
Title: Design of the Kan Distributed Object System
Authors: Jerry James and Ambuj Singh

Contact author: Jerry James
Email: jamesj@acm.org
Telephone: (785) 864–7386
Fax: (785) 864–3226
Address: EECS Department

415 Snow Hall
University of Kansas
Lawrence, KS 66045

Design of the Kan Distributed Object System

Jerry James

jamesj@acm.org
EECS Department

University of Kansas
Lawrence, Kansas

Ambuj Singh

ambuj@cs.ucsb.edu
Department of Computer Science

University of California at Santa Barbara
Santa Barbara, California

November 1999

Abstract

Distributed software problems are often addressed with object-oriented solutions. Objects provide
the benefits of encapsulation and abstraction that have proven useful in managing the complexity of
sequential code. However, the management of distributed objects is typically by means of complex
APIs, such as CORBA, DCOM, or Java RMI. The complexity of the APIs is itself a hurdle to the writing
of efficient, robust programs. An alternate approach is to provide the programmer with a simple interface
to an underlying object management layer that provides efficient access to objects and sufficient power
for common distributed programming tasks.

This paper describes the implementation of the Kan system. It has a clear, simple object model with
powerful semantics, embodying such concepts as atomic transactions, asynchronous method calls, and
multithreading. The model primitives help the programmer avoid common concurrent programming er-
rors, allowing clean expressions of concurrent algorithms. Kan providesdistributedobjects (i.e., objects
that can migrate or be replicated), rather than theremoteobjects of Java RMI. Nevertheless, Kan opti-
mizations provide runtime object accesses that are as efficient as or more efficient than accesses made
to a similar distribution control layer over Java RMI. We describe the optimizations and measure their
runtime impacts.

1 Introduction

Distributed systems are increasingly ubiquitous, both due to an ever greater need for computational power
and because many applications are inherently distributed. Airline reservation systems are an example of
the latter, since the travel agents who use such systems are themselves widely distributed geographically.
Modern computing systems must cope with the challenges presented by widely distributed systems, such
as asynchrony, large and unstable network latencies, heterogeneous computing nodes, congestion, network
failures and partitions, computer failures, and security issues. Furthermore, the increased complexity of soft-
ware and applications is blurring the traditional boundaries between application domains such as databases,
distributed computing, and parallel computing. The same user program needs to manipulate shared informa-
tion consistently, migrate and access distributed resources, and perform its tasks in a concurrent and efficient
way.

Part of the difficulty with programming distributed systems lies in the complexity of the software itself.
Software that copes with all of the above challenges tends to be large and complex. Many have chosen
object-oriented technology as the answer. For example, commercial distributed applications commonly use
the OMG’s CORBA [32] or Microsoft’s DCOM [10] to provide interoperability between distributed system

1

-Kan source

Java bytecode

? ? ?

Kan Compiler

Kan runtime Kan runtime Kan runtime

JVM JVM JVM

Java Sockets

Figure 1: Kan System Structure

services and clients written on different platforms, and even with different programming languages. Objects
provide the benefits of encapsulation and abstraction that have proven useful in managing the complexity of
sequential code. Java solutions to distributed problems are largely based on RMI (Java’s Remote Method
Invocation API), which provides RPC-style access to objects at fixed locations.

An alternative to large, complex APIs is a simple, powerful interface to an object management layer
that provides efficient object access. This paper describes the Kan1 system, a step in that direction. Kan
programs are written in a language that extends Java [15] with a few simple keywords, providing access to
such features as asynchronous method calls (used for expressing concurrency), guards (used for expressing
dataflow and synchronization constraints), and nested atomic transactions [28, 29] (used for expressing
atomicity). It hides distribution, replication, migration, and faults from the programmer. The model is
designed to significantly reduce programming errors caused by incorrect thread synchronization and invalid
object consistency. The programmer is freed from the burden of managing object migration, replication and
thread migration. The resultingnetwork transparencyallows the programmer to concentrate on algorithms
instead of the details of placing and finding objects. The programmer’s view is that of a global namespace
in which objects are accessed by concurrent threads. Preserving this simplicity while maintaining efficiency
through runtime monitoring is our principal objective.

The Java language provides us with the ability to write multithreaded applications. However, it is not
entirely appropriate for programming distributed systems. For example, Brose, Löhr, and Spiegel show [8, 9]
that Java’s method-calling semantics, pass-by-value, lead to unacceptable latencies when accessing arrays,
and even class instances. They also show that RMI does not solve the problem. Java, even with RMI, does
not exhibit access transparency, or identical method calling syntax and semantics for both local and remote
objects. Our design allows the programmer to think in terms of nondistributed and distributed, rather than
local and remote. The benefit is that the desired scope of an object is generally clear from the program
design. For example, user interface objects are nondistributed (or have local scope), since they must interact
with the hardware of the computer which the user is operating. However, data containers are distributed (or
have global scope), since they must be shared to provide the desired utility.

The basic structure of the Kan system is shown in Figure 1. A source file, using our distributed program-
ming constructs, is passed to the Kan compiler. The compiler produces standard Java bytecode, containing
calls into the Kan runtime system. That system itself is written in pure Java, so the system and user ap-
plications will all run on any standard Java Virtual Machine, using Java sockets for communication. Kan

1The wordKan is Sanskrit for a small particle, an atom or molecule.

2

http://java.sun.com/products/jdk/rmi/

includes several optimizations, including thread pools, thread inlining, pointer swizzling, object replication,
and object migration. With these optimizations, Kan is able to outperform an RMI-based system that uses
structures of similar complexity to manage distributed objects.

The rest of the paper is organized as follows. In Section 2 we describe our object-oriented model of
distributed computing. Relevant architectural information for Kan is presented in Section 3, along with a
rationale for the design decisions. In Section 4, we show the results of our performance testing on Kan, and
describe various optimizations used to enhance that performance. We compare Kan’s performance to that of
RMI when using data structures of similar complexity to model the effects of supporting distributed, rather
than remote, objects. We discuss related work in Section 5. Finally, we close with discussions of future
extensions to Kan in Section 6.

2 The Kan Object Model and Language

The Kan object model is similar to other concurrent object models, such as those of Orca [3] and Java [24].
It includes notions ofobject, class, method, andthread that are similar to those appearing in the definitions
of such languages as Java and C++ [38]. The Kan programming language itself is Java, with the extensions
described in the rest of this section.

2.1 Asynchronous method call

Parallelism in Java programs is expressed via threads; a new thread is added to the system by creating a
java.lang.Threadobject. Java threads cannot be transferred between JVMs, however. They contain native
code stacks which can hold native pointers into the heap. Hence, we provide similar functionality in Kan
with implicit thread creation via asynchronous method calls. Such calls return an explicitfuture, similar to
those used in ABCL/f [47], for example. This is an object that can be used tojoin with the new thread, to
test for completion of the called method, and to fetch return values or rethrow exceptional return values. The
synchronous method calls with which most programmers are familiar are equivalent to an asynchronous call
followed immediately by a join with the forked thread. This equivalence is exploited in our language design.

Theasynchkeyword is written after a method call to indicate that the call should be made asynchronous-
ly (see the example in Figure 2 below). In such cases, aFutureobject is returned to the caller. The future
can be used to determine when the called method has completed execution, and to retrieve return values
and exceptional results. Method calls without this keyword are made synchronously, as with normal Java
method calls. Note that theFutureobjects aremagic, in that they receive special compiler support. The
compiler looks up the return type and declared exceptions of the invoked method, and constructs aresult
method that returns the correct type and throws only those exceptions. Kan thus cooperates with Java’s type
and exception checking mechanisms.

Method parameters are always passed by value, as in local Java semantics. In particular, since variables
of object type store references, then objects are passed by reference, whether the called object is local or
remote. That is, there is no local/remote distinction in the model. This ensures that all method calls have a
uniform semantics, thereby avoiding the pitfalls identified by Brose, Löhr, and Spiegel [8, 9].

Consider the example code in Figure 2. It sends several values to an adder (or accumulator) asyn-
chronously, then waits to be sure each call has completed. Theadd methods return the new value in the
adder after the addition. The program ends by fetching the number returned by the third add operation.
Note that the result fetching assumes that the third thread spawned executes last. This might not be the
case; asynchronous calls are unordered, so code that assumes a FIFO ordering may not execute as expected.
In particular, in this example, the third thread (corresponding to futuref3) may executefirst. The right
approach is to query theAdder objecta for its final value after the add operations have been joined; e.g.,

3

Addera = new Adder(0);
Futuref1; f2; f3;

f1 = a:add (x) asynch;
f2 = a:add (y) asynch;

f3 = a:add (z) asynch;
f1:join ();
f2:join ();
f3:join ();
int result= f3:result ();

Figure 2: Model example: adding integersx, y, andz

result= a:val ();.
Asynchronous method calls can be used to express the parallelism in distributed and parallel applica-

tions. We have found them useful in expressing such applications as a parallel Sieve of Eratosthenes and a
distributed web cache, among others. The sieve application divides the range of numbers to sieve among a
set of nodes. It then uses asynchronous method calls to fork off one thread per node. Each thread sieves over
its selected range, and all higher ranges. In this way, the asynchronous method calls capture the parallelism
inherent in this application.

2.2 Guarded Atomic Actions (Transactions)

Synchronization in Java is achieved with thesynchronized keyword. However,synchronized corresponds
to an exclusive lock; shared locks are important in distributed systems for performance reasons. In addition,
this keyword corresponds to lock acquisition only. Kan includes a more powerful guarded atomic action
construct. The guard is a predicate, or boolean expression, over the states of the executing thread and the
associated object (i.e.,this). A guard may be evaluated multiple times before it is found to be satisfied, so it
should be free of side effects; however, Kan does not currently enforce this restriction.

Each guard is associated with a block of code that is executed as a transaction in a state satisfying the
guard. Guards are useful for expressing dataflow synchronization requirements. The most common idiom
for programming dataflow synchronization expressions in Java is to insert awhile loop that tests for the
condition, wrapped around await . Then, anywhere that the condition becomes true (ormight become
true), anotify is issued (or, if the number of waiting threads might be greater than one, anotifyAll
is issued). If the programmer forgets a singlenotify , some threads may wait forever, leading to lack
of progress at runtime. If the programmer forgets a singlewait , the program can be incorrect, due to
executing critical code when the condition is not satisfied. In Kan, the programmer does not have to worry
about where the condition becomes true. The programmer just marks off regions of code where interference
might be a problem, and writes dataflow synchronization and mutual exclusion requirements into the guard.
This significantly reduces opportunities for intermittent, difficult to debug synchronization errors.

The guard in our model plays much the same role as in Owicki and Gries’ system [33], ensuring that
the local state meets some criterion before the following atomic step takes place. However, our construction
differs from theirawait B then S construction in allowing method calls inside an atomic step. Like Owicki
and Gries, we assume that each transaction is terminating, as a non-terminating atomic action can never have
any visible effect on the system state. The guard construct also bears a close relation to that of Orca [4],
the key difference being that Orca allows a thread to wait on multiple guards, nondeterministically selecting
one if more than one is satisfied. It is also similar to the dataflow synchronization structure of Distributed
Oz [40].

Theguard keyword is used to mark a block of code as containing an atomic transaction, and to block
execution of that transaction until a boolean predicate is satisfied. The boolean predicate must be over the
local state of the thread and the fields of the object. Since a guard may be evaluated multiple times, the
programmer should ensure that it does not change the state of any object. However, Kan does not enforce

4

public class Account{
. . .
public void transfer (floatamt;AccounttoAccount)

throws InsufficientFundsException{
guard (true) {

Futuref = toAccount:deposit (amt) asynch;
withdraw (amt) ;
f:join ();

}
}

}

Figure 3: Transfer funds

this restriction at the present time.
We have found guards to be a powerful and useful construct for expressing dataflow synchronization

constraints in a distributed whiteboard. In the whiteboard, a shared space can be drawn upon by each
participant. The task of the application is to show each participant an up-to-date view of the shared space.
One thread on each computing node acts as an observer. In effect, it computes a snapshot of the shared
space, then suspends itself on a guard that asserts that the state of the object does not correspond to its
snapshot. When that assertion becomes true, it indicates that the shared space has changed state. Therefore,
the awakened thread updates the displayed view of the shared region, then repeats the action of taking a
snapshot and waiting for another change to the shared space.

