
Design, Implementation, and Evaluation of Optimizations
in a Java™ Just-In-Time Compiler

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Mikio Takeuchi, Takeshi Ogasawara,
Toshio Suganuma, Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani

IBM Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan

ishizaki@trl.ibm.co.jp

ABSTRACT

The Java language incurs a runtime overhead for exception checks and object accesses, which are executed without an interior

pointer in order to ensure safety. It also requires type inclusion test, dynamic class loading, and dynamic method calls in order to

ensure flexibility. A “Just-In-Time” (JIT) compiler generates native code from Java byte code at runtime. It must improve the run-

time performance without compromising the safety and flexibility of the Java language. We designed and implemented effective

optimizations for a JIT compiler, such as exception check elimination, common subexpression elimination, simple type inclusion

test, method inlining, and devirtualization of dynamic method call. We evaluate the performance benefits of these optimizations

based on various statistics collected using SPECjvm98, its candidates, and two JavaSoft applications with byte code sizes ranging

from 23000 to 280000 bytes. Each optimization contributes to an improvement in the performance of the programs.

1. Introduction
Java [1] is a popular object-oriented programming language suitable for writing programs that can be distributed and reused on

multiple platforms. It has excellent safety, flexibility, and reusability. The safety was achieved by introducing exception checks and

disallowing interior object pointers. The flexibility and reusability were achieved by supporting dynamic class loading and dy-

namic method call. As in typical object-oriented programs, there are many small methods, and calls without method lookup to find

the target method, which we call static method call, occur frequently. This prevents intra-procedural optimizations by a compiler.

Java programs also include calls for virtual and interface methods with method lookup to find the target method, which we call

dynamic method call. Furthermore, to ensure safety, Java contains runtime overheads, such as type inclusion tests and exception

checks for accesses to array elements and instance variables.

To improve the performance of the Java execution, two compiler solutions have been proposed: a static compilation model and

a “Just-In-Time” (JIT) compilation model. Static compilation translates Java byte code [2] into native code before the start of pro-

gram execution, and thus the compilation overhead can be ignored at runtime. Therefore, static compilation can use expensive op-

timizations. On the other hand, it does not support dynamic class loading, and does not take advantage of Java’s support for pro-

gram flexibility and reusability. The JIT compilation translates byte code into native code when a new method is invoked at run-

time, and allows classes to be loaded dynamically. On the other hand, the overall execution time of the program must include the

JIT compilation time, and thus the JIT compiler must be much more efficient in both time and space than the static compiler.

In this paper, we present optimizations that we developed to reduce various runtime overheads of the Java language without

compromising its safety and flexibility. Exception check elimination and lightweight exception checking reduce the overhead of

exception checks, which are frequently executed in Java programs. Common subexpression elimination reduces the overhead of

accesses to array elements and instance variables. Our type inclusion test uses a simpler method than previous approaches, and is

effective. Inlining of static method call increases the opportunity for other optimizations. Devirtualizing dynamic method call using

direct binding with a class hierarchy analysis (CHA) is a new approach to reducing the overhead of dynamic method call in the

sense that we adapted direct binding with CHA to dynamic class loading. It also allows dynamic methods to be inlined, to increase

the opportunity for other optimizations.

We validated our approach on the basis of various statistics collected by running fourteen large Java programs. We evaluated

each of the optimizations by turning them on or off one by one. All the evaluations were carried out with the Java JIT compiler for

the PowerPC architecture on AIX, whose product version has been shipped with JDK 1.1.8 for AIX 4.3.3 [3] with the “Java Com-

patible” logo.

The paper is structured as follows. Section 2 presents an overview of the JIT compiler. Section 3 describes optimizations for re-

ducing the overhead of accesses to arrays and instance variables. Section 4 describes the implementation of type inclusion test.

Section 5 describes how to reduce the overhead of static and dynamic method calls. Section 6 gives experimental results with sta-

tistics and performance data. Section 7 summarizes related work. Section 8 outlines our conclusions.

2. Overview
In this section, we outline the structure of the JIT compiler as shown in Figure 1. It translates the byte code into native code in

six phases. First, it constructs the basic blocks and loop structure from the byte code. Next, it applies method inlining to both static

and dynamic method calls. Inlining of dynamic method calls is applied using our direct binding with CHA. The JIT compiler then

applies exception check elimination, as well as other optimizations such as constant propagation and dead code elimination. After

that, it applies common subexpression elimination to reduce the number of accesses to array elements and instance variables.

