environments. IEEE Computational Science and Engineering, 3(3), 1996.

[16] G. Spezzano, D. Talia, and S. Di Gregorio. A Parallel Cellular Tool for Interactive
Modeling and Simulation. IEEE Computational Science and Engineering, 3(3),
1996.

[17] W3C. The Open Software Description Format. See web site at:
http://www.w3.org/TR/NOTE-OSD.

[18] S. Weerawarana. PDELab. Proceedings of the Second Annual Object-Oriented

Numerics Conference, 1994.

[19] Sanjiva Weerawarana, Joseph Kesselman, and Matthew J. Duftler. Bean Markup
Language (BeanML), 1999. IBM TJ Watson Research Center, Hawthorne, NY
10532.

21