2.3 Nested atomic action (nested transaction)

Sometimes more than one object must be accessed in the same atomic step. For that reason, Kan provides
nested transactions[28, 29]. A nested transaction is constructed by making aparent transactionwhich does
one of the following:

� It makes a synchronous method call to a method (possibly on some other object) that contains one or
more transactions.

� It makes an asynchronous method call to a method that contains one or more transactions, and joins
with the future before completing.

Although the parent transaction and each subtransaction has a (possibly trivial) guard, all of them must
appear to the rest of the system to execute in one atomic step. Kan’s nested transactions are very similar to
those appearing in the literature on databases, and are related to those featured in Argus [25, 26].

As an example, consider the transfer of funds from accountX to accountY . We must ensure that money
is not created (the withdrawal fromX fails, but the deposit toY succeeds) or lost (the withdrawal fromX
succeeds, but the deposit toY fails). That is, the entire transfer must take place in one atomic step. Consider
the code of Figure 3. It starts the deposit action asynchronously, does the withdrawal, then ensures that both
actions have completed. If the withdraw action cannot be completed due to insufficient funds, then it throws
anInsufficientFundsException, causing an abort of the entire transaction due to a user exception. Otherwise,
both actions complete atomically, thereby effecting the desired transfer.

5

2.3.1 Deadlock

Nested transactions make deadlocks possible. For example, consider a transaction that first locks objectX,
then attempts to lock objectY . Meanwhile, another transaction has locked objectY and is now attempting
to lock objectX. This is a classic case of deadlock. In general, unless the user obeys some locking protocol,
the system must be prepared to deal with deadlocks.

Guards introduce another scenario in which deadlock can occur. Suppose a transaction has obtained a
lock on objectX, then goes to sleep on an unsatisfied guard. If the guard cannot be satisfied until some other
thread obtains the lock onX, then deadlock has occured. Hence, when executing nested transactions, we
cannot wait forever for an unsatisfied guard to become satisfied. After a finite time, we must abort and roll
back the transaction. Note that single level transactions can sleep on unsatisfied guards indefinitely, because
they will not hold any locks while sleeping.

Our solution to the deadlock problem is to make them invisible to the user. The system will take correc-
tive action, aborting and rolling back one transaction out of a set that is (or might be) involved in a deadlock.
This will allow the remaining transactions to acquire the needed locks and make progress. More information
on this topic is provided in Section 3.4.3.

2.4 Consistency Model

When choosing a consistency model, we must balance the needs of the application programmer for a clear,
intuitive model with the needs of the system to apply performance-enhancing optimizations. In the case of
shared read/write memory, weakly consistent systems enable optimizations while providing the equivalent
of a strong memory model for certain common classes of programs. However, the situation is less clear with
shared object models. Weakly consistent objects are poorly understood. Indeed weak consistency appears
to be incompatible with objects that make method calls on each other up to arbitrary depths. For that reason,
shared object systems are often linearizable [19].

However, there is an intermediate ground. Java programmers are already used to programming in a mul-
tithreaded environment, marking critical sections of code withsynchronized. We extend this programming
model to Kan, and guarantee that transactions (or atomic actions) are linearizable with respect to each other.
This gives the programmer the freedom to leave code that is known to be free from interference outside of
transactions, thereby avoiding the cost of atomic actions. However, if code outside of a transaction executes
concurrently with a transaction, we make no guarantees that the effects of the nonatomic code are made
visible everywhere (or indeed, anywhere).

Nested transactions are exactly like their counterparts in databases. The entire nested transaction must
appear to the rest of the system to take effect in one atomic step. We give a design that accomplishes this
in Section 3. Note that our consistency model is equivalent to linearizability iff every method consists of
exactly one transaction and there is no nesting.

2.5 The Kan Programming Language

Since we selected Java as the implementation language for Kan, we chose Java as the programming language
as well. However, Java does not fully support our distributed object model. In fact, strictly speaking, Java
does not support distributed programming at all. In conjunction with RMI, Java supportsremoteprogram-
ming. However, there is no support for object directories, object replication and migration, etc. in RMI. For
these reasons, we have enhanced the Java language both with the keywords described above, and with the
following additional features.

In addition to theasynch andguard keywords, Kan uses theglobal keyword as a modifier for classes.
It marks the class as needing special preprocessing by the Kan compiler to make it suitable for distribution.
In recognition of the fact that programmers will want to use existing libraries of Java code, the Kan system

6

public class Barrier {
private int N ; // # of processes
private int in = 0; // # entered barrier
private int out= 0; // # left barrier

public Barrier(int num) {
N = num;

}

public synchronized void join () {
if (++in == N)

notifyAll ();
else while (in 6= N) {

try f wait (); g
catch (InterruptedException e) {}

}
if (++out== N)

in = out= 0;
}

}

Figure 4: A Java barrier

also supports the use of Java classes that have not undergone such preprocessing. However, objects of
such classes do not have global handles. They can only be accessed via some global object that contains
references to them. Such references cannot be shared between global objects successfully, since the global
objects may not be colocated. Hence, great care must be taken to ensure that eachlocal object is referred to
by at most oneglobal object. The Kan system itself does not enforce this restriction.

Java applications are started at a method namedmain in a class identified by the user. This method
must have the signaturepublic static void main (String[] args). A distributed Kan application may need
more information. It may need to know about the number of nodes on which it is executing, for ex-
ample. Information about a distributed application is packed into akan.comm.AppInfoobject, which is
passed as the first argument ofmain . That is, themain method has the signaturepublic static void
main (AppInfo app;String[] args) for Kan applications. The number of nodes can be determined, for ex-
ample, by callingapp:numNodes().

Thenew keyword is used to create objects in Java. In Kan, it can be used in the same manner as in Java.
When a distributed object (that is, an object of a class declaredglobal) is created, it is created on a node
chosen in a round-robin fashion. The user can also select the node on which an object is initially created2

using an alternate syntax. In an application running onN nodes, the nodes are identified by the integers zero
throughN � 1. To create a distributed object on nodei, the programmer writes a statement of this form:
DistObj dObj= new(i) DistObj(args).

Currently there is no support for static methods or variables in global Kan objects. Such support requires
treating the class itself as an object, and turning references to static methods and variables into global object
references. This will be implemented in a future version of Kan.

2.6 Example

As a final example of the model and language, consider a barrier over a fixed set of processes or threads.
One way to implement a barrier in a shared data environment is to have each thread atomically increment
a counter as it enters the barrier. The last thread to enter the barrier sees that the counter equals the total
number of threads using the barrier, and signals all threads to exit. The barrier can be made reusable by
detecting that all threads have exited the barrier and resetting the state of the barrier at that time. If done in
Java, the results might look like the code in Figure 4.

However, this code is incorrect. It demonstrates a common Java programming error. Even though the
join method is synchronized, interference can still occur between separate uses of this supposedly reusable

2The system may choose to move or replicate the object after its creation, however.

7

public class Barrier {
private int N ; // # of processes
private int in = 0; // # entered barrier
private int out= 0; // # left barrier

public Barrier(int num) {
N = num;

}

public void join () {
guard (out== 0)

in++;
guard (in == N) {

if (++out== N)
in = out= 0;

}
}

}

Figure 5: A Kan barrier

barrier. On the first use of the barrier, the final thread to enter executes anotifyAll and exits the barrier.
Suppose it does not lose its timeslice, does all the work of the next phase, and reenters the barrier. Nowin is
N + 1, so it waits. Eventually, the last thread from the first use of the barrier exits, andin andout are reset
to zero. But there is a thread waiting in the barrier already, so after all other threads enter the barrier for the
second time,in will equalN � 1, and no thread can exit the barrier.

Waiting and notifying are difficult to do correctly in Java, even within the same method. When corre-
sponding waits and notifies are spread across methods, or even across classes, mistakes become very easy to
make. In contrast, consider the Kan version of the barrier, shown in Figure 5. The structure of the barrier is
clear, with one transaction for entering the barrier and another for exiting the barrier. The dataflow synchro-
nization requirements are explicit, instead of being hidden in implicit wait/notify pairs. Kan’s support of
guards allows the programmer to avoid reasoning about all points in the program where notification should
be inserted, reducing the number of errors made in such cases.

3 Kan System Architecture

In this section, we describe the design choices made when implementing the Kan system. The main concern
was to correctly implement the model described in Section 2. The secondary concern was to implement
the model efficiently, a topic we turn to in Section 4. The major components of the Kan system, and their
relationship to one another, are shown in Figure 6. We will cover each of these components in the succeeding
sections. All of these components have been implemented, except for the garbage collector, which is under
construction (see [5]), and the fault tolerance module, for which we have a paper design.

3.1 Communication

Kan objects are transmitted over the network using Java serialization. At the lowest layer, the network is
accessed with Java sockets. These have the advantage of providing a simple, uniform interface across all
Java platforms. Furthermore, socket programming has a long history, so the issues involved in programming
them are well understood. Future revisions of Kan will implement network-specific communication layers.
This will require native code for each network type, so the socket code will be retained as the default in case
no applicable code is available. Active Messages [41], in particular, appear promising as a way of reducing
communication costs. Currently, Kan sets up socket connections between all pairs of nodes at startup. This
approach is not scalable. Future work will manage sockets as resources, setting them up on demand, and
limiting the total number of sockets open at any one time. This approach will also provide a greater degree
of fault tolerance.

8

@
@@R

�
��	

Reference-
�

Ref. Count

?
?
bytecode Lock

Request
Lock
Info

6

New Object -
Invoke Method -

�
�
��	 ??

Send ReceiveGuard info Runnable threads
6

�
�
��� 6

? ?

New
thread

Send
update

Receive
update

6 6 6

Recover-
-

Checkpoint

Kan
Application

Kan
Application

Garbage
Collector

Transaction
ManagerKan compiler

Object
Manager

Thread
Scheduler

Object
Typing

Object
Serializer

Communication Layer

Java
Virtual

Machine

Fault
Recovery

Figure 6: Kan System Organization

3.1.1 Physical and Logical Nodes

A Kan system is composed of a set of computers communicating over a network. We refer to each computer
as aphysical nodeof the Kan system. The classkan.comm.PhysicalNodecontains the socket and object
stream information needed for communication over the physical network.

Another view of a node is as a container of user objects, threads, and transactions. However, this is a
different kind of entity, as user objects and threads can be moved among the physical nodes of a system. We
call these containerslogical nodes. Initially, there is exactly one logical node per physical node. Currently,
the initial configuration remains stable throughout execution of a Kan application. However, we plan to
implement a fault tolerance scheme that remaps logical nodes to different physical nodes due to failures.
Also, the current system allows multiple Kan applications to run simultaneously, possibly resulting in logical
nodes from different applications residing on the same physical node.

An object of classkan.comm.LogicalNodecontains information about a single logical node. Each
logical node has a globally unique identifier. In the current implementation, the ID is a 64-bit value. The
upper 32 bits are the IP address of the physical node initiating the associated application. The lower 32 bits
are uniquely assigned by the initiating node, based on a counter kept by each physical node. This scheme
will have to be redesigned for other network types (including networks using 128-bit IPv6 addresses).

EachLogicalNodeobject either resides on the local physical node or on a remote physical node. If it is
local, it has a reference to akan.comm.LocalLogicalNodeobject, which contains references to the object and
thread containers for that node. Otherwise, it has a reference to akan.comm.RemoteLogicalNodeobject,
which contains interface code for sending messages to such a node.

9

3.1.2 Messages

The various nodes of a Kan system use objects of classkan.comm.Messageto send messages to one another.
This class has fields holding the originating and destination nodes of a message, as well as an automatically
generated sequence number. This number is used to match replies up with the messages to which they are
replying. The two main subclasses ofMessagearekan.comm.SysMessage(system messages), for commu-
nication between physical nodes, andkan.comm.AppMessage(application messages), for communication
between logical nodes.

Examples of messages that are sent between physical nodes are those regarding application startup and
teardown, and fault tolerance traffic. Messages that are sent between logical nodes will be described in more
detail below. They include messages for invoking method calls and returning values, creating objects, and
object coherence traffic.

