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Abstract

The Java.class file is a compact encoding of programs for a stack-based
virtual machine. It is intended for use in a networked environment, which re-
quires machine independence and minimized consumption of network bandwidth.
However, as in all interpreted virtual machines, performance does not match that of
code generated for the target machine. We propose verifiable, machine-independent
annotations to the Java class file to bring the quality of the code generated by
a “just-in-time” compiler closer to that of an optimizing compiler without a sig-
nificant increase in code generation time. This division of labor has expensive
machine-independentanalysis performed off-line and inexpensive machine-dependent
code-generation performed on the client. We call this phenomenon “super-linear
analysis and linear exploitation.” These annotations were designed mindful of the
concurrency features of the Java language. In this paper we report results from
our a machine-independent, prioritized register assignment. We also discuss other
possible annotations.

1 Introduction

The Java.class file is a compact encoding of programs for a stack-based virtual
machine. It is intended for use in a networked environment, which requires machine
independence and minimized consumption of network bandwidth. However, as in all
interpreted virtual machines, performance does not match that of code generated for
the target machine. To ameliorate this problem, many implementations of the Java
Virtual Machine (JVM) use “just-in-time” (JIT) compilers, in which Java bytecodes
are translated into machine code.

This environment differs from both conventional batch compilation and compila-
tion for interactive languages.[1] [2] In conventional compilation, to a first order of
approximation, compilation costs are ignored, and the target machine is known; no
holds are barred in terms of aggressive analyses and machine-dependent trickery. In
the interactive environment, the target machine is known, but the cost of compilation
is constrained by the need to maintain interactive responsiveness. By contrast, in the
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network client/server model, compilation to bytecode is done off-line and is, to a first-
order of approximation, unconstrained. However, it must generate portable code and
therefore cannot perform machine dependent optimizations. Compilation of bytecode
to target machine code is performed on the client and may therefore be very machine-
specific. However, since this compilation time is added to the overall response time
seen by the user, it must be minimized. As a result, the quality of the code generated
by “just-in-time” compilers does not match that of an optimizing compiler for the same
machine.

We propose machine independent annotations to the Java class file [3] to bring the
quality of the code generated by a “just-in-time” compiler closer to that of an optimiz-
ing compiler without a significant increase in code generation time. The annotations
proposed are a specification of a prioritized register assignment, load-store elimination,
and register spilling. Our notion is to provide a division of labor between the class file
annotator on the server and the code generator on the client.

One guiding feature of our annotations, and indeed of any annotations of the Java
class file, is that the annotations can be safely ignored by those implementations of the
Java VM that do not recognize them. This precludes any transformation on the byte-
code that results in a.class file which is unverifiable or incorrect when considered
without the annotations.

The key idea is that the machine-independent analysis phase performed by the Java
compiler may be expensive, but the results of that analysis may be expressed compactly
and used inexpensively. We call this phenomenon “super-linear analysis and linear
exploitation.”

The following sections describe in more detail the environment we are trying to pro-
duce code for followed by a concrete example showing Java source, Java bytecodes,
and SPARC machine code. Then, the properties of the machine code generated by our
“just-in-time” compiler, the semantics of our register assignment annotation, and anno-
tation generation are discussed. Following this are more examples of Java source code,
the corresponding Java byte code, and the machine code generated with our register
assignment annotation, including timing information. We then cover related work in
solving this sort of problem and then conclude with a summary of our contributions.

2 The Overall Environment

In Figure 1 we see the environment in which our annotated.class file must operate.
A client makes a request for some Java code, packaged either as a.class file, or as
a .jar file containing a.class file. The server sends the file to the client. This
annotated code is used by our modified JVM to produce machine code, as in any Just-
in-time (JIT) compilation system. In the figure,t1 represents the time from when the
client requests a Java.class file to the time that the client first sees results, whilet2
represents the time from the.class file request to when the computation completes.
We are interested in minimizing botht1 andt2. If we were interested in minimizing just
t1, then we could use an interpreter over the bytecodes and see our first results almost
immediately. If we were interested in minimizing justt2, then for a program which was
compute intensive, we could tolerate a large amount of traditional optimizing compiler
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Figure 1: Java Virtual Machine Execution

analysis being done by the JVM.
Obviously, the client-side code generator could perform the same control and data

flow analysis that the server-side annotator does. But our approach is to do as much
work up front as possible. There are two advantages to having the analysis done by the
server. First, time is saved by having the analysis done once, not every time a class file
is compiled to machine code. More importantly, many optimizations can be divided
into a super-linear analysis phase and a linear exploitation phase. By performing the
expensive analysis phase and recording the results as annotations, we can then very
quickly produce high-quality code in the code generator.