Next, the JIT compiler maps each stack operand to either a logical integer or a floating-point register, and counts the numbers

of uses of local variables in each region of a program. The regions are also decided based on the loop structure in this phase. Fi-

nally, native code is generated from the byte code along with a physical register allocator. Since the JIT compiler requires fast

compilation, expensive register allocation algorithms, such as graph coloring [4], cannot be used. Instead, a simple and fast algo-

rithm is used to allocate registers without an extra phase. In each region, frequently used local variables are allocated to physical

registers. The remaining registers are used for the stack operands needed in computation. If the code generator requires a new reg-

ister but no registers are available, the register allocator finds the least recently used register that can be used, to avoid the compu-

tational expense of searching for spill candidates. Live information on local variables, obtained from data flow analysis, is also

used to avoid generation of inefficient spill code.

Build
Flow Graph

Method
Inlining

Register
Mapping

Code
Generation

Exception Check
Elimination

Common
Subexpression
Elimination

class
file

native
code

Figure 1: Overview of the JIT compiler

3. Optimization of Accesses to Arrays and Instance Variables
Many exceptions may be thrown in Java programs, for various reasons. An access to an array element or an instance variable

frequently causes an explicit exception check at runtime. An access with a null object causes a null-pointer exception. An access to

an array element with an out-of-bounds index causes an array-bounds exception.

In a typical implementation of a multi-dimensional array in Java, generating an effective address requires multiple array refer-

ences and array-bound checks for each dimension, which requires more expensive implementation in Java than in C or Fortran.

The implementation of access to an instance variable is also more expensive than that of access to a local variable, since a local

variable can be allocated to a physical register.

In this section, we describe three optimizations: exception check elimination, lightweight exception checking, and common su-

bexpression elimination.

3.1 Exception Check Elimination
The JIT compiler can eliminate null-pointer and array-bounds checks, if it can prove that the access is always valid or that the

exception check has already been tested. It has to generate the code for explicit null-pointer checks, because AIX permits address 0

to be read for a speculative load. The JIT compiler eliminates null-pointer checks by solving a data flow equation.

To eliminate array-bounds checks efficiently, we improved the elimination phase in Gupta’s algorithm [5]. This phase propa-

gates the information on checked exceptions forward and backward, using data flow analysis. Our algorithm computes the exact

range of the checked index set by adding a constant to the index variable, an operation treated as kill [6] by the previous algorithm.

Therefore, more exact information on the checked exceptions can be propagated to the predecessor or successor statements. Fur-

thermore, our algorithm can eliminate checks of array accesses with a constant index, which could not be eliminated by the previ-

ous algorithm.

Consequently, it can eliminate more exception checks for array accesses, especially for those with a constant index value. We

give an example in Example 1 to show one advantage of our algorithm, where the array index exception check required is explic-

itly indicated by italicized statements. The number of exception checks, which was originally 11 (the number of array accesses),

was reduced to 6 by the existing method, and is further reduced to only 3 by our method.

It is important to eliminate exception null-pointer and array-bounds checks, because optimizations that use data flow analysis

treat operations that may throw exceptions as kill. The elimination may improve effectiveness of common subexpression elimina-

tion.

index_check (0 <= i-2); index_check (0 <= i-2);
index_check (i <= ub); index_check (i+1 <= ub);

t = a[i]+a[i-1]+a[i-2]; t = a[i]+a[i-1]+a[i-2]; t = a[i]+a[i-1]+a[i-2];
i++; i++; i++;
if (t < 0) { if (t < 0) { if (t < 0) {

 index_check (i <= ub);
 index_check (3 <= ub)

 t = a[i]+a[i-1]+a[i-2]+a[3]; t = a[i]+a[i-1]+a[i-2]+a[3]; t = a[i]+a[i-1]+a[i-2]+a[3];
 i++; i++; i++;
} } }

index_check (0<= i-3); index_check (i <= ub);
index_check (i <= ub);

t = a[i]+a[i-1]+a[i-2]+a[i-3]; t = a[i]+a[i-1]+a[i-2]+a[i-3]; t = a[i]+a[i-1]+a[i-2]+a[i-3];

(a) Original Program (b) Result with Gupta's algorithm (c) Result with our algorithm

Example 1: Example of Exception Check Elimination

3.2 Lightweight Exception Checking
Even after application of the above algorithm, many exception checks may remain. Therefore, we developed lightweight ex-

ception checking to reduce the overhead of runtime exception checking.