The fact that messages exist in a class hierarchy simplifies message handling. We use polymorphic
dispatch to tell each message to handle itself, once the message object has been reconstituted. This approach
lets us avoid constructing tables of message types inside the communication layer. However, this again trades
off speed for convenience, as polymorphic dispatch incurs a runtime cost.

3.2 Distributed Objects

Global objects, when created, are assigned a globally unique ID, consisting of the ID of the creating log-
ical node and a counter maintained by that node. Each global object has a controller, an object of class
kan.obj.KanObject. This controller tracks replicas, and provides the interface for hiding object typing (see
Section 4.4) from the rest of the system. Object typing determines the consistency and locking protocols
used to access the object. Each object and object replica has an associated local lock. These locks solve
the preemptible, guarded readers/writers problem. That is, they provide both shared (read) and exclusive
(write) locks, each in both preemptible and nonpreemptible mode, and also ensure that a lock is only held
by a thread with a satisfied guard. To lock a replicated object, one must also lock all of the replicas. This is
considered in more detail in Section 4.4, which describes object typing.

3.3 Distributed threads

Asynchronous method calls can cross physical node boundaries. Each such method call is assigned a glob-
ally unique ID. These IDs are constructed exactly like object IDs. In fact, they have a common superclass,
kan.util.ID, which is also used to construct globally unique IDs for other Kan constructs (see Sections 3.3.2
and 3.4).

3.3.1 AsynchCall vs. KanThread

Java threads may carry information that is not easily moved between Java Virtual Machines. In particular,
an implementation is allowed to give each thread a native stack, with native machine pointers to local data
structures. Such pointers cannot be meaningfully transferred across a network. For this reason, Java threads
cannot be serialized and deserialized successfully.

However, we need to do exactly that in order to support the fault tolerance scheme we plan to implement
in Kan. When a node fails, the threads that were executing on it must be reconstituted elsewhere. Therefore,
we encapsulate the work to be done by a thread in ankan.thrd.AsynchCallobject. EachAsynchCall is run
by associating akan.thrd.KanThread(subclass ofjava.lang.Thread) with it. Although we cannot transfer
KanThreads between nodes, we can transferAsynchCalls, thereby giving us the desired functionality. Note
also that the IDs described above are assigned to theAsynchCallobjects, not theKanThreadobjects.

10

3.3.2 Future

A kan.thrd.Futureholds the result of an asynchronous method call. Each is assigned a unique ID so that
results can be returned across the network successfully. This ID is constructed like all other globally unique
IDs considered so far.

A joining thread calls one of the family ofjoin methods defined in classFuture. There is one that
returns object types, one for each of the primitive types, and one that returns nothing (i.e., it is of typevoid).
Each of them acquires a lock on theFutureobject, then checks whether it is marked as completed. If not,
then await () is executed to put the thread to sleep until the method call returns. If so, then the appropriate
value is returned. However, if the called method terminated due to an exception, that exception is rethrown
at this time, rather than returning a value.

When a method call terminates, the return value is shipped back to the calling node, if it is not local.
There a lock is acquired on the appropriateFutureobject, the return value (or exceptional value) is stored
in theFutureobject, and anotifyAll () is executed to wake up any sleeping threads. Note that anoti-
fyAll is necessary, and not anotify , since the user may have passed theFutureobject around, resulting
in multiple threads attempting to join.

3.4 Transactions

Guarded atomic sections of code are implemented with a transactional mechanism. This mechanism handles
automatic abort and restart of transactions to avoid deadlock. Each transaction has a unique transaction ID,
constructed just like all the other global IDs described above. In addition, nested transactions carry the ID
of the top-level transaction. We define a total order on transaction IDs, which is used in the wound-wait
algorithm to decide how to break deadlocks.

3.4.1 Blocking

Some transactions might block midway, due to waiting for a method call to complete, for example. Such
transactions might be aborted and rolled back, so undo information must be kept. Other transactions will
never block, so we optimize by not keeping the undo information.

Currently, the undo information consists of a copy of the original object. Transactions use this copy to
restore the original state of the object in case of an abort. Aborts are represented as exceptions, subclasses of
kan.trans.TransactionAbortException. Transaction managers install appropriatetry-catch blocks to catch
aborts and restart the affected transaction.

3.4.2 Nested Transactions

Since transactions are limited to accessing the state of a single object, multiple object atomic actions are
accomplished with nested transactions [28, 29]. These occur when a transaction contains one or more
method calls that are either synchronous or joined within the scope of the transaction.

Transactions can nest to arbitrarily deep levels. The initiating transaction is referred to as theroot
transaction. When nesting occurs, there is atop-leveltransaction that starts the nesting; the others are called
child transactions. The termsancestoranddescendantare defined in the obvious way.

We want the full set of ACID properties to apply to an entire nested transaction hierarchy as a whole.
Hence, when a subtransaction completes, its effects cannot be made visible outside of the hierarchy. No
effects can be seen until the entire hierarchy is prepared to commit. For this reason, local copies of objects
can be tagged as being visible only to subtransactions of some transaction ID. As commits occur, the tags
are revised upward in the nested transaction tree. When the top-level transaction commits, the copy visible
to that transaction becomes the new, globally visible copy of the object.

11

Since nested transactions may span multiple nodes, we need a mechanism for ensuring atomic actions
across nodes. We choose 2-phase commit for that purpose. When the top-level transaction is ready to com-
mit, it tells all of its subtransactions to prepare to commit. At that time, they all change their preemptible
locks to nonpreemptible locks. If any subtransaction is unable to make the lock conversion (due to pre-
emption), it signals an abort. Otherwise, the subtransactions signal that they are ready to commit, and the
top-level transaction sends out the final commit message.

3.4.3 Deadlock

The Kan system uses a conservative method for breaking deadlocks, similar to the scheme used by Ar-
gus [25, 26]. Nonnested transactions acquire only one lock, so they are not involved in the deadlock break-
ing system. We use the wound-wait algorithm described by Moss [29]. Accordingly, each transaction is
given a timestamp at its creation, which is encoded into its transaction ID. These timestamps do not neces-
sarily correspond to real time; that is, a transaction created later in real time may have an “older” timestamp
than some other transaction. Nevertheless, they have the monotonically increasing property that ensures the
absence of deadlock.

When a nested transactionT attempts to acquire a lock, it first checks whether some other nested trans-
action holds the lock. If a younger transactionS (one with a higher timestamp) holds the lock, thenT

woundsS, causing it to abort, roll back, and release the lock. If an older transaction holds the lock, thenT

waits. Waiting transactions are sorted by timestamp so that the oldest waiting transaction is always given
the next chance to acquire the lock3.

It is not necessary to wound a younger transaction immediately, since there may be no deadlock in fact.
The Kan system sets a timer on detecting a situation calling for the wound action. If the transaction holding
the lock has not released it when the timer expires, it is wounded then. The value of the timer is a tuneable
parameter of the system, since a reasonable value will be affected by such factors as network latency and
clock speed of the computers involved.

4 Performance of Kan

In this section, we describe the Kan optimizations in more detail, and measure their performance impacts.
We use microbenchmarks to assess performance. The measurements presented in this section were taken on
a set of 350 MHz Pentium II machines. Each runs the Solaris operating system, either version 5.6 or 5.7.
Each machine has 128 megabytes of RAM. Our Java platform is the JDK 1.2.2 reference implementation
(also known as the Java SDK 2, version 1.2.2). All Java source files were compiled with optimization
enabled. Note, however, that the Java compiler produces identical bytecode with optimization on and off
for most of the microbenchmarks in Section 4.1, since they were written in a manner that is intended to
defeat optimizations. Finally, all measurements were made with “green threads”, a user-level thread system,
rather than the heavier-weight native threads. Native threads are managed with operating system support,
resulting in degraded performance on uniprocessor machines such as those we used in these tests. Each
set of measurements is made twice, once with the Just-In-Time (JIT) compiler enabled, and once with it
disabled. All measurements were repeated at least 10 times, and more if needed to obtain a reasonable
range of values at a 95% confidence level. Each individual measurement is made by repeating the action to
be measured tens of thousands to tens of millions of times, as appropriate for the time scale of the action,
and dividing the total time by the number of loops. We assume that the looping time is negligible when
measuring Kan constructs.

3However, the oldest transaction is not guaranteed to get the lock, since its guard may not be satisfied.

12

Clock function JIT No JIT

System.currentTimeMillis 6:093� 0:025 6:169� 0:062

Timer.currentTimeNanos 5:165� 0:005 5:071� 0:016

gettimeofday 5:236� 0:004

clock_gettime 4:432� 0:015

Table 1: Clock reading time, in microseconds

The local network is a 10 Mbps (or “slow”) Ethernet. The round-trip latency on the network is350:859�
2:981 microseconds between machines on the same subnet. The latency between two machines that are as
far apart as possible, in the network sense, in our local network is1064:086 � 10:646 microseconds under
conditions of light use.

Although the times presented in this section appear very high, especially compared to other Java-based
systems such as Jaguar [43], and JavaParty [35], bear in mind the following:

� Systems such as Jaguar and JaVIA concentrate on improving the raw performance of Java’s communi-
cation substrate; namely serialization and the transfer of serialized objects over Java sockets. Kan, on
the other hand, is a user of the communication substrate, not a provider thereof. Jaguar or JavaParty,
for example, could be used with Kan to improve Kan’s performance.

� Such systems typically report performance measurements taken on faster networks. Jaguar, for exam-
ple, uses 1.2 Gbps Myrinet, as opposed to Kan’s 10 Mbps Ethernet.

� The point of Kan is not its raw speed, but that it provides distributed (i.e., possibly replicated or
migrating) objects and transaction support on those objects at a cost comparable to that of native Java
RMI. RMI, on the other hand, offers onlyremoteobjects; that is, the objects reside at fixed locations.
Supporting distribution requires additional machinery on top of RMI.

4.1 Basic Java Costs

In this section, we give the basic costs of using the Java system described above. Several fundamental costs
are described and measured, namely those of reading the clock, making method calls, creating and starting
threads, synchronization, and the Serialization of objects.

4.1.1 Reading the Clock

First we give the overhead of collecting timing information, in Table 1, so that we know how other measure-
ments are affected by reading the time. First we measureSystem:currentTimeMillis (), which is the
standard way of getting the current time in Java. This has millisecond resolution, and is based on a call to
the Solaris functiongettimeofday .

Millisecond resolution is too coarse for our purposes, so we implemented our own native code that calls
the Solaris functionclock_gettime , which is available in the POSIX4 library on Solaris 2.6 and the
RT (realtime) library on Solaris 2.7. This function has nanosecond resolution (although only microsecond
accuracy on the test machines). A number of clocks are potentially available. We use CLOCK_REALTIME,
which is the only clock available on our test systems, returning wall clock time. Some systems also support
CLOCK_VIRTUAL, which reports only actual CPU usage, taking context switches into account. Our Java
interface is throughTimer:currentTimeNanos ().

Finally, we measured the cost of calling the two C functions, so we can see how much overhead is
inherent in the Java Native Interface (JNI), which allows Java programs to call “native” (binary) code. The

13

Method type JIT No JIT

No args, returns void 114:264� 0:611 429:611� 9:166

1 int arg, returns void 120:567� 1:327 501:329� 4:064

32 int args, returns void 407:189� 3:022 2390:348� 5:783

1 ref arg, returns void 135:146� 1:739 662:086� 0:969

1 ref arg, returns int 178:004� 1:307 720:158� 2:013

1 ref arg, returns int, final 178:708� 1:846 719:954� 1:212

1 ref arg, returns int, static 111:492� 1:220 609:744� 0:857

Table 2: Method calling time, in nanoseconds

Activity JIT No JIT

Create 1 4419:167� 29:810 283:328� 0:718

Create 100 86:539� 0:458 72:788� 0:392

Start 1 1850:654� 48:114 544:878� 1:543

Start 100 521:792� 2:529 440:341� 1:082

Table 3: Thread costs, in microseconds

Java settings make no difference for these results. On our platform, the JNI overhead is approximately 650
to 950 nanoseconds per call to the time functions.