The first part of our system, the annotator, takes as input.class files and pro-
duces as output annotated.class files. These annotations are produced by using
the Java bytecodes as an intermediate representation and applying modifications of tra-
ditional optimizing compiler algorithms to them. We then add as annotations to the
output.class file the results of these algorithms. The size of these annotations must
not be overly large, as this would increase the amount of time needed to transfer the
annotated.class file across a network.

3 Motivating Example

Before going into detail about how annotations are generated and the exact nature of
the mechanisms in the code generator to exploit them, let’s examine a very simple
example first.

In Figure 2, we have an example of the Java source for a “for” loop at the upper
left. This “for” loop has three values,sum, i , and the constant3. Below it, we have
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the Java bytecodes corresponding to the source. On the right-hand side, we have the
SPARC machine code generated from the bytecodes. The rightmost column of the Java
bytecodes block is a register assignment for the bytecode to its left. We call this register
assignment “virtual registers” or VRs. For the SPARC machine code, instructions for
a single Java bytecode are separated by single gray horizontal lines. For both Java
bytecodes and SPARC machine code, basic blocks are separated by double horizontal
lines. The Java bytecode is formatted with the first column the bytecode PC, the second
column the Java bytecode and any arguments, and the third column being the “VR”
annotation.

The assignment forsum is vr0; i , vr2; and3, vr1. Also, the assignment of physical
registers for virtual registers starts at%l0 . The first piece of machine code starts with a
SPARC machine idiom of using global register%g0, which is always zero, to initialize
a register with an integer value. Next, we see an empty slot in our machine code
diagram, indicating that no machine code was generated for theistore 0 bytecode.
The next interesting set of instructions occurs in the code for theiinc bytecodes.
The numbers after theiinc bytecodes indicate which local slot is being incremented,
and what it is being incremented by, respectively. This is part of the normal encoding
for the iinc bytecodes. Eachiinc bytecode is translated into a single SPARC add
instruction, since the values referenced by both bytecodes are being stored in physical
registers.

int sum = 0;
for (int i = 0; i < 3; i++) {

sum += 1;
}

0 iconst 0 1
1 istore 0 1
2 iconst 0 0
3 istore 1 0
4 goto 13 –

7 iinc 0,1 1
10 iinc 1,1 0

13 iload 1 0
14 iconst 3 2
15 if icmplt 7 0,2

)

mov %g0, %l1

mov %g0, %l0

b
nop

addcc %l1,1,%l1
addcc %l0,1,%l0

mov 3, %l2
cmp %l0, %l2
bl
nop

Figure 2: For Loop with Accumulator

4 The Code Generation Environment

In Figure 3 and in the following sections we present the general guidelines and prop-
erties that our code generator follows. Figure 3 gives a very general machine model.
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Figure 3: Run-time Environment. The stack location ofvr0 is reserved for spilling
registervr0; it may or may not contain the same value at other times.

To make things more concrete, we will use the SPARC as our example machine in
the following sections. With the exception of its register windows, the SPARC is like
most modern RISC architectures. Furthermore, since all architectures perform better
when registers are used as much as possible, most of the principles guiding the SPARC
implementation hold everywhere.1

Figure 3 gives the overall structure of the machine environment we are generating
code for. The bounds of the current activation record (stored on the stack) is maintained
by two registers, the stack pointer (SP in the figure) and the frame pointer (FP in the
figure). Temporaries used by the code generator are also set aside in the registers
(shown as TEMP0 and TEMP1 in the figure). Values kept primarily in registers are
shown in the table labeled “Registers.” Values which primarily reside in memory are
shown only in the table labeled “Stack.” Objects and arrays are kept in the heap and
references to them are kept in registers or on the stack (shown as arrows in the figure).
The following sections give details related to the environment sketched in Figure 3.