The PowerPC architecture provides a trap instruction to execute compare and branch to the handler, and this instruction re-

quires only one cycle if it is not taken. The exception checks are executed frequently, but they seldom throw an exception. If a

register is used to identify the cause of an exception, the assignment for a rarely thrown exception becomes an overhead on a criti-
cal execution path. To use a trap instruction effectively, the handler has to identify the cause of an exception. Therefore, the JIT

compiler generates only a trap instruction with a uniquely encoded condition corresponding to the cause of an exception. If an

exception occurs, the trap instruction is decoded to identify the cause of the exception in the handler. The handler can tell from

the instruction what exception has occurred. We give an example of generated native code in Example 2. Here, three trap in-

structions (tw and twi) are generated for three different conditions without register assignments in a critical path to identify the

cause of each exception.

Generated code The handler
; r4 : array index void TrapHandler(struct context *cp)
; r5 : array base {
; r6 : array size int *iar = cp->IAR; // Get the address at which
; r7 : divisor // the exception occurs
 if IS_TRAPI_EQ(iar) { // Is inst. ‘twi EQ’ ?
twi EQ, r5, 0 ; Check null-pointer process_NULLPOINTER_EXCEPTION()
tw LLT, r6, r4 ; Check array-bounds } else if IS_TRAP_LLT(iar) { // Is inst. ‘tw LLT’ ?
mulli r4, r4, 2 process_ARRAYOUTOFINDEX_EXCEPTION()
lwzx r3, r4(r5) ; Get array element } else if IS_TRAPI_LLT(iar) { // Is inst. ‘twi LLT’ ?
twi LLT, r7, 1 ; Check divisor process_ARITHMETIC_EXCEPTION()
divi r3, r3, r7 }
 NOTE: EQ means equal }
 LLT means unsigned less than

Example 2: Example of Lightweight Exception Checking

3.3 Common Subexpression Elimination
To reduce the overhead of accesses to array elements, the JIT compiler applies two techniques for common subexpression

elimination (CSE). One is scalar replacement of array elements. The other is improvement of accesses to consecutive array ele-

ments using an interior pointer. The former generates a temporary local variable for an array element and replaces accesses to the

same array element with this variable only if the array object and the index variable are not updated in a basic block. The latter

introduces an instruction for generating an effective address, which is commonly used by accesses to consecutive array elements.

In either case, the code will be moved out of the loop if it is loop invariant. For a garbage collection, the top pointer of the object

must be kept in the memory or register, so that the garbage collector classifies the object as reachable. For performance reasons,

the collector does not scan the interior pointer generated by CSE.

To reduce accesses to instance variables, the JIT compiler uses partial redundancy elimination [7, 8]. It eliminates redundant

accesses in a method by moving invariant accesses out of a loop and by eliminating identical accesses that are performed more than

once on any execution path. The instance variable moved out of a loop can be mapped to a local variable, which can be allocated to

a physical register.

An example of CSE is shown in Example 3. We introduce C notation to represent an interior pointer of an object. The bold lo-
cal variables are generated by each optimization. First, the accesses to the instance variable ’a‘ are moved out of the loop and re-

placed with the local variable ‘la’. Second, the accesses to the arrays ‘la[i]’ and ‘la[i+1]’ are replaced with accesses using

the interior pointer ‘*ia0’. The references to ‘la[i]’ and ‘la[i+1]’ are also replaced with the local variables ‘iv0’ and ‘iv1’

by scalar replacement. Consequently, there is only one access to the instance variable and four accesses to the array elements.

For correct and effective array bound checking, the JIT generates the code for array-bounds checks between i and i+1 for

original references to ‘la[i]’ and ‘la[i+1]’ at ‘*ia0=&la[i]’ in the example. It can reduce the number of array-bounds

checks from 6 in the original code to 2. Now, an access to an array element does not require any exception checks.