4.1.2 Method Call

Method calls are one of the fundamental activities performed by Java programs. The cost of making a
method call is greatly affected by the number of parameters, since each must be pushed onto the stack.
Whether there is a return value or not also affects the time. Finally, calls to static methods are faster than
calls to instance methods. This is partly due to the fact that instance methods have a hidden parameter,this,
and partly due to the fact that static method calls are resolved at compile time. The results of our experiments
are shown in Table 2, in nanoseconds. A “ref arg” is a reference argument, that is, a parameter of object (or
array) type. Note that thefinal keyword did not impart any significant difference in method calling time.

4.1.3 Threads

Thread creation and startup costs turn out to be a major component of application overhead. Creating a
thread involves allocating a stack, and setting up internal parameters. Starting a thread is a slow process,
typically involving complicated manipulations of the scheduler state. Table 3 shows the results, in microsec-
onds, of creating a single thread, creating a batch of 100 threads, starting a single thread, and starting 100
threads in a row. Notice that working with larger numbers of threads improves the average time, most
notably for thread creation.

4.1.4 Synchronization

Thesynchronized keyword marks a method or block of code as needing to acquire a lock on some object
before continuing. This is the only synchronization primitive offered by the Java language. The performance
of synchronization has been a major concern for the developers of JVMs, and has been the subject of various
attempts at optimization (e.g., [2]) or avoidance (e.g., [7]). In Table 4, we give the cost of entering and
exiting a synchronized block with no actions inside the block, in nanoseconds. We measure the cost with

14

Contention JIT No JIT

None 661:965� 22:922 938:057� 0:310

10 threads 7188:913� 106:471 7204:132� 69:955

100 threads 7638:570� 111:702 7377:141� 66:753

Table 4: Synchronization costs, in nanoseconds

Object Class Per- Single
type overhead object object

int 6 4 10
int[100] 17 10 427
Integer 71 10 81
Node 261 144 405
Tree 261 2026 2287
Complex 132 18 150

Table 5: Serialized size, in bytes

three levels of contention: none (only one thread is running the program), ten threads are vying for the lock,
and 100 threads are vying for the lock.

4.1.5 Serialization

Java provides a way of converting objects into portable byte streams, and then reconstituting objects from
those streams. The conversion of an object to a byte stream is calledserialization; reconstituting an object
is calleddeserialization. We use serialization to send message objects between nodes. The serialization
features of Java is not known for its good performance. In fact, it is one of the major bottlenecks in the
performance of Kan. In this section, we measure its performance.

We use a variety of objects to measure the performance of serialization:

� A primitive type,int, which is a 32-bit quantity.

� An array of 100ints.

� A “wrapped” int. This is an object with a single field, ofint type. It is used to store integers in contexts
where an object is required. Its type isjava.lang.Integer.

� A Node object, which is a component in a tree. It has 34 fields. Two of the fields are references to
otherNode objects; they are namedleft and right. The other 32 fields all have typeint. They are
namedi1, . . . , i32.

� A tree, which is a balanced binary tree of 15Nodeobjects.

� A “complex” structure. This is an instance of classComplexC, which has one field namedval of type
int, and is a subclass of classComplexB. ClassComplexBhas one field namedber of typeint, and is
a subclass of classComplexA. Finally, classComplexA has one field namednumof typeint.

In Table 5 we show the number of bytes that are produced when these objects are serialized. The first
column shows the number of bytes that are used to represent the class or type of the object. The second
column shows the number of bytes that are used to represent a single instance of the class or type. The third

15

Object With class information Without class information
type JIT No JIT JIT No JIT

int 2:189� 0:003 2:100� 0:016 1:807� 0:004 2:120� 0:012

int[100] 149:359� 1:467 304:500� 0:698 102:397� 2:754 299:623� 1:379

Integer 71:362� 0:705 105:571� 0:408 59:681� 0:997 100:979� 0:234

Node 182:580� 5:959 262:198� 0:691 151:677� 1:843 244:046� 0:373

Tree 2010:762� 30:021 3339:244� 13:913 1917:007� 29:781 3287:843� 18:774

Complex 72:755� 0:637 139:181� 0:294 71:795� 0:691 136:916� 0:156

Table 6: Serialization times, in microseconds

Object With class information Without class information
type JIT No JIT JIT No JIT

int 5:506� 0:027 13:555� 0:049 3:588� 0:000 13:417� 0:028

int[100] 125:999� 0:287 281:582� 0:778 67:146� 0:823 263:665� 0:406

Integer 63:991� 0:744 104:493� 0:169 45:791� 0:379 98:528� 0:181

Node 158:346� 2:506 268:440� 1:214 139:453� 0:938 249:788� 0:300

Tree 2005:962� 30:181 3638:721� 11:239 1968:107� 27:598 3614:023� 14:199

Complex 82:748� 2:003 168:452� 1:336 65:097� 0:575 147:952� 0:113

Table 7: Deserialization times, in microseconds

column, which is simply the sum of the first two columns, shows how many bytes are produced if a single
object of that class or type is serialized.

There are two anomalies in this table that should be noted. First, for the integer array, the third column
is not the sum of the first two. In this case, 17 bytes are written to represent theint[100] type, 10 bytes are
written per array, and the array elements have the cost of singleints; i.e., 4 bytes each. Hence, a single array
is serialized to17+ 10+ 4� 100 = 427 bytes. Second, the tree consists of 15Nodeobjects, each of which
takes 144 bytes. However, the per-object size of a tree, 2026, is not15 � 144 = 2160. The reason is that
the leaf nodes of the tree havenull left and right pointers, andnull has a more compact representation than
aNodereference.

In Table 6, we show how long it takes to serialize these objects, in microseconds. The first two columns
show the time it takes when the class information is also written to the serialization stream. The second
two columns show the time taken when the class information has already been written to the stream. The
difference is the time it takes to write that class information. We serialize to an array of bytes in memory, to
avoid filesystem access costs.

In Table 7, we show how long it takes to deserialize these objects, or reconstitute them from an object
stream, in microseconds. The first two columns show the time it takes when the class information has not
yet been read from the serialization stream. The second two columns show the time taken when the class
information has already been read from the stream. The difference is the time it takes to read the class
information, and find the associated class. We reference each object type before the timing loop, so that
class loading time is excluded from the results shown in the table. We also deserialize from an array of bytes
in memory, to avoid filesystem access costs.

4.2 Kan Thread Costs

The asynchronous method calling capabilities of Kan provide a simple, powerful mechanism for introducing
concurrency into Kan programs. In this section, we investigate the performance of the Kan asynchronous

16

Method type Local Remote
JIT No JIT JIT No JIT

Void, void 425:877� 1:167 494:176� 4:663 2697:359� 7:374 4406:865� 44:523

1 int, void 428:845� 1:399 491:748� 1:720 3493:557� 23:673 5791:551� 11:388

32 ints, void 441:200� 1:086 507:777� 0:943 6627:224� 108:093 11396:879� 19:264

int[32], void 427:352� 2:314 491:322� 1:991 3342:132� 13:550 5432:092� 20:557

1 Node, void 430:730� 0:406 489:430� 0:773 3626:030� 9:047 6299:875� 21:053

1 Tree, void 431:037� 0:813 492:294� 2:076 5400:828� 43:591 9457:182� 25:846

1 Node, int 432:788� 1:449 498:200� 2:013 4828:872� 5:956 8534:941� 33:449

1 Tree, int 433:987� 2:213 499:307� 0:964 6615:240� 11:882 11658:575� 13:692

Table 8: Kan async method calling time, in microseconds

method calling mechanism, and study the effects of some optimizations.

4.2.1 Kan and Java RMI

The following steps are one obvious way of supporting the semantics of a Kan asynchronous method call:

1. Create aFutureobject to hold the method results, and assign it a unique ID.

2. Determine whether a local copy of the called object exists.

3. If no local copy exists, then:

(a) Marshal the arguments, method name, object ID, andFutureID.

(b) Send an invocation request to some copy of the object.

(c) Unmarshal the arguments and other information on the remote node.

4. Create a thread to make the method call.

5. Using reflection, make the method call.

6. On completion of the call, if the call was remote:

(a) Marshal the result, whether normal or exceptional.

(b) Send the result and theFutureID back to the originating node.

7. Store the result in theFutureobject and allow any pending join actions to complete.

We implemented this scheme in Kan. The results are shown in Table 8 for a variety of method signatures.
Each signature is described as the parameter types, followed by a comma and the return type.

For comparison purposes, we also measured the costs of making a remote method call with Java’s
Remote Method Invocation (RMI) package, using the same method signatures. The results are shown in
Table 9. These numbers are significantly lower than those for Kan, in Table 8. Part of that is due to the
fact that Kan does more than RMI. RMI gives the ability to accessremoteobjects, that is, those at known
network locations; however, it gives no support fordistributedobjects, that is, those that might migrate or
be replicated. Such support must be built on top of RMI.

We tested the performance of Java RMI with the same structures that Kan uses to support asynchronous
method calls on distributed objects. The result is shown in the last line of Table 9. Note that it took
significantly longer to make this method call than with the other method signatures. In fact, Kan has better

17

Method type JIT No JIT

Void, void 1315:047� 11:967 1653:024� 23:128

1 int, void 1376:068� 39:148 1704:321� 34:385

32 ints, void 2078:981� 7:157 2964:234� 5:952

int[32], void 1822:955� 8:861 2380:704� 6:786

1 Node, void 2116:841� 7:291 3258:233� 23:282

1 Tree, void 4070:608� 7:000 6519:519� 69:966

1 Node, int 2149:841� 12:548 3330:587� 51:431

1 Tree, int 4127:767� 29:583 6539:649� 70:854

Kan style args 4694:192� 16:485 8745:290� 87:538

Table 9: Java RMI times, in microseconds

Kan action JIT No JIT

KanSystem.invokeMethod 27:200� 0:126 36:004� 0:079
ThreadScheduler.createThread 29:776� 0:078 45:094� 0:151
Serialize & sendExecMsg 2204:444� 4:380 3700:190� 8:809
ExecMsg.handle 29:076� 0:121 36:848� 0:407
ThreadScheduler.makeLocalCall 41:172� 0:484 50:529� 0:584
AsynchCall.execute 8:683� 0:026 9:892� 0:139
ThreadScheduler.done 6:435� 0:027 4:543� 2:773
Serialize & sendDoneMsg 899:991� 5:321 1324:733� 16:784
DoneMsg.handle 29:501� 0:132 34:857� 0:085
ThreadScheduler.localDone 22:683� 0:100 17:737� 1:945
Joining overhead 69:753� 0:342 67:717� 0:205
Total 3418:940� 6:989 5409:849� 22:112

Table 10: Kan remote method calling time breakdown, in microseconds

performance on a null method than RMI in this case. This means that RMI not only lacks some tools for
distributing objects, but that such tools can be implemented on top of Java sockets more cheaply than they
can be on top of RMI. This further limits the effectiveness of RMI for providing distributed solutions.

To see where the time is spent, we broke a remote method call (on a method with no parameters) down
into steps. Table 10 shows the names of the methods inside of Kan through which execution flows during
a remote method call invocation. Note that the total is about 1 millisecond more than the times shown in
Table 8. This is due to the necessity of passing timing information through the system. In particular, the
message sending costs are inflated in Table 10, since an array of 8longs is added to each message. An
analysis of these figures shows that several hundred microseconds is being spent on the creation and starting
of a new thread for each asynchronous method call. If we could remove that cost completely, nearly half
of the remaining time (about 138 microseconds) would be paid in reflection and context switch costs. If
we were able to eliminate those costs, we would still be 3 orders of magnitude worse than the native Java
method calling costs reflected in Table 2. To deal with these costs, we implemented three optimizations,
which we describe and measure in the remainder of this section.

4.2.2 Adaptive Thread Pool

Thread creation and startup costs can be largely eliminated with a simple structure. We maintain a thread
pool, to which unused threads are returned while idle. If there is an available thread in the pool, we avoid
the cost of Java thread creation, and we pay the startup cost only once per thread. However, there is a cost

18

Pool Events

N
um

be
r

of
 th

re
ad

s

80

60

40

20

120

100

200

180

160

140

0

Idle CapacityActive

Table 11: Thread Pool Behavior

associated with maintaining such a thread pool. Each thread has a stack; therefore, inactive threads in the
pool are holding onto memory resources. Therefore, we have to balance our desire to have a large pool
(to severely curtail or eliminate the possibility that a thread will be created) with our need to have enough
memory for the user application to run.