4.1 Simple Properties

Our central annotation is the virtual register (VR) annotation. The basic notion is that
there is a set of virtual register numbers for each Java bytecode which correspond to
the operands of the bytecode. The code generator uses the VR annotation to generate
a register assignment for the machine instructions. These VRs are arranged inpriority
order, meaning that the lower the VR is, the more likely it is to be assigned to a physical
register in the code generator. We will deal with the details of the VR annotation in
more detail in Section 5.1.

1Including the popular Intel x86 and embedded versions of the Motorola 68K.

5



Below are some simple properties that guide our code generation process. We use
the term “physical register(s)” to refer to the registers that exist on the machine we
are generating machine code for. We use the term “physical location” to refer to some
location on the machine, either in a physical register or in memory. The memory that
is used for virtual registers is contained in a run-time stack, which contains additional
information.

� All virtual registers have at least one physical location. Virtual registers which
primarily reside in physical registers have two physical locations, their physical
register and their stack location. For machines without register windows, the
stack locations are needed for preserving caller-saved registers when making
function calls. We will see an additional need for all values having a place on the
stack when we deal with spilling. Other virtual registers will reside only in one
physical location, on the stack.

� Constants are either folded into the machine instructions or are statically allo-
cated alongside the code foreach method. The memory for the code and con-
stants is allocated in the heap, but is otherwise treated statically by our code
generation system.

� There is no explicit bytecode operand stack. Although Java bytecodes specify
manipulations of a run-time value stack, this stack is not explicitly mimicked
by the generated machine code. All VRs not assigned to physical registers are
loaded into physical registers if necessary, then written out, using physical regis-
ters dedicated to such temporary use. A more detailed description of this process
is given in the next section.

� A simple data structure, the VR location table, provides the mapping from VRs to
physical locations. Conceptually, the code generator keeps two sets of mapping,
one for virtual registers residing only in memory, and one for virtual registers ad-
ditionally residing in a physical register. Imagine we have a machine where only
two physical registers remain after setting aside registers for use as temporaries.
Further, assume that the method we are compiling has five VRs, numbered 0 –
4, specified in all its bytecodes. An example of this data structure can be seen in
Figure 4. This indicates that virtual registers 0 and 1 will be primarily stored in

virtual register physical register memory
0 %l0 [%fp - 12]
1 %l1 [%fp - 16]
2 – [%fp - 0]
3 – [%fp - 4]
4 – [%fp - 8]

Figure 4: VR Location Table;MAXREGS = 2

physical registers%l0 and%l1 respectively and that virtual registers 2, 3, and 4
will be primarily stored in memory at 0, 4, and 8 off the frame pointer.
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4.2 Non-register Resident Values

To manage situations where the number of physical registers is insufficient to contain
all the virtual registers, a scheme to place the excess virtual registers into memory has
been devised. There are several things to note.

� Several physical registers are reserved for temporary use. The lifetime of the
values placed into these registers typically does not extend beyond the span of
the machine code generated for one Java bytecode.

� For a given virtual register, its location on the stack is at a fixed offset from the
frame pointer.

� On machines which allow reading and writing of a single physical register in
an instruction (e.g.add %l0,%l1,%l0 ), only two temporary registers are
needed (actually, two temporary registers for integral values and another two for
floating-point values.) Note that on the SPARC, the destination of an instruction
is the rightmost argument.

The general scheme for generating machine code is as follows, doing the steps
below for each bytecode:

1. For all input VRs to the bytecode which are not assigned a physical register,
generate a load from their stack location into a temporary physical register.

2. If the output VR from the bytecode is not assigned a physical register, set aside
a temporary physical register.

3. generate the appropriate machine instruction using temporary and/or permanent
registers

4. If the output VR from the bytecode is not assigned a permanent physical register,
generate a store from the temporary physical register to its location on the stack.

The VR location table is determined by the code generator in the back-end by us-
ing information gathered during the bytecode and VR annotation verification process.
The verification step is used by the JVM to insure that the bytecodes of a downloaded
program do not corrupt the virtual machine. We have modified this step to additionally
verify the VR annotation associated witheach method. As a side effect of this pro-
cess, the type of each virtual register is determined. For machines with a split general
purpose register set and floating point register set, object references and integral types
are assigned to the general purpose register set, and floating point types are assigned
to the floating point register set. Any virtual registers not assigned to physical regis-
ters are assigned locations on the stack. This process is also responsible for generating
procedure entry prologues.