Original Code
class cafe { class cafe {

int a[]; int a[];
public void babe () { public void babe ()

this.a = new int[10]; this.a = new int[10];
for (i=0; i<8; i++) { int la[] = this.a;

if (this.a[i]<this.a[i+1]) { for (i=0; i<8; i++) {
int t=this.a[i]; if (la[i]<la[i+1]) {
this.a[i]=this.a[i+1]; this.a[i+1]=t; int t=la[i]; la[i]=la[i+1]; la[i+1]=t;

} }
} }

} }
} }

class cafe {
int a[];
public void babe() {

this.a = new int[10];
int la[] = this.a;
for (i=0; i<8; i++) {

int *ia0=&la[i], iv0=*ia0, iv1=*(ia0+1);
if (iv0 < iv1) {

int t = iv0; *la0=iv1; *(ia0+1)= t;
}

}
}

}

CSE for
instance variable

CSE for array element

Example 3: Example of CSE

4. Optimization for Type Inclusion Test
In this section, we describe the implementation of type inclusion test. Previous approaches [9, 10] to type inclusion test in con-

stant time encode the class hierarchy in a small table, but they require recomputation of the table when a class is loaded or un-

loaded dynamically. They also require additional space for the table. We implemented type inclusion test by following a com-

pletely different approach. To avoid time and space overheads, we generate a simple inlined code to test the most frequently occur-

ring cases, as in Example 4, in accordance with the result of our investigation, described in Section 6.3.

Java Code
Type to = (Type)from;

Pseudo-code
if (from == NULL) then to = from;
else if (from.type == Type) then to = from;
else if (from.type.lastsucc == Type) then to = from;
else if (call expensive test in C) then {to = from; from.type.lastsucc = Type;}
else throw exception

Example 4: Pseudo-code of a Simple Type Inclusion Test

The first case checks whether the referenced object (from) is NULL. The second case checks whether the class of the refer-

enced object is identical to the class of the operand expression (Type). The third case checks whether the class cached by the latest

successful comparison in the referenced object is identical to the class of the operand expression. These three checks can avoid the

overhead of expensive test, since each takes only two or three machine instructions. If all of these tests fail, then a C function in the

Java runtime is executed in order to traverse a linked list of the class hierarchy. In this case, the cost is higher. The effectiveness of

this simple implementation will be shown in Section 6.3.

5. Optimization of Method Call
In this section, we describe two optimizations of method calls: inlining of static method calls, and devirtualization of dynamic

method calls.

5.1 Inlining of Static Method Call
In object-oriented languages, a typical program has small methods and method calls occur frequently. Furthermore, the con-

structor is invoked when a new object is created. Therefore, the JIT compiler inlines small methods, to reduce the number of static

method calls. The JIT compiler also optimizes tail recursion and recursive call. It replaces a tail recursion with a branch to the be-

ginning of the method, and it applies unrolling to the body of the method when a recursive call is detected.

5.2 Devirtualization of Dynamic Method Call
Dynamic method call is defining feature of object-oriented language, and is used frequently. However, it degrades the perform-

ance of the program, because of the overhead of method lookup. Many techniques for resolving this performance problem have

been proposed, such as type prediction [11, 12], polymorphic inline cache [13], and method test [14]. However, they incur over-

heads by requiring an additional runtime test. In our JIT compiler, we chose direct binding with class hierarchy analysis (CHA)

[15, 16] to improve the performance of dynamic method calls. We will discuss the choice in more detail in Section 7.

CHA determines a set of possible targets of a dynamic method call by combining a static type of object with the class hierarchy

of a program. If it can be determined that there is no overridden method, the original dynamic method call can be replaced with a

static method call by direct binding at compile time, and can be executed without method lookup. Previously, direct binding with

CHA has been investigated and implemented for languages that support static class loading, in which the class hierarchy does not

change at runtime. Java supports dynamic class loading, in which the class hierarchy may change at runtime.