We therefore implemented anadaptivethread pool, as originally described in [42]. The pool tries to
maintain a size that matches the application’s current needs. It monitors the number of idle threads in the
pool across a fixed number of pool operations, and thenstepsthe pool size up or down if needed. Between
steps, if a thread is needed and the pool is empty, then a thread is created. If a method call completes and
the pool is not full, the thread is added to the pool. If the pool is full, the thread is discarded. At each step,
if threads were created during the previous interval, then we step up the pool size. If the pool was never
empty during the previous interval, then we step down the pool size, as long as it does not fall below a fixed
minimum. The step frequency, step size, and minimum pool size are all tunable parameters of the system.

Table 11 shows the number of active threads, idle threads in the pool, and the pool capacity for a run of
the system in which the program forks 200 threads, then immediately joins all of them. The minimum pool
size is 50 threads; the interval is 40 pool actions, and the step size is 20% of the original pool size. Note
that the application made 180 method calls before beginning to join any, and then made the remaining 20
calls after system activity had tailed off somewhat. The pool capacity tracked the speedy rise in demand,
and tracked somewhat less closely the fall-off in demand.

We measured the performance of our simple method calling microbenchmark with the thread pool active.
As shown in Table 12, the times are lower for both local and remote method calls (as compared to Table 8.
To discover where the time savings was most evident, we also reran our time breakdown experiment. The
results, as shown in Table 13, show that the cost of setting up a handling thread for aDoneMsgon the
receiving side are significantly reduced, and theThreadScheduler.makeLocalCall method represents
the remainder of the savings.

Thread pools have been implemented in many systems, for the good reason that they can always be
implemented more cheaply than the cost of starting a new thread. In some cases, the threading system itself
does pooling underneath. Even so, a thread pool like Kan’s adds minimal overhead, so the Kan-level pool

19

Method type Local Remote
JIT No JIT JIT No JIT

Void, void 157:572� 0:387 207:784� 0:741 2614:537� 8:001 4218:637� 9:228

1 int, void 159:844� 0:681 210:136� 0:863 3381:118� 18:204 5637:269� 10:367

32 ints, void 183:463� 3:365 231:509� 1:010 6441:988� 27:833 11262:247� 87:319

int[32], void 161:433� 0:216 210:253� 0:588 3260:032� 68:430 5263:548� 9:450
1 Node, void 161:296� 0:686 208:641� 0:856 3602:406� 101:405 6140:749� 8:553

1 Tree, void 160:737� 0:326 211:577� 1:020 5329:746� 32:701 9382:398� 50:755

1 Node, int 164:719� 0:272 214:404� 0:756 4722:381� 9:435 8393:015� 20:906

1 Tree, int 164:620� 0:879 216:159� 0:648 6512:642� 34:961 11510:338� 11:233

Table 12: Thread pool performance, in microseconds

Kan action JIT No JIT

KanSystem.invokeMethod 27:372� 0:151 36:103� 0:100
ThreadScheduler.createThread 34:341� 0:355 46:077� 0:256
Serialize & sendExecMsg 2460:399� 14:946 4039:675� 33:255
ExecMsg.handle 32:770� 0:446 36:662� 0:145
ThreadScheduler.makeLocalCall 27:516� 1:189 35:956� 0:091
AsynchCall.execute 8:964� 0:212 9:544� 0:029
ThreadScheduler.done 6:481� 0:086 6:349� 0:011
Serialize & sendDoneMsg 509:286� 18:856 826:961� 38:457
DoneMsg.handle 31:335� 0:217 34:975� 0:170
ThreadScheduler.localDone 21:625� 0:058 25:123� 0:224
Joining overhead 69:001� 0:325 69:727� 0:369
Total 3297:462� 13:774 5233:583� 26:137

Table 13: Kan remote method calling time breakdown, in microseconds

20

call
Async

Thread 1

Join Return

Thread 2

Thread 1

Join Return

Thread 1

Return

Thread 1

(a) Normal call (b) Inline before parent (c) Inline after parent

n
o

n
b

lo
ck

in
g

Join

Async
call

n
o

n
b

lo
ck

in
g

Thread 1

Async
call

Figure 7: Thread Inlining

does little harm in such a case. In our case, the JDK 1.1 version of the thread pool showed more dramatic
effects than the JDK 1.2 version, apparently due to reduced thread startup costs in 1.2. However, even with
the reduced benefits, the thread pool is still able to reduce the cost of making asynchronous method calls in
many cases and never increases that cost by a significant amount. Hence, the thread pool is always active in
Kan.

4.2.3 Thread Inlining

The idea behind thread inlining is to avoid context switch costs. For local method calls, even if the user
has asked for an asynchronous method call, if we know that the called method is short and will not block,
it may be more efficient to execute it as a synchronous method call. That is, we inline execution of the
child into the parent thread. On the other hand, if the parent method takes few steps between forking the
asynchronous method call and joining with it, it may be more efficient to execute those few steps first, then
make a synchronous call.

These two forms of thread inlining are represented graphically in Figure 7. In Figure 7(a), we show a
normal method call. When the asynchronous call is made, a second thread executes the called method while
the parent thread continues with its activities, then eventually joins with the child thread. In Figure 7(b),
the called method is nonblocking. Hence, the original thread makes the method call immediately. Upon
returning, it continues with its activities. The join then becomes a no-op, since the child method already
finished executing. In Figure 7(c), the calling method is nonblocking between the call and the join. Hence,
execution of the child method is postponed; the call is a no-op. When the join is reached, the parent then
executes the child method synchronously.

As shown in [42], implementing thread inlining introduces some overhead into the system, due to the
necessary bookkeeping. In fact, if the parent makes only 1 or 2 method calls, the costs of inlining outweigh
the savings. However, if the parent thread makes many method calls, then the savings can be substantial. We
show the effects of making both 50 inlined child calls and 100 inlined child calls in Figure 8. For each, we
made two kinds of calls. The 2-level calls are a single parent thread invoking multiple nonblocking children
in parallel. The serial calls consist of a sequence of threads, each of which invokes the next.

As with the thread pool, we found that the benefits of thread inlining were reduced after switching to
JDK 1.2. Indeed, uncontrolled inlining could potentially remove all concurrency in an application, resulting
in a serial execution. For these reasons, it is not always appropriate to invoke the thread inlining code. Future
work on Kan will include compile-time analysis to identify candidates for thread inlining, and to push some

21

100

1000

10000

100000

0 50 100

T
im

e
(m

ic
ro

se
co

nd
s)

of threads

2-level (JIT)
2-level (No JIT)

Serial (JIT)
Serial (No JIT)

Figure 8: Thread Inlining Performance

of the cost of inlining from run-time to compile-time.

4.2.4 Pointer Swizzling

The idea behind pointer swizzling [45] is that a nonlocal object must be accessed via a global pointer, but
that a local object can be accessed via a direct local pointer. Even local accesses via a global pointer are
often expensive enough to make direct access desirable. Whenever an object becomes local (via replication
or migration), local copies of its global identifier are changed, orswizzled, into direct pointers. Whenever
an object ceases to be local, local direct pointers are changed into global identifiers. Pointer swizzling has
been used in many database systems, to convert disk identifiers into memory addresses, and has also been
used in a few programming languages, such as E [44].

In Kan, we use pointer swizzling to avoid using reflection on local synchronous method calls. Instead,
we directly call the method. To make a direct method call, not only must the object be local and the call
synchronous (to avoid blocking the parent thread), but the call cannot be part of a nested transaction. Because
nested transactions may be aborted and rolled back, Kan takes special actions during such transactions to
enable it to restore the states of modified objects (see Section 3.4). A direct method call bypasses those
special actions.

Pointer swizzling eliminates almost all the cost of making a local Kan method call, leaving about 5.6
microseconds of overhead on top of the Java method call, as compared to the times shown in Table 2. The
performance figures are shown in Table 14. Note that the JIT tends to cause slightly degraded performance,
as is the case with several other microbenchmarks in this section. When objects are colocated, this opti-
mization provides dramatic improvements in performance. To maximize the impact of this optimization,
future work on Kan includes the development of compiler analyses to determine a call graph on the runtime
objects, allowing the system to intelligently colocate objects so as to maximize local accesses.

22

Method type JIT No JIT

Void, void 5863:988� 8:926 5493:310� 5:781

1 int, void 5782:294� 107:449 5722:300� 46:449

32 ints, void 6003:146� 115:627 6354:307� 41:959

int[32], void 5854:223� 50:400 5663:918� 24:147

1 Node, void 5915:389� 24:561 5775:324� 11:757

1 Tree, void 5877:456� 49:694 5787:981� 13:828

1 Node, int 6024:161� 21:243 5805:999� 8:911

1 Tree, int 6138:235� 19:349 5864:142� 10:906

Table 14: Pointer Swizzling Performance, in nanoseconds

4.2.5 Final Comparison

In this section, we show the effects of all of our optimizations on method calling. In Figure 9, we show
the relative costs of making method calls to methods without parameters or return values, using the systems
and optimizations described above. These are the figures garnered while using the JIT, as listed in the tables
earlier in this section. As illustrated in this figure, the optimizations we applied led to local method calls
paying an additional cost of less than 6 microseconds over Java method calls. This is a constant amount of
overhead. Methods that have parameters, return values, and nontrivial bodies will have execution times in
the tens of microseconds or more, making the difference between a Java call and an optimized Kan call of
little consequence.

Remote method calls in Kan are only slightly worse than their RMI counterparts, but provide more
functionality. Indeed, when the same objects are transmitted with RMI, RMI takes longer than Kan to make
the same method call. This suggests that RMI is not the best solution to distributed problems when replicated
or migrating objects are desirable features.

4.3 Transaction Costs

Transactions provide a powerful mechanism for ensuring the atomicity of actions that begin in a known
state. However, that power comes at a price. Simple local transactions can be quite cheap, especially if
contention for the object is low. However, deeply nested transactions spanning multiple nodes can be quite
expensive. The cost of a transaction is affected by the following factors:

� Locality: local transactions are significantly cheaper than transactions that span nodes.

� Number of objects: each object touched by a transaction must be locked.

� Depth: each level of a nested transaction must coordinate with the levels above it to provide lineariz-
ability of the whole. Increasing depth brings increasing costs.

� Type of transaction: this is described in the next paragraph below.

� Access type: reading transactions acquire shared locks, while writing transactions acquire exclusive
locks.

� Rollbacks: aborted transactions and rollbacks represent wasted work that consume resources without
providing any benefit.

To support rollbacks, we make a copy of each object touched before the transaction commences, as
described in Section 3.4. One optimization we implemented to reduce costs is to differentiate between three

23

100

1000

10000

100000

1e+06

1e+07

Ja
va

K
an

lo
ca

l

L
oc

al
 w

ith
th

re
ad

 p
oo

l

In
lin

in
g

2-
le

ve
l

In
lin

in
g

se
ri

al

Po
in

te
r

sw
iz

zl
in

g

R
M

I

K
an

re
m

ot
e

R
em

ot
e

w
ith

th
re

ad
 p

oo
l

T
im

e

Figure 9: Method calling comparison, in nanoseconds

Access Blocking Nonblocking
type JIT No JIT JIT No JIT

Read 2:248� 0:041 3:860� 0:046 2:254� 0:032 3:862� 0:120

Write 1:922� 0:041 3:229� 0:069 1:911� 0:046 3:252� 0:049

Table 15: Transaction type test, in microseconds

kinds of transactions: nonblocking, blocking, and nested (in order of cost). A nonblocking transaction is
one which does no joins and throws no exceptions, so we can be sure that it will complete normally. We
optimize in that case by skipping the object copy, since it will never be used. A blocking transaction is
a single-level transaction that joins with some future or might throw an uncaught exception. In that case,
we make a copy. Both nonblocking and blocking transactions are single-object transactions, so they can
never be involved in a deadlock. Therefore, we we optimize again by excluding such transactions from the
wound-wait algorithm (described in Section 3.4.3).