The verification process allows us to make an important optimization. Since the
verification process ensures that every use of a local JVM frame slot (or equivalently
a local variable) is preceded along all paths by a definition of that slot, we can logi-
cally eliminate most load/store bytecodes that reference locals. As an example of the
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machine code generated using this scheme, here is a bytecode and its associated anno-
tation: “iadd 2,3!4” which signifies that theiadd bytecode is annotated with
three virtual registers, 2, 3, and 4. Theiadd bytecode, in the semantics of the stack-
oriented JVM, removes the top two integer operands off the bytecode operand stack,
adds them, and pushes the resulting integer result onto the stack. Our VR annotation
has the semantics: take the values contained in virtual registers 2 and 3, add them,
and place the result in virtual register 4. If we have a SPARC-like machine with only
two allocatable physical registers for holding integers, then we generate the following,
assuming the mapping from Figure 4:

! virtual registers > vr1 live in the activation record
ld [%fp - 0], %g1 ! copy vr2 -> g1
ld [%fp - 4], %g2 ! copy vr3 -> g2
add %g1,%g2,%g1 ! compute result
st %g1, [%fp - 8] ! copy result to vr4

(We are using%g1and%g2as temporary registers.) If we can allocate four physical
registers to virtual registers, then the mapping would become that shown in Figure 5.
We would generate:

virtual register physical register memory
0 %l0 [%fp - 4]
1 %l1 [%fp - 8]
2 %l2 [%fp - 12]
3 %l3 [%fp - 16]
4 – [%fp - 0]

Figure 5: Mapping from VRs to Physical Registers;MAXREGS = 4

! virtual registers > vr3 live in the activation record
add %l2,%l3,%g1 ! compute result
st %g1, [%fp + 36] ! copy result to vr4

5 Annotations

We have designed four sets of annotations: a register assignment (VRs), redundant
load/store elimination (“remove if physical,” RIPs), register spills (swaps), and copies.
Below is a description of the VR annotation. Currently, the VR annotation is imple-
mented in both the annotator and in the code-generator. The RIP and swap annotations,
which have not been implemented yet, are described in Section 7. We have a “copy”
annotation which indicates where a load from one local followed by a store to another
local corresponds to a copy assignment from one local to another. We will not deal
with the copy annotation any further in this presentation.
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5.1 VRs

The VR annotation is an assignment foreach Java bytecode of a set of virtual register
numbers which correspond to the operands of the bytecode. The number of virtual
registers per bytecode varies. For example, as we have seen above, a binary arithmetic
operator will have three virtual registers—two for the input and one for the result. A
method call bytecode will have a variable number of virtual registers—one for the
object, one for each argument to the method, and one for the return value.

The salient characteristics of this annotation are that VRs are assigned their priority
based upon their importance and that the number of distinct virtual registers is mini-
mized. The priority is equivalent to the inverse of the virtual register number. Disjoint
live ranges of the same type may be assigned to the same virtual register. This makes
each VRmonotyped, i.e. a VR can only “carry” one type of value throughout the en-
tire method. This includes reference types, taking intoaccount the least-upper bound
along the inheritance and interface hierarchies induced by the data-flow algorithm of
the bytecode verification procedure[3]. For example, ifvr0 is used as a reference to an
object of class A at one point in a program, it may not later be used as an integer or even
as a reference to an object of class B, unless class A and class B have a type-compatible
superclass.

This annotation uses an unsigned one byte quantity foreach virtual register. The
values 0–254 indicate a valid virtual register number and the value 255 indicates no
virtual register assignment. More information on the VR usage for every bytecode can
be found in [4].

5.2 Generating VRs

The process of generating our VR annotation is similar to that of other register allo-
cators. Once we have discovered the values that are actually used by a method, we
proceed using standard graph-coloring techniques, with an important distinction — we
don’t know the number of physical registers. Therefore, our algorithm for finding a
register assignment consists of the standard algorithm modified to operate without this
vital piece of information. We will begin by describing the Chaitin graph coloring reg-
ister allocator, which forms the basis for our allocator. [5] We will then proceed by
giving our modifications to the Chaitin algorithm.