We adapted direct binding with CHA to dynamic class loading. If class loading overrides a method that has not been overrid-

den, the static method call must be replaced with the original dynamic method call. Since Java is an explicitly multi-threaded lan-

guage, all optimizations must be thread-safe. That is, the code must be modified atomically. We implemented this atomic updating

by rewriting only one instruction as shown in Example 5. In the example, we assume an object layout that combines the class in-

stance data and the header such as Caffeine [17], so that three load instructions are required to obtain the address of a compiled

instruction.

Before overriding the method After overriding the method
call imm_ca jmp dynamic_call // static method call
jmp after_call jmp after_call

dynamic_call: dynamic_call:
load cp, (obj) load cp, (obj) // load class pointer
load mp, (cp) load mp, (cp) // load method pointer
load ca, (mp) load ca, (mp) // load code address
call (ca) call (ca) // dynamic method call

after_call: after_call:

Example 5: Example of the Devirtualization of Dynamic Method Call

At compile time, the top address of the dynamic method call sequence is recorded. The address is filled with a call instruction

to call a method statically. When the method is not yet overridden in the left column in Example 5, the italic code sequence for the
dynamic method call is not executed at all. When the method is overridden by dynamic class loading, the call instruction in the

address is replaced with a jmp instruction to the dynamic method call by the class loader in order to undo direct binding. Conse-

quently, the code sequence for the dynamic method call is now executed. The JIT compiler also uses a similar implementation for

inlining of dynamic methods, as shown in Example 6.

Before overriding the method After overriding the method
nop jmp dynamic_call // static method call

 // inlined code // inlined code
jmp after_call jmp after_call

dynamic_call: dynamic_call:
load cp, (obj) load cp, (obj) // load class pointer
load mp, (cp) load mp, (cp) // load method pointer
load ca, (mp) load ca, (mp) // load code address
call (ca) call (ca) // dynamic method call

after_call: after_call:

Example 6: Example of the Inlining of Dynamic Method Call

Java provides an interface for multiple inheritance. The JIT compiler also optimizes an interface call by replacing it with a vir-

tual call. If CHA finds that only one class implements an interface class, a virtual call with a single method lookup can be gener-

ated by using the implementation class as a static type. Furthermore, if the target method is not overridden through the implemen-

tation class hierarchy, direct binding can replace the interface call with a static method call. This optimization is much more effi-

cient than a naive implementation of an interface call, which requires a loop to search for an implementation class.

6. Experiments
In this section, we evaluate the effectiveness of individual optimizations such as exception check elimination, simple type in-

clusion test, common subexpression elimination, inlining of static method calls, and devirtualization of dynamic method calls. We
used fourteen Java programs, seven of which (compress, jess, raytrace (single thread version of mtrt), db, javac,

mpegaudio, and jack) are benchmarks in SPECjvm98 [18]. Five others (cst, si, richards, tsgp, tmix) were candidates

considered for inclusion in SPECjvm98. The last two (hotjava and swing) are applications with GUIs, released by JavaSoft.

SPECjvm98 was executed with a size of '100', and the results do not follow the official SPEC rules. HotJava 1.1.4 was executed

while accessing a web page. Swing 1.0.3 was executed with clicks to all panels. All the measurements were taken on an IBM RISC

System 6000 Model 7043-140 (containing a 332-MHz PowerPC 604e with 768 MB of RAM) running AIX 4.3.1.

6.1 Benchmarks
Table 1 shows the static characteristics of the class files for each program at compile time. Table 2 shows the dynamic charac-

teristics of unoptimized code for each program at execution time.

Program Compiled-
Bytecode Size
(bytes)