We performed several experiments, to see the effects of varying the cost factors listed above. The first
experiment was to determine the effectiveness of our copying optimization. For this test, we executed
calls on a method consisting of a single transaction. We tried all four combinations of read/write and
blocking/nonblocking transactions, and measured the total time (including the method call). The results are
shown in Table 15. This shows the effect of skipping the copy on a very small object. In this instance, the
difference is not statistically significant. However, the gap increases with object size, as the cost of copying
increases. We varied the object size to see the effects on writing transactions, as shown in Figure 10. Since
the nonblocking transaction is performing the same actions every time, its cost does not change. However,
the cost of making an object copy rises with object size. We cannot measure the in-memory size of a Java
object directly; the object sizes in the figure represent the serialized size of an object, which, in general, is
larger than the actual memory footprint of the object.

24

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
(m

ic
ro

se
co

nd
s)

Blocking
Nonblocking

Figure 10: Object copy optimization

2

3

4

5

6

7

8

9

10

11

2 4 6 8 10 12 14 16

T
im

e
(m

ill
is

ec
on

ds
)

of nodes

Read (JIT)
Read (No JIT)

Write (JIT)
Write (No JIT)

Figure 11: Transaction locality test

25

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

T
im

e
(m

ill
is

ec
on

ds
)

of objects

Read (JIT)
Read (No JIT)

Write (JIT)
Write (No JIT)

Figure 12: Transaction object number test, 2 nodes

The next experiment was to determine the effects of nonlocal objects on transaction performance. For
this test, we spread the objects to be accessed by a nested transaction across varying numbers of nodes.
(Note that a nested transaction is blocking by definition, since the wound-wait algorithm may abort it.) Each
is a 2-level nested transaction that operates on one object per node. The results are shown in Figure 11. The
cost of a non-local transaction rises in nearly a straight line for all four variations. This is a result of the
configuration of our LAN, where access to any remote node costs about as much as access to any other. The
cost reflected here is that of accessing remote objects at all; the precise location of those remote objects is
of little consequence. The results would be very different on a nonuniform network.

Next we varied the number of objects accessed by each nested transaction. We ran a 2-level nested
transaction, where the top-level transaction spawnedN � 1 children, each accessing a different object,
whereN is 2, 4, 8, and 16. The results are shown in Figures 12 and 13. For two nodes, the cost of increasing
the number of objects is once again nearly a straight line. This is due to the necessity of acquiring a lock
on each such object. However, for 16 nodes the picture has changed. Now, larger numbers of objects
apparently result in reduced cost in some cases. This effect is the result of an optimization in Kan. When
a nested transaction spans multiple nodes, the 2-phase commit messages are batched together by node.
Thus, expensive network communication rises most significantly with the number of nodes involved in a
transaction, and with the number of objects only to a lesser extent.

Next we assessed the impact of deeply nested transactions. Such transactions hold many object locks
simultaneously. They also increase the overhead for managing object consistency within the nested trans-
action itself. We varied both the depth and the number of nodes across which the accessed objects were
spread. The results are shown in Figure 14. After some rapid growth in latency going from 2 to 4 nodes,
the growth curve slackens off. Even with transactions nested to 8 levels deep, Kan scales nicely to 16 nodes
with the JIT in effect, the limit to the number of homogeneous machines we have on our LAN.

Finally, we assessed the impact of rollbacks on transaction throughput. For this test, we wrote a trans-
action that always fails with a user exception, giving the user the opportunity to handle the abort. We cause

26

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8

T
im

e
(m

ill
is

ec
on

ds
)

of objects

Read (JIT)
Read (No JIT)

Write (JIT)
Write (No JIT)

Figure 13: Transaction object number test, 16 nodes

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16

T
im

e
(m

ill
is

ec
on

ds
)

of nodes

2 deep (JIT)
2 deep (No JIT)

4 deep (JIT)
4 deep (No JIT)

8 deep (JIT)
8 deep (No JIT)

Figure 14: Transaction depth test

27

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

T
im

e
(m

ill
is

ec
on

ds
)

of objects

JIT
No JIT

Figure 15: Transaction abort test

the abort inside of a 2-level nested transaction, which has already accessedN objects,N equal to 1, 2, 4, 8,
or 16. This test measures the time to acquire a lock on the object, signal the abort, restore the original state
of the object, and release the lock. In fact, restoring the original state is an extremely cheap operation, since
we copied the entire object before beginning. Therefore, the cost of an aborted transaction is always cheaper
than that of a committed transaction on the same object. For that reason, the results of this experiment are
very similar to those obtained in the locality test of Figure 11. The results of our abort test are given in
Figure 15. Once again, we do not see an upturn in the curve up to 16 nodes, indicating that Kan is well
suited for LANs of such size.

4.4 Object Types

Reducing distributed object management costs rests largely on this principle: maximize the number of
accesses that are local. An optimal scheme would place a copy where the object is about to be read, and
would reduce the number of copies to one before every write. In reality, optimal schemes are hard to
approach, because different objects are accessed in different ways.

The Munin [12] shared memory system managed shared variables depending on user access patterns,
thereby yielding substantial gains in efficiency. In this section, we describe how Kan manages shared objects
in a similar fashion to raise the percentage of method calls that are local. Currently, Kan implements only
two object typing schemes, general and migratory. In the future, we plan to investigate other object types
that can be implemented in Kan.

4.4.1 Migratory Objects

Some objects are accessed by only one node at a time, due to external synchronization. As an example,
consider a distributed quicksort, in which an array of numbers is divided into subarrays which are assigned

28

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16

T
im

e
(m

ic
ro

se
co

nd
s)

of accesses

JIT
No JIT

Figure 16: Migratory object typed as migratory

to various nodes for sorting. While the subarray is being sorted, only one node is accessing it. Afterward, it
is passed back to the parent node for merging with the other sorted subarrays. The merge process then also
takes place on a single node. Objects that are accessed by a single node at a time in this manner are called
migratory.

Migratory objects are managed with an owner-based protocol, which was independently developed by us
and Herlihy and Warres [18]. A remote access causes the transfer of the entire object to the accessing node,
which becomes the new owner. Objects also have a home node, which is only used for locating them. A non-
local access to a migratory object passes through the home node, and then on to its final destination. When
a migratory object is moved, it notifies the home node of the new location of the object. The notification
is asynchronous, so there is a possibility that the home node will forward a message on to a node that no
longer owns the object. For this reason, each node maintains a forwarding pointer when a migratory object
moves.

We measured access times for migratory objects that the system has correctly identified as migratory.
Such objects suffer three network latencies when the first access is made; one to the home node, one from the
home node to the current owner, and one to transfer the object to the requesting node. However, subsequent
accesses are purely local, and therefore extremely cheap. In Figure 16, we show the average cost of an
access, based on the average number of accesses made by each node before the object is transferred to the
next node. As the number of such accesses rises, the cost of migrating the object is amortized over a greater
number of operations, leading to better average performance.

On the other hand, incorrectly typing a migratory object as a general object causes the system to miss
out on opportunities for making a larger number of local accesses. If many of the accesses are writes, the
system may not even replicate the object, requiring all accesses to cross the network. This can lead to a great
deal of unnecessary overhead. For example, accessing a migratory object with the general protocol using
approximately 50% reads and 50% writes leads to a cost of about 4.1 milliseconds with the JIT, and about
6.5 milliseconds without the JIT.

29

1: x:set (1) y:read () == 0

2: y:set (2) x:read () == 0

Figure 17: Nonlinearizable history

4.4.2 General Objects

General objects are those that have not been classified as any other type. They are managed with a replicating
home-based protocol, developed by Lee [22] from a replication scheme described by Wolfson, Jajodia, and
Huang [46]. Objects are permanently located at a home node, chosen when the object is created. Temporary
replicas may exist at other nodes. Read accesses are local, if a local copy exists; otherwise, they are sent to
the home node. Write accesses always go to the home node, which serializes them and sends them to the
replicas.

Furthermore, to ensure linearizability, the writing node must wait until all replicas have been updated.
Otherwise, a scenario like the following can occur. Suppose thatx and y are integer objects, initially
containing zero. Suppose further that node 1 is the home node ofx, and also holds a replica ofy, and that
node 2 is the home node ofy, and also holds a replica ofx. Consider the history of Figure 17. First node 1
writes tox and node 2 writes toy, but neither waits until the replicas have been updated. Before that update
takes place, each reads its replica of the other object. Since read operations are purely local, each reads the
initial value, zero. The resulting history cannot be linearized (or even serialized, for that matter).

Replicas are created at nodes that issue many read requests. An analysis given by Lee in [22] shows that
a replica is desirable when 3 times the number of local reads exceeds the number of remote writes. However,
we want to avoid the network traffic necessitated by continually sending access counts to the home node.
The scheme we use is to count writes at the home node (since all write operations are serialized by the
home node anyway), and report the current write access count to each replica as it is updated. Read counts
are maintained at each copy. The home node notices when the read count for a node is high enough to
warrant a replica, and sends that replica. Each replica then watches its own access count, and removes itself
if the number of local reads becomes too low. To avoid thrashing, where a replica is repeatedly created and
removed, we do not examine the replication scheme on every access. Instead, we choose a period (which
is a tunable parameter of the Kan system), and adjust the replication scheme after that many accesses to the
object.

To show the effects of replication, we access a general object in phases, where each phase consists of
solely read accesses or solely write accesses. A replica is created part way through the read phase, after
the next replication period elapses, resulting in cheap local accesses for the rest of that phase. When the
write phase begins, the cost of the operations initially goes up, since the system is now keeping 2 copies of
the object consistent. Eventually, after another replication period elapses, the system removes the replica,
thereby cheapening the writes in the remainder of that phase. Our results are shown in Figure 18.

As with migratory objects, incorrect typing can have enormous impacts on the performance of the sys-
tem. We forced a general object (one which is accessed randomly by the nodes of the system) to be managed
with the migratory protocol. The result is that extra object movement costs are paid on nearly every access.
In fact, almost all accesses result in the sending of several messages. First, the home node is contacted to
find the current whereabouts of the object. Then the home node forwards the message to the last owner it
knew about. However, many messages have to be forwarded since the object is constantly moving. Once a
request finally reaches the object, the object migrates to the requesting node, and the access is performed.
The results are shown in Figure 19. Note the general upward trend. This is a result of an increasing backlog,
increasing the size of the request queue transmitted with the object.

30

0

2

4

6

8

10

12

14

Read phase Write phase

T
im

e
(m

ill
is

ec
on

ds
)

of accesses

JIT
No JIT

Figure 18: Replication of a general object

10

12

14

16

18

20

22

24

0 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

ill
is

ec
on

ds
)

of accesses

JIT
No JIT

Figure 19: General object typed as migratory

31

4.4.3 Type Detection and Conversion

Detecting the type of an object statically (i.e., at compile time) is difficult. In some cases, it is impossible,
since the type of the object may depend on user actions. For example, in a distributed editor, shared files
may be encapsulated as objects. Their types depend on whether those sharing them access them sequentially
or concurrently.

Therefore, we use a dynamic (i.e., runtime) type detection scheme. Objects are initially assigned the
migratory type. Access statistics are gathered as in the description of general objects above. However,
during each time period, we also record whether any concurrent accesses were detected. This happens if a
request arrives while another is being serviced. At the end of each time period, we recompute the object
type with this algorithm:

If there are no replicas then
The object is migratory iff there were no concurrent accesses

Else if there is exactly one replica then
The object is migratory iff there were no local accesses on the home node

Else
The object is general

If the object type changes, then we must switch between an owner-based and a home-based protocol.
Note that switching from a home-based to an owner-based protocol implies that there is at most one replica.
In that case, the holder of the replica (or the home node if there is no replica) becomes the owner. In the
other direction, we maintained a home node for migratory objects for locating purposes, so we simply drop
the owner information.

4.5 Applications

To determine the impact of the Kan optimizations on real applications, we implemented several and ran
with the optimizations enabled and disabled. The thread pool provides uniform improvements, of varying
degrees, depending on the number of concurrently executing threads spawned by any one application. Those
that spawn only a few at a time always found a thread waiting in the pool, resulting in the greatest overall
benefit. On the other hand, some parallel applications, such as matrix multiplication, tend to fork a number
of threads initially, then run the entire application with just that set of threads. Such applications see a
small reduction in the startup time, but receive no benefit from the thread pool during the main part of the
execution.