Finding a register allocation can be viewed as a graph coloring problem. An in-
terference graph is constructed where eachnode represents a value (live range) from
the program and the edges are between values which are simultaneously “live.” The
goal is to find ak-coloring of the interference graph, wherek is the number of physical
registers. We can view this process as involving an oracle that tells us whether or not
a k-coloring is possible (using a particular heuristic). If it is, then the coloring of the
interference graph indicates which values should be assigned to which physical regis-
ters. If ak-coloring isn’t possible, then a value is chosen to be spilled (i. e. to reside
in memory), effectively removing its node from the graph, and another attempt tok-
color the graph is made. This process continues until the graph is colored and thereby
a register assignment obtained.

In our allocator, we also view the register assignment problem as graph coloring of
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the interference graph. However, we have to change our abstract notion of the problem
to deal with the fact that we don’t know the value ofk, the number of physical registers.
Therefore, instead of attempting to find ak-coloring, we are actually trying to find the
minimum k, such that ak-coloring of the graph exists. This gives us a coloring that
tends to reduce the number of registers; although this number may well be larger than
the actual number of registers of a particular machine, it is still a logical place to start.
Another aspect of our environment that we must deal with is the need for verification.
We do this by introducing edges into the interference graph between nodes that have
differing types. This insures that every VR ismonotyped, as discussed above. A final
concern that arises in our environment is that we must prioritize our colors — in a very
abstract sense, turning our colors into a gray-scale. In the normal Chaitin allocator,
which physical register holds which live ranges doesn’t matter. In our prioritized VR
scheme, on the other hand, we need to decide beforehand which registers should be
spilled first, and it is simplest to use the register number to indicate its priority. Thus
there may be no difference between using register 1 and using register 10(if the ma-
chine has ten registers), but there is a difference if the machine has fewer registers and
we are forced to spill one; register 10 has the lower priority, so it will be the one spilled.
Therefore, we use a set of three functions, called the “Haifa heuristics” [7] to order our
colors so that the color that holds the most important live ranges are numbered lower.
These heuristics take into account the number of uses of the live range, and how many
other live ranges are simultaneously live with this live range. Once this prioritization
has been calculated, the VR annotation is added to the.class file.

6 Examples

In the following pages are two examples of code generation for the SPARC using the
annotation scheme described above. The annotations were produced by our compiler,
which accepts.class files as input and produces annotated.class files as out-
put. The SPARC machine code shown was produced by our code generator embedded
within the kaffe JVM [8]. The general format of these examples follows that first shown
in Figure 2.

In Figure 11 we have the code for a complete method, which therefore includes
machine code for setting up the activation record on the stack — thesave instruction
in the SPARC machine code on the right. We will return to this example again in
Section 7.2

In Figure 6 we have the equivalent Java source code for the example from the
Chaitin et. al. 1981 paper [5]. What makes this example interesting is that the sep-
aration into two if-then-else statements makes local register allocation ineffective. To
wit, local register allocation forces the store ofsum at the end of both branches of the
second if statement and the subsequent load ofsum at the beginning of the “return”
basic block.

In Figure 7, we have the bytecodes and the SPARC machine code generated by a
code generator for a portion of the source code of Figure 6. On the bottom left, we have
the code generated by the kaffe code generator, which doesn’t use our VR annotation.
On the bottom right, we have the code generated by our code generator, using our VR
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int test(boolean mode, int U[], int V[]) {
int SUM;
if (mode) {

A1 = U[0]; A2 = U[1];
} else {

B1 = V[0]; B2 = V[1];
}
if (mode) {

SUM = A1 + A2;
} else {

SUM = B1 + B2;
}
return SUM;

}

Figure 6: Example from Chaitin (size = 2, SPARCstation 20)

Without VRs
 

 ...
 5dc: st %l5, [ %fp + -92 ]
 5e0: b 614
 5e4: nop

 
 ...

 610: st %i5, [ %fp + -92 ]
 614: ld [ %fp + -92 ], %l7
 618: mov %l7, %i4
 61c: mov %i4, %i0
 620: ret
 624: restore

With VRs
 ...

 88: addcc %l0, %o4, %l0
 

 8c: b b4
 90: nop

 ...
 b0: addcc %l0, %o4, %l0

 
 
 
 

 b4: ret
 b8: restore %g0, %l0, %o0

Java bytecode
 ...