Number of
Compiled
Methods

Static Call
Sites

Virtual Call
Sites

Interface
Call Sites

Type
Inclusion
Test Sites

Array
Access
Sites

Instance
Variable
Sites

Exception
Check Sites

compress 23598 276 1525 280 7 41 183 1246 2964

jess 44548 704 3494 746 38 122 507 2716 6068

raytrace 33163 424 2879 1133 7 60 476 2489 4846

db 25605 291 1924 355 21 52 169 1005 3113

javac 91144 1068 5614 1833 72 406 412 6737 11730

mpegaudio 38204 441 2190 335 21 71 1237 2374 6838

jack 50573 522 3197 779 88 219 1152 2648 7879

cst 30943 340 1982 438 15 78 246 1312 3921

si 27873 310 1731 462 7 47 169 1216 3386

richards 40216 787 2103 644 36 85 202 1636 5120

tsgp 23155 269 1494 292 7 32 193 980 2845

tmix 28983 386 1919 378 7 44 167 1400 3619

hotjava 193868 3032 10190 4863 274 25322 2390 13607 27524

swing 282982 4822 9854 9732 1025 2647 2942 20837 40024

Table 1: Static (compile-time) characteristics

program Static Calls Virtual Calls Interface
Calls

Type
Inclusion
Tests

Array
Accesses

Instance
Variable
Accesses

Exception
Checks

compress 225935935 12765 93 2274 650483870 236458881 3858087901

jess 108104957 35498836 706107 29204058 91339251 259063616 563228349

raytrace 278960441 26664017 147 3280212 81405118 334641372 779421109

db 96181237 1562479 14931186 85991464 153086345 333401516 738835422

javac 65204998 49808807 3531139 12099157 49642977 328850733 531646238

mpegaudio 103004068 9843381 181867 51989 1630911748 1099455343 4319453641

jack 35584857 13282175 3965412 7651521 149029390 758644986 1104184009

cst 37788715 69995954 1472547 11984846 152308744 280904613 698762117

si 63948130 156033719 147 2842724 125970940 782095505 1301374956

richards 223911200 390196676 21914040 26322814 36407310 897969456 1463035929

tsgp 10937 112140585 145 8257098 3769809366 3046100095 5139119054

tmix 11771091 17845514 145 3926999 779618561 917217742 2500397977

hotjava 683972 542498 35796 175767 1077044 2966944 5925880

swing 1741114 2903810 262501 809732 6107677 17204605 35719184

Table 2: Dynamic (runtime) characteristics

6.2 Exception Check Elimination
Figure 2 shows how our exception check elimination reduces the number of exception checks at runtime. All values are given

as percentages of the non-optimized case. The left bar shows the number of exception checks without the elimination. The right bar

shows the number of exception checks with the elimination. The dark bar shows the number of null-pointer checks. The white bar

shows the number of array-bounds checks.

The results show that our exception check elimination is very effective, especially for null-pointer checks, of which it elimi-
nates 67% on average. It is also quite effective for array-bound checks, of which it eliminates 53% for mpegaudio and 69% for

tmix.

compress
jess

raytrace
db

javac
mpegaudio

jack
cst

si
richards

tsgp
tmix

hotjava
swing

0

20

40

60

80

100

Checks (%)

null-
pointer
array-
bounds

Figure 2: Results of Exception Check Elimination at Runtime

6.3 Simple Type Inclusion Test
Figure 3 shows the distribution of object types in type inclusion tests at runtime. Same indicates the case in which the class of

the referenced object is identical to the class of the operand expression. Null indicates the case in which the referenced object is

NULL. Cache indicates the case in which the class cached by the latest successful comparison in the referenced object is identical

to the class of the operand expression. These three cases are processed by inlined test code. Normal indicates the case in which a

class hierarchy must be traversed to determine the result. Others indicates the case in which the class of the reference object or

operand expression is either interface or array type. These two cases are processed by a C function in the Java runtime.

Same, null, and cache account for an average of 87% of tests in the programs. The result shows that our simple implemen-

tation of inlined test code is effective for the Java environment. In tsgp, almost all tests are performed with array objects.

compress
jess

raytrace
db

javac
mpegaudio

jack
cst

si
richards

tsgp
tmix

hotjava
swing

0

20

40

60

80

100

Tests (%)

Others
Normal
Cache
Null
Same

Figure 3: Distribution of Object Types in Type Inclusion Test at Runtime

6.4 Common Subexpression Elimination
Figure 4 shows how common subexpression elimination (CSE) reduces the number of accesses to arrays and instance variables

at runtime. All values are given as percentages of the non-optimized case. The left bar shows the number of accesses without CSE.

The right bar shows the number of accesses with CSE. The dark bar shows the number of accesses to instance variables. The white

bar shows the number of accesses to array elements. The striped bar shows the number of accesses to array elements using interior

pointers.