Pointer swizzling was found to be effective for a distributed quicksort application. An array of numbers
is to be sorted. At each step, a number, called thepivot, is chosen. Then the array is divided into subarrays,
one containing all numbers less than the pivot, one containing all numbers equal to the pivot, and one
containing all numbers greater than the pivot. Quicksort is then recursively called on the first and third
subarrays. The results are joined together in order to form the final sorted array. The distributed version
simply acts on a distributed array, with the stride a parameter that can be chosen by the user. Pointer
swizzling helps near the bottom of the sorting tree, as the subarrays to be sorted become small enough to fit
entirely within a block assigned to some node. With a small number of nodes, the recursive calls quickly
reach a level where all further calls are local. There, executions with pointer swizzling enabled run in as little
as 4% of the time of those with pointer swizzling disabled. As the number of nodes rises, the optimization
has lesser effect. With 16 nodes, the optimized execution time was approximately 60% of the unoptimized
execution time.

Object typing helps with a distributed B-Tree application. B-Trees, in their various forms, are useful
data structures for finding data that is too large to fit into a computer’s memory. We adapt them to another

32

use: find data that is distributed across a system. We use a modifiedB�-Tree, called theBlink-Tree [23], for
this purpose. Each node in the tree contains a link pointer to its sibling to the right (if any). When searching
through the tree, if we find that the highest key in the currently visited node is lower than the search key, we
follow the link pointer to the right to continue the search. Node splitting is effected by locking the node to be
split, creating the new node, setting the right links appropriately, redistributing the keys, inserting the newly
created node into the parent node, and then releasing the lock on the child. This design allows searchers
to continue their operations while node splitting is taking place. The tree nodes may be either migratory or
general, depending on dynamic searching and inserting behavior of the users. We simulated both kinds of
behavior. We found that the adaptive typing code was able to reduce the cost of multiple searches for the
same key by replicating the nodes from the root down to the node containing the key. On the other hand, if
the distributed system machines took turns heavily accessing a small range of keys, the nodes holding the
keys in those ranges tended to be identified as migratory, and would move to the site of activity, reducing
the cost of such accesses. In the first case, performance improved by about 16% over the execution without
replication. In the second case, performance improved by about 24%, since even the expensive writes were
purely local operations.

5 Related Work

The choice of primitives adopted in Kan were motivated by a number of concurrent object-oriented lan-
guages and systems proposed recently. We discuss some of those languages and system in this section.

A number of recent products (e.g., Sun’s JDBC) provide a means of connecting Java programs to
databases via a standard SQL interface. The Java program has access to a stable persistent store, and
can perform database manipulations and queries. In contrast, Kan does not have persistent objects (but
see Section 6), but gives a full general-purpose programming language for constructing object queries and
manipulators.

The Aleph Toolkit [16] provides common primitives and functionalities needed by distributed systems.
Its intended use is as a substrate for heterogeneous distributed systems. Aleph programs can start thread-
s on remote processors and join with them, share objects among threads running on different processors
(with synchronization and caching handled by the system), and execute simple single-site transaction. Only
single-node transactions are supported, without guards or nesting. The coherence model is based on trans-
actional memory [17, 37]. It guarantees sequential consistency, and provides read, write, optimistic read,
and optimistic write accesses. The code organization and general approach of the Aleph Toolkit are similar
to the lower layers of the Kan system in many respects, although it does not contain the optimizations dis-
cussed in Section 4. The Arrow directory protocol [18] used by the Aleph Toolkit is the same protocol we
use to control migratory objects (see Section 4.4.1).

One approach to distributing Java programs is to distribute the JVM itself, and run unmodified Java
programs on that JVM. This is the idea behind cJVM [1], a JVM for homogeneous clusters of computers on
a high-speed network. It was designed to support servers, by distributing the server load across the cluster.
Hence, it performs best on applications with a large number of independently executing threads. Like Kan,
cJVM transparently replicates objects to improve availability.

Do! [21] aims to automatically generate distributed code from multithreaded program source code. The
Java language is not extended, but the user is given an API for providing hints to the compiler about appro-
priate mappings of threads and objects to distributed system nodes. The generated code uses standard Java
RMI for communication. It uses a runtime library that supports the creation and manipulation of remote
objects.

JavaParty [35], like Kan, is an extension to Java. It gives transparent remote objects, bypassing the
complexity of RMI. It also transparently migrates objects for greater availability. Currently, migration is

33

http://java.sun.com/products/jdbc/
http://www.cs.brown.edu/~mph/aleph/doc/home.html
http://www.haifa.il.ibm.com/projects/systech/cjvm.html
http://www.irisa.fr/caps/PROJECTS/Do/Do.html
http://wwwipd.ira.uka.de/JavaParty/

triggered at runtime when access patterns indicate that it is needed, or it is explicitly invoked by the program-
mer. Future developments to JavaParty include compiler analysis to statically determine when migration is
helpful. Also like Kan, JavaParty compiles down to standard Java bytecode, allowing JavaParty programs
to run on any JVM. It also supports easy integration of standard Java class files, compiled externally to the
JavaParty system. The JavaParty project has produced improved Serialization [34] and RMI [31] implemen-
tations. We intend Kan to be usable on any Java platform, so we have not used these improved substrates
in our measurements. However, JavaParty’s serialization implementation could be used to improve the
message-sending time of Kan.

Javelin [13] is an attempt to harness the raw processing power available on the Internet. The goal is to run
large-scale coarse-grained parallel applications by dividing the computation among a large set of machines
connected to the Internet. The machines with an application to be executed are theclients. The machines
with processing power to spend on an application are thehosts. Bringing clients and hosts together is the job
of thebrokers. The entire system is based on a web browser interface. Users who wish to participate as either
clients or hosts point their web browsers to a broker and select the appropriate link. Fault tolerance consists
of restarting portions of the application that were assigned to faulty processes. The original Javelin system
used Java applets communicating over Java sockets, which use TCP/IP. A later revision of the system, called
Javelin++ [30], changed to using Java applications communicating over Java RMI, and made some other
changes relating to scalability.

Manta [39] was built by the same group responsible for Orca (see below). Based on their experience
with JavaParty, they implemented an RMI that is improved still farther over that of JavaParty [27]. This
RMI’s efficiency arises in large part from abandoning the official Sun protocol in favor of a more compact,
but less versatile, protocol. Hence, a Manta system has to detect whether it is connected to another Manta
system, allowing it to use the compact protocol, or not, forcing it to use the standard Sun RMI protocol.
Much of Manta’s performance improvement derives from their implementation of a native compiler, and
the whole-program analysis used by that compiler. Furthermore, the compiler takes special actions when
compiling RMI code so that JNI (Java Native Interface) calls are avoided. In fact, communication is inlined
into the code, increasing the speed and responsiveness of the system still further. Manta’s approach is not
portable across JVMs, so is not used in Kan.

The goal of the Nile [36] project is to provide a self-managing, fault-tolerant, heterogeneous system
composed of hundreds of commodity workstations, with access to a distributed database whose size is on
the order of hundreds of terabytes. The component workstations are distributed across the North American
continent. Nile is intended to be easily maintainable, scalable, and provide useful services past its develop-
ment phase. It is structured to run embarrassingly parallel applications; i.e., those with independent parallel
subtasks, such as web indexers. It is written in Java for heterogeneity. CORBA is used as a data management
layer. The database itself is widely distributed, with replication providing some degree of fault tolerance.
The failure of a job is automatically detected, and the job is restarted if the failure can be repaired or worked
around. The basic operation of Nile is to divide the application into subparts and distribute those subparts to
the constituent computing nodes, then collect and collate the results. If a subpart fails, recovery consists of
assigning the subpart to a new computing node.

Parallel Java [20] is an extension to the Java language to support parallel constructs. It is based on earlier
work on a C++ extension, called Charm++. The parallel extensions provide for the creation of remote objects
via proxies, with automatic load balancing. Objects with a port on every node are calledobject groups, and
allow for easy expression of algorithms requiring global coordination, such as barriers. Parallel Java is
part of a larger effort, named Converse, which is aimed at providing multilingual parallel support. That is,
Parallel Java programs can interact with parallel libraries written in other languages supported by Converse.
Like Kan, Parallel Java aims to run on any JVM. Therefore, both systems use Serialization and Parallel
Java also uses Reflection. While neither Serialization nor Reflection is known for good performance, these
features provide portable means of accessing remote objects. However, they are more general than needed

34

http://www.cs.ucsb.edu/research/superweb/
http://www.cs.vu.nl/manta/
http://www.nile.cornell.edu/
http://charm.cs.uiuc.edu/research/pjava/
http://charm.cs.uiuc.edu/research/converse/

for either project.
ProActive PDC [11] (formerly known as Java//) is a library for Parallel, Distributed, and Concurrent

programming in Java. The idea is to run the same program as a sequential application, a multithreaded
single-node application, and a distributed application. Rather than alter the Java language, ProActive PDC
is entirely API-based, needing no special compiler or JVM. The programmer provides hints to the system
through its API, and also uses the API to get implicit futures (using wait-by-necessity), continuations (a
transparent delegation mechanism), and active objects. Running a program on the different kinds of plat-
forms supported by ProActive PDC is achieved through object composition. The user defines a sequential
object, which the system then composes with a proxy and a so-calledbody. The proxy turns local calls into
messages, which are decoded by the body. Futures and continuations are provided by creating specialized
subclasses of user objects which contain the appropriate code.

Cilk [14] is an algorithmic, multithreaded language that compiles to ANSI C. The runtime system guar-
antees predictable performance. It features an architecture- and language-independent checkpointing facility
based on source-to-source translations. Code is structured into procedures. Each procedure consists of one
or more nonblocking threads. The dependencies among threads form a rooted DAG. Shared data consis-
tency is defined on this DAG [6]. Load sharing takes place through randomized work stealing, in which a
node with nothing to do asks a random neighbor for a task. There is an online data-race detector, which
is intended to be used as a debugging tool. The Kan model technically allows restricted threads of the sort
employed by Cilk. However, the actual implementation cannot use such threads, since threads can enter
arbitrary (local) Java code. Furthermore, Kan consistency is defined at the object level, for which the DAG
approach is inappropriate, since it requires breaking encapsulation to make all dependencies explicit.

Distributed Oz [40] is a distributed version of the higher-order concurrent constraint language Oz. Oz
objects combine stateful data abstraction with mutual exclusion and synchronization, including a dataflow
synchronization construct that is similar to Kan’sguard statement. It was inspired by concurrent logic
programming, which led to the inclusion of logic variables and constraints in the language. It targets sym-
bolic processing and problem-solving applications. Distributed Oz adds several features, such as a language
construct for specifying object mobility patterns.

Orca [4] provides globally accessible objects (actually abstract data types), which are manipulated by
way of operations. The objects are not shared in the usual sense. Sharing of objects arises through passing
references to the objects into processes when they are created. Operations on global objects are atomic; that
is, they act as though a lock were held on the object for their entirety. The system distinguishes between
read locks and write locks, allowing multiple readers to proceed concurrently. Operations affect a single
object only. Continuations are available to support concurrent operations.

Guard expressions can be given, which block an operation from beginning until they are satisfied. Mul-
tiple guards can be given for an operation, each with an associated program block. When any guard is true,
one is selected nondeterministically, and its associated code is executed.

Orca uses a combination of compile-time and run-time techniques to determine user access patterns. It
then switches between a fully replicated scheme, a single-copy scheme, and a migratory scheme to try to
yield the greatest possible efficiency.

The system is built on top of Panda, a portable communication system. It is layered to provide hetero-
geneity, by allowing the system administrator to tune the Orca runtime system to the underlying architecture.

The Orca language, which compiles to ANSI C, is used on the Orca system. This language provides a
class-like construct (abstract data types) from which object instances are created at runtime. However, the
language is object-based rather than object-oriented; it does not support inheritance or dynamic binding,
and there is non-object data in the system. The language is type-secure. That is, all language rule violations
are detected by the compiler or the runtime system (e.g., out-of-bound array references or references to
deallocated memory).

Orca advertises sequential consistency, but it actually provides the stronger condition of linearizability,

35

http://www-sop.inria.fr/oasis/ProActive/
http://supertech.lcs.mit.edu/cilk/
http://www.ps.uni-sb.de/Projects/perdio.html
http://www.cs.vu.nl/orca

via its combination of locks and totally ordered broadcast. Consistency is maintained by:

1. Replicating read-only objects to any node that asks for a copy;

2. Not replicating certain objects, so that all operations on them are via RPC; and

3. Making all communication go through a totally ordered multicast, so that operations are seen at all
replicas in the same order.