 42 istore_3
 43 goto 54

 ...
 53 istore_3
 54 iload_3
 55 ireturn

Figure 7: Bytecodes and SPARC Machine Code Generated from Chaitin (size = 2)
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.class code
problem file gen execution verification
size size time time time
2 w/o VRs 1252 1ms 3ms <1ms

w VRs 1645 2ms 3ms <1ms
10 w/o VRs 1800 6ms 6ms <1ms

w VRs 2354 5ms 5ms <1ms

Figure 8: Results of VR annotation for chaitin (SPARCstation 20)

annotations. The code shown is that for the very end of the then-branch of the second if
statement and for the return statement. Note that the code for line 614 of the “Without
VRs” SPARC code is preceded along both of its predecessors, lines 5e0 and610, with
stores. The stores in lines 5dc and 610 and the following load in line 614 are necessary
because the kaffe code generator is only doing a local register allocation. In the “With
VRs” SPARC code, the predecessors to the basic block containing the return do not
contain unnecessary stores, and the return block itself does not contain unnecessary
loads.

In Figure 8 we see performance numbers based upon the example in Chaitin et
al’s 1981 work [5]. The lines for size = 2 corresponds exactly to the source code in
Figure 6. The lines for size = 10 correspond to the example as given in Chaitin et al[5].
We see that for larger problem sizes, i.e. 10 vs. 2, that the VR annotation provides a
speedup, while not increasing code generation time, or the part of code generation time
spent on verification. These numbers were obtained on a SPARCstation 20. The lines
marked “w/o” is for code generated by the standard kaffe code generator, which uses a
local register allocator, run at code generation time. The lines marked “w” is for code
generated by our code generator, using the VR annotations. Similarly, we see in Figure
9, similar results for an integer quicksort routine.

Overall, we see an 8% speedup, without an increase in code generation or verifi-
cation time. We calculate the speedup using the normalized geometric mean equation
from [9]:

n

s
n

∏
i=1

Execution time ratioi

Since the total execution time includes all methods, not just those annotated, this rep-
resents a very conservative estimate of the potential speedups.

.class code execution
file gen + compilation verification
size time time time

w/o VRs 619 5ms 132,405ms <1ms
w VRs 855 5ms 124,856ms <1ms

Figure 9: Results for quicksort (SPARCstation 20)

12



AClass anObj;
anObj.aField = 3;
for (i = 0; i < a.length; i++) {

a[i] = a[i] + anObj.aField;
}

Figure 10: Example of Utility of RIP Annotation

7 Other Annotations

As noted earlier, we have defined two annotations other than the VR annotation. The
first of these, the “RIP” annotation, is used for redundant load-store elimination. The
second of these, the “swap” annotation is used to indicate where register spills should
be performed if needed.

7.1 Semantics of “RIP” Annotation

The VR annotation removes most of the redundant loads and stores that would result
from a naive JIT implementation for Java bytecodes. However, VRs do not address
redundant load/store elimination for heap resident values. In situations dealing with
class and instance variables, machine code for multiple loads (i.e.getfield and
getstatic bytecodes) not reached by another definition after the first load, can be
eliminated by marking all subsequent loads as “remove if physical” if the virtual reg-
ister is being stored in a physical register. A similar situation holds for stores. The
analysis must take note of possible changes to an object that may take place via func-
tion calls. A conservative approach is to define any live range as ending when it reaches
a function call. An example will help to clarify. Suppose we have the Java source code
in Figure 10. The resulting annotated bytecode would have aputfield bytecode,
for the assignment toanObj.aField . As long as we arrange for the VR used by the
getfield bytecode foranObj.aField inside the loop to be the same as the VR
used by theputfield bytecode, we can mark thegetfield bytecode as a RIP.

Due to the “precise exception” semantics of Java, it is anticipated that a few store
instructions will not be marked “remove if physical” using the above guidelines. For
example, suppose we have the following Java code as the entire body of a method:

int b = 0;
obj.a = 0;
try { obj.a = 3; b = 4; obj.a = 5; }
finally { obj.f(b); }

It might seem that the firstputfield bytecode in thetry block forobj.a could be
marked “remove if physical”. However, assume that some asynchronous exception is
thrown before the assignment ofb, in thetry clause. Sinceobj.f() may contain a
getfield bytecode, theputfield may not be marked “remove if physical”.

It is this sort of issue that makes optimizing for Java and C++, languages with
exceptions, different from optimizing for languages like C and FORTRAN, which do
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not. There has been little published work in the area of optimizing for languages with
exceptions. One important work however, is Hennessy’s[10] 1981 paper. Other im-
portant work in the area of implementing exceptions has been done by Tiemann[11]
for C++, by Chase[12][13] for Ada, Modula2+, C++, Module-3 and Eiffel, and by
Goodenough[14] for general exception mechanisms.

Threading also must be examined carefully when generating “remove if physical”
annotations. Java has a shared-memory model for the sharing of information between
threads of execution. Access to this shared-memory area may or may not be synchro-
nized, with synchronization obtained either through explicitmonitor enter and
monitor exit bytecodes, or through methods marked as synchronized.

From a safety viewpoint, RIPs do not pose a threat. It may appear that the elim-
ination of a store can lead to a violation of the requirement for definite assignment
before use, which is normally guaranteed by the bytecode verification process. Since
RIPs only apply to loads and stores of heap allocated values, the requirement is met
by the class, array, and object creation semantics. When a class or instance is cre-
ated, any variables associated with it are assigned an appropriate default value.2 For
numeric types, this default value is zero. More importantly, for reference types, the
default value isnull . Therefore, so long as the bytecode and VR are type-compatible,
“RIPs” cannot be used to grab a rogue pointer and break the sanity of the JVM.

7.2 Semantics of “swap” Annotation

When every variable is used with about the same frequency throughout a program,
deciding which are most important to keep in physical registers (or equivalently in our
case, to assign to lower numbered virtual registers) doesn’t matter much. Similarly, if
there are enough physical registers, then the priority doesn’t matter. The reason is that
no matter what the assignment, an equal number of operations will result in accesses
to memory. The point is that the non-uniform use of a variable through out a method
opens up opportunities for that variable to be spilled and allow a more important value
to have a chance at a physical register.

Using the swap annotation to guide changes in physical register assignment is cru-
cial in achieving our goal of having machine-independent annotations. There is a great
disparity in the number of registers available in popular microprocessors. Those in the
RISC family, such as the SPARC, have a large number of registers, typically 32 or
greater. In the CISC family, there is a great deal of variance. The embedded version of
the Motorola 68000 has only 16 registers, and the most popular non-embedded proces-
sor, the Intel x86 family, has even fewer. Given this disparity in the number of registers,
swap annotations provide a means for improving the quality of the register assignment
by allowing spill code to be generated more optimally, but in a machine-independent
fashion.

To do this, we mark regions of the program with “swaps” between two virtual
registers. This indicates that until otherwise indicated, the roles of the two registers
are swapped. This is accomplished in the code generator by changing the VR location
table. In a traditional global register allocator, if the number of registers is insufficient

2Assuming that an initializer is called after object creation.[15]
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to contain all live ranges, then code is inserted to “spill” values from registers into
memory and load values from memory into registers. The swap annotation has the
effect that spill code generation has in a traditional allocator. As covered in more detail
below, the presence of a swap annotation may or may not result in spill code being
generated by the code generator.

One can see a simple example of the utility of swaps in Figure 11. On the top
left is the body of a Java function. On the bottom left is the corresponding annotated
Java bytecode. The value corresponding tosum1 is assigned tovr0, and the value
for sum2 is assigned tovr3. Althoughvr3 is not used in the first for loop andvr0isn’t
used in the second, we cannot assign either to the same virtual register since they are
simultaneously live or interfere. If we were generating code for a machine with two
allocatable registers, and used only our VR annotation, thenvr3would not be assigned
to a physical register. However, we can improve the performance of this code by anno-
tating thegoto bytecode at PC 30 by saying that the relative priority ofvr1andvr3are
swapped when doing code generation. This is done by modifying the VR location table
discussed in Section 4.1.

The “swap” annotation consists of information indicating the PC where the swap is
located, and which virtual registers are having their priorities swapped. What the code
generator does with the swap annotation is dependent upon the number of registers
available to be allocated. The “swap” annotation has the formA$ B, whereA andB
are the VR’s that are to have their priorities swapped. In this annotation, we always
haveA<B, so thatB is the VR whose priority is being increased. The rule is simple: if
A is in a physical register andB is not, then insert spill code and modify the VR location
table accordingly; otherwise do nothing — that is, neither generate any machine code
nor change the VR location table.