The replication strategy is chosen by keeping read/write access counts. The ratio that represents the
switchover point is chosen based on RPC and broadcast costs; hence, it varies with each platform. Only
two options are considered: full replication and no replication. The project members state that experiments
showed that this strategy produced better performance on their system than dynamic replication.

6 Conclusion and Future Work

The Kan system provides the programmer with powerful tools for writing parallel and distributed applica-
tions. These tools include asynchronous method calls, and nested atomic transactions with guards. In this
paper we have shown that, in spite of the power of the tools provided, reasonable performance can be provid-
ed in a system that scales well on a LAN of up to 16 nodes. We have also shown that this performance can
be obtained on top of Java sockets, bypassing RMI. In fact, using RMI to provide the same distributed object
services results in greater latencies. Coupled with RMI’s distinction between local and remote method call
semantics, implementors of distributed systems face a tradeoff between the ability to interface with other
systems employing RMI and providing replicating and migrating objects more cheaply than RMI is able to
do so.

Performance of Kan is enhanced with several optimizations that are applicable to other systems of this
kind. The thread pool is an oft-implemented construct that reduces the cost of creating threads. Even
this simple construct provides a measurable increase in performance. We have also implemented a thread
inlining feature, which turns asynchronous method calls into synchronous method calls to avoid thread
context switch costs. This optimization is not universally applicable, since in the extreme it would serialize
an application. However, it can provide substantial savings when a parent thread spawns many short-lived
children. Pointer swizzling nearly eliminates the overhead of managing global objects when those objects
are local to the caller, giving close to Java method call performance. Finally, the typing of objects allows
the system to reduce the number of remote method calls made. As the number of local calls climbs, the
other optimizations have a greater chance to make an impact, resulting in still further improvements in
performance.

In the future, we intend to further develop Kan and explore further performance-enhancing optimiza-
tions. For example, object typing is based on the principle that one should maximize the number of method
calls that are local. Extending this principle, we find that many software objects are related, in the sense that
they make many method calls on one another. In such cases, it is desirable to ensure that the related objects
are always colocated. Such colocation gives the method calling optimizations a greater opportunity to have
an effect, resulting in still further boosted performance. The analysis necessary to determine when objects
are related is a topic of future study.

We also plan to investigate ways of making Kan scalable. Scalability is currently limited by such con-
structs as the all-to-all socket connections established by the communication layer. While such all-to-all
connections are fine for LANs such as the one we used for our experiments, they become unrealistic as the
number of nodes involved climb into the hundreds and thousands. Instead of maintaining such connections
continuously, we plan to manage sockets as resources, closing inactive sockets as needed to make room for
connections between newly communicating nodes.

36

The authors wish to thank the anonymous referees, whose comments and insights were invaluable in improving this
paper.

References

[1] Yariv Aridor, Michael Factor, and Avi Teperman. cJVM: A single system image of a JVM on a cluster.
In ICPP ’99, pages 4–11, Aizu-Wakamatsu, Fukushima, Japan, 21–24 September 1999.

[2] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks: Featherweight syn-
chronization for Java. InPLDI ’98, pages 258–68, Montreal, Canada, 17–19 June 1998.

[3] Henri E. Bal.Programming Distributed Systems. Prentice-Hall, New York, 1991.

[4] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language for parallel program-
ming of distributed systems.IEEE Transactions on Software Engineering, 18(3):190–205, March
1992.

[5] Sandeep Bhatia. Distributed garbage collection for a reliable messaging system. Master’s thesis,
University of California, Santa Barbara, Computer Science Department, August 1999.

[6] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H. Randall.
Dag-consistent distributed shared memory. InIPPS ’96, pages 132–41, Honolulu, HI, USA, 15–
19 April 1996.

[7] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. InOOPSLA ’99, pages
35–46, Denver, CO, USA, 1–5 November 1999.

[8] Gerald Brose, Klaus-Peter Löhr, and André Spiegel. Java does not distribute. In Christine Mingins,
Roger Duke, and Bertrand Meyer, editors,TOOLS Pacific ’97, pages 144–52, Melbourne, Australia,
24–27 November 1997.

[9] Gerald Brose, Klaus-Peter Löhr, and André Spiegel. Java resists transparent distribution.Object
Magazine, 7(10):50–2, December 1997.

[10] Nat Brown and Charlie Kindel.Distributed Component Object Model Protocol — DCOM/1.0. Mi-
crosoft Corporation, January 1998. Internet RFC draft 2.

[11] Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards seamless computing and metacom-
puting in Java. Concurrency: Practice and Experience, 10(11–13):1043–61, September-November
1998.

[12] John B. Carter. Design of the Munin distributed shared memory system.Journal of Parallel and
Distributed Computing, 29(2):219–27, September 1995.

[13] Bernd O. Christiansen, Peter Cappello, Mihai F. Ionescu, Michael O. Neary, Klaus E. Schauser, and
Daniel Wu. Javelin: Internet-based parallel computing using Java.Concurrency: Practice and Expe-
rience, 9(11):1139–60, November 1997.

[14] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5 multi-
threaded language. InPLDI ’98, pages 212–23, Montreal, Canada, 17–19 June 1998.

[15] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification. The Java Series. Addison-
Wesley, Reading, MA, 1996.

37

[16] Maurice Herlihy. The Aleph toolkit: Support for scalable distributed shared objects. In Anand Siva-
subramaniam and Mario Lauria, editors,CANPC ’99, volume 1602 ofLecture Notes in Computer
Science, pages 137–49, Orlando, FL, USA, 9 January 1999.

[17] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for lock-free data
structures. InISCA ’93, pages 289–300, San Diego, CA, USA, 16–19 May 1993.

[18] Maurice Herlihy and Michael P. Warres. A tale of two directories: Implementing distributed shared
objects in Java. InJava Grande ’99, pages 99–108, San Francisco, CA, USA, 12–14 June 1999.

[19] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects.ACM Transactions on Programming Languages and Systems, 12(3):463–92, July 1990.

[20] L. V. Kale, Milind Bhandarkar, and Terry Wilmarth. Design and implementation of parallel Java with
global object space. In Hamid R. Arabnia, editor,PDPTA ’97, volume 1: Computer Science Research,
Education, and Applications, pages 235–44, Las Vegas, NV, USA, 29 June 1997.

[21] Pascale Launay and Jean-Louis Pazat. Generation of distributed parallel Java programs. In David
Pritchard and Jeff Reeve, editors,Euro-Par ’98, volume 1470 ofLecture Notes in Computer Science,
pages 729–32, Southampton, UK, 1–4 September 1998.

[22] Suk Yong Lee. Supporting guarded and nested atomic actions in distributed objects. Master’s thesis,
University of California, Santa Barbara, Computer Science Department, July 1998.

[23] Philip L. Lehman and S. Bing Yao. Efficient locking for concurrent operations on B-Trees.ACM
Transactions on Database Systems, 6(4):650–70, December 1981.

[24] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. The Java Series. Addison-
Wesley, Reading, MA, USA, 1997.

[25] Barbara Liskov. Argus (distributed program language and system). In Barbara Simons and Alfred Z.
Spector, editors,Fault-Tolerant Distributed Computing, volume 448 ofLecture Notes in Computer
Science, pages 108–14. Springer-Verlag, Berlin, Germany, 1990.

[26] Barbara Liskov and Robert Scheifler. Guardians and actions: Linguistic support for robust, distributed
programs.ACM Transactions on Programming Languages and Systems, 5(3):381–404, July 1983.

[27] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aske Plaat. An efficient
implementation of Java’s remote method invocation. InPPOPP ’99, pages 173–82, Atlanta, GA,
USA, 4–6 May 1999.

[28] J. Eliot B. Moss. Nested transactions and reliable distributed computing. In2nd Symp. on Reliability
in Distributed Software and Database Systems, pages 33–9, Pittsburgh, PA, USA, 19–21 July 1982.

[29] J. Eliot B. Moss.Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press
Series in Information Systems. MIT Press, Cambridge, MA, USA, 1985.

[30] Michael O. Neary, Sean P. Brydon, Paul Kmiec, Sami Rollins, and Peter Cappello. Javelin++: S-
calability issues in global computing. InJava Grande ’99, pages 171–80, San Francisco, CA, USA,
12–14 June 1999.

[31] Christian Nester, Michael Philippsen, and Bernhard Haumacher. A more efficient RMI for Java. In
Java Grande ’99, pages 152–9, San Francisco, CA, USA, 12–14 June 1999.

38

[32] The Object Management Group.The Common Object Request Broker: Architecture and Specification,
July 1995. Revision 2.0.

[33] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs I.Acta Informat-
ica, 6(4):319–340, 1976.

[34] Michael Philippsen and Bernhard Haumacher. More efficient object serialization. InInternational
Workshop on Java for Parallel and Distributed Computing, San Juan, Puerto Rico, 12 April 1999.
Held in conjunction with IPPS/SPDP ’99.

[35] Michael Philippsen and Matthias Zenger. Javaparty—transparent remote objects in Java.Concurrency:
Practice and Experience, 9(11):1225–1242, November 1997.

[36] Aleta Ricciardi, Michael Ogg, and Fabio Previato. Experience with distributed replicated objects: The
Nile project.Theory and Practice of Object Systems, 4(2):107–15, 1998.

[37] Nir Shavit and Dan Touitou. Software transactional memory.Distributed Computing, 10(2):99–116,
1997.

[38] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, Reading, MA, USA, 3rd
edition, 1997.

[39] Rob van Nieuwpoort, Jason Maassen, Henri E. Bal, Thilo Kielmann, and Ronald Veldema. Wide-area
parallel computing in Java. InJava Grande ’99, pages 8–14, San Francisco, CA, USA, 12–14 June
1999.

[40] Peter van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Scheidhauer. Mobile
objects in Distributed Oz.ACM Transactions on Programming Languages and Systems, 19(5):804–
51, September 1997.

[41] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active mes-
sages: A mechanism for integrated communication and computation. InISCA ’92, pages 256–66, Gold
Coast, Queensland, Australia, 19–21 May 1992.

[42] Jing Wang. Thread optimizations in concurrent object oriented languages. Master’s thesis, University
of California, Santa Barbara, Computer Science Department, September 1998.

[43] Matt Welsh and David Culler. Jaguar: Enabling efficient communication and I/O from Java.Concur-
rency: Practice and Experience, Special Issue on Java for High-Performance Applications, December
1999. To appear.

[44] Seth J. White and David J. Dewitt. A performance study of alternative object faulting and pointer swiz-
zling strategies. In Li-Yan Yuan, editor,VLDB ’92, pages 419–31, Vancouver, Canada, 23–27 August
1992.

[45] P. R. Wilson. Pointer swizzling at page fault time: efficiently supporting huge address spaces on
standard hardware.Computer Architecture News, 19(4):6–13, June 1991.

[46] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm.ACM Transactions on
Database Systems, 22(2):255–314, 1997.

[47] Akinori Yonezawa, editor.ABCL: An Object-Oriented Concurrent System. MIT Press Series in Com-
puter Systems. MIT Press, Cambridge, MA, USA, 1990.

39

	Introduction
	The Kan Object Model and Language
	Asynchronous method call
	Guarded Atomic Actions (Transactions)
	Nested atomic action (nested transaction)
	Deadlock

	Consistency Model
	The Kan Programming Language
	Example

	Kan System Architecture
	Communication
	Physical and Logical Nodes
	Messages

	Distributed Objects
	Distributed threads
	AsynchCall vs. KanThread
	Future

	Transactions
	Blocking
	Nested Transactions
	Deadlock

	Performance of Kan
	Basic Java Costs
	Reading the Clock
	Method Call
	Threads
	Synchronization
	Serialization

	Kan Thread Costs
	Kan and Java RMI
	Adaptive Thread Pool
	Thread Inlining
	Pointer Swizzling
	Final Comparison

	Transaction Costs
	Object Types
	Migratory Objects
	General Objects
	Type Detection and Conversion

	Applications

	Related Work
	Conclusion and Future Work