To devise an algorithm for determining where swaps should be inserted, we will
use the intuition provided by the aggressive live range splitting algorithm of Briggs[6].
There, live ranges are aggressively split before coloring by inserting spill code based
upon the single assignment (SSA) form of the method. Extraneous copies are elimi-
nated before coloring is attempted. We will simplify the Brigg’s algorithm by simply
generating the SSA form and then inserting the appropriate swap annotations to corre-
spond to the location and values of theφ-functions of the SSA form.

It may prove necessary to have two kinds of swaps—before and after. An after
swap placed on a bytecode indicates that the swap should logically take place after
the effect of the instruction has taken place. For conditional branches, this will have
the additional semantics that the swap takes place when the branch is not taken. This
is necessary to insure that there is always a place to put the swap — which logically
appears on a control-flow edge, not an instruction.

Swaps present no integrity problem, as long as the two values being swapped are
type-compatible.

8 Related Work

Many current implementations of the JVM use JIT technology. We discuss a few of
these below.
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int sum1 = 0, sum2 = 0;
for (int i = 0; i < 3; i++) {

sum1 += i;
}
System.out.println(sum1);
for (int i = 1; i < 4; i++) {

sum2 += 1;
}
return sum2;

0 iconst 0 0
1 istore 0 0
2 iconst 0 3
3 istore 1 3
4 iconst 0 1
5 istore 2 1
6 goto 16

9 iload 0 0
10 iload 2 1
11 iadd 0,1! 0
12 istore 0 0
13 iinc 1

16 iload 2 1
17 iconst 3 2
18 if icmplt 9 1,2

21 getstatic 4
24 iload 0 0
25 invoke virtual 4,0
28 iconst 1 1
29 istore 3 1
30 goto 39

33 iinc 3,1
36 iinc 1,1

39 iload 3 1
40 iconst 4 2
41 if icmplt 33 1,2

44 iload 1 3
45 ireturn 3

)

save %sp, -200, %sp
mov %g0, %l0

mov %g0, %l3

mov %g0, %l1

b xxx
nop

add %l0, %l1, %l0

addcc %l1,1,%l1

mov 3, %l2
cmp %l1, %l2
bl 0x10aea8
nop

sethi %hi(xxx), %g4
or %g4, 0x324, %g4
ld [%g4], %l4

mov %l4, %o0
ld [%o0], %g2
ld [%g2 + 0x8c], %g2
mov %l0, %o1
call %g2
nop
mov 1, %l1

b xxx
nop

addcc %l1,1,%l1
addcc %l3,1,%l3

mov 4, %l2
cmp %l1, %l2
bl xxx
nop

ret
restore %g0, %l3, %o0

Figure 11: Two for Loops with Different Accumulators
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The open source virtual machine which we use to implement our work is kaffe,
from Transvirtual[8]. This VM can be deployed either as an all-interpreted system or
an all-JIT system. Their JIT system does a very weak local register allocation, and no
other optimizations.

Sun’s “Java HotSpotTM performance engine”[16] employs an optimizing compiler
on code that has been determined to be performance critical. The optimizing compiler
in their VM includes implementations of dead-code elimination, loop invariant hoist-
ing, common subexpression elimination, constant propagation and a graph coloring
global register allocator.

Another JVM developed in a commercial environment is one at IBM Tokyo Re-
search Laboratory[17]. It applies a similar set of optimizations as HotSpot does in its
JIT. However, it does not use a global register allocator, but use a region-based local
one instead. They claim “Since the JIT compiler requires fast compilation, expensive
register allocation algorithms, such as graph coloring, cannot be used.” We prove this
assertion is false by doing the graph coloring when making the.class file, not when
executing it.

Most closely related to our work is the AJIT system[18] [19]. They also add an-
notations to the.class file, and then use an “annotation-aware” JVM to generate
machine code. They break up some of the more complicated Java bytecodes into sub-
operations (e.g.iaload , load an element from an array of integers) and produce an-
notations specific to the suboperations. By in effect transforming their bytecodes into
a sort of microcode, it seems likely that the verification process is made more difficult.
Furthermore, they do not have the swap annotation, which we argued is important for
increasing the portability of any annotated code.

9 Conclusions

We have defined and implemented a register allocation annotation for Java.class
files which is both machine-independent and safe. In addition, we have defined two
other annotations which are machine-independent and safe, “remove if physical” and
swaps which should also prove to be performance enhancing.
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