Our CSE is effective except for raytrace. The elimination of accesses to instance variables is more effective than that of ac-

cesses to array elements. Scalar replacement of accesses to array elements is particularly effective for mpegaudio, in which 25%

of accesses are eliminated. Access to array elements using an interior pointer is effective for db, tsgp, and tmix. For db, 14% of

original array accesses are used; for tsgp, 28%; and for tmix, 45%. In all cases, our method optimizes accesses to array elements

in order to swap array elements in the shell, quick, or bubble sort.

compress
jess

raytrace
db

javac
mpegaudio

jack
cst

si
richards

tsgp
tmix

hotjava
swing

0

20

40

60

80

100

Accesses (%)

instance
array
w/pointer
array

Figure 4: Results of Common Subexpression Elimination at Runtime

6.5 Inlining of Static Method Call
Figure 5 shows how method inlining reduces the number of static method calls at runtime. All values are given as percentages

of the non-optimized case. The left bar shows the number of static method calls without inlining. The right bar shows the number

of static method calls with inlining. The dark bar shows the number of calls for non-constructors. The white bar shows the number

of calls for constructors.

Inlining is particularly effective for compress, raytrace, and richards. An average of 52% of static method calls are

eliminated, further increasing opportunities for other optimizations. In all programs, there is a drastic reduction in the number of

calls for the constructor.

compress
jess

raytrace
db

javac
mpegaudio

jack
cst

si
richards

tsgp
tmix

hotjava
swing

0

20

40

60

80

100

Calls (%)

constructor
non-
constructor

Figure 5: Counts of Static Method Calls at Runtime

6.6 Devirtualization of Dynamic Method Call
The performance in devirtualizing dynamic method calls by using direct binding with class hierarchy analysis (CHA) is shown

in Figure 6 (for statistics on call sites at compile time) and Figure 7 (for statistics on calls at runtime). In both figures, Call con-

tains both virtual and interface calls. The three types of striped bars represent the cases in which dynamic method calls are replaced

with static method calls or inlinings. That is, it is devirtualized. The other three types of bars represent the cases in which dynamic

method calls are not devirtualized by direct binding with CHA. The dark dotted bars represent call sites or calls are not devirtual-

ized by direct binding with CHA, but are monomorphic at runtime. The black bars represent call sites or calls that are polymorphic.
In Figure 6, white bars represent call sites whose calls are not executed at runtime. In Figure 7, white bars (Revirtualized)

represent cases in which dynamic method call or inlining with method lookup is used. They replace static method call or inlining

devirtualized by CHA with dynamic method call at runtime.

Figure 7 shows that direct binding with CHA is highly effective, since it devirtualized an average of 60% for all programs.

Furthermore, it devirtualized more than 75% of dynamic method calls or inlinings for five out of fourteen programs. In the worst
case ’compress’, the non-devirtualized methods do not affect the performance, since many static method calls for kernel routines

that use final classes occur. The optimization for interface call is also effective for db and richards, since more than 99% of the

interface calls are translated into simple method calls. In db, the java.util.Vector class, which uses the implementation

class of the interface class, is used very frequently. In richards, the class for the benchmark is used frequently. The results also

show that all the programs except mpegaudio are surprisingly monomorphic. Therefore, there is still room to improve the per-

formance.

Since we have adapted direct binding with CHA to dynamic class loading, a static method call may be replaced with a dynamic

method call by overriding the target method when a class is loaded dynamically. For inlining of dynamic method calls, method
lookup may be also required. In our experiment, the numbers of replaced sites are 216 for swing, 107 for hotjava, 66 for

jack, 22 for db, and fewer than 20 for the other programs. In our approach, the overhead of replacing the code is very small.

compress
jess

raytrace
db

javac
mpregaudio

jack
cst

si
richards

tsgp
tmix

hotjava
swing

0

10

20

30

40

50

60

70

80

90

100

Calls (%)

Non-
devirtualized/
Polymorphic
Non-
devirtualized/
Not Executed
Non-
devirtualized/
Monomorohic
Devirtualized/
Not Executed
Devirtualized/
Inlining
Devirtualized/
Call

Figure 6: Devirtualization of Dynamic Method Call Sites at Compile Time

compress
jess

raytrace
db

javac
mpegaudio

jack
cst

si
richards

tsgp
tmix

hotjava
swing

0

10

20

30

40

50

60

70

80

90

100

Calls (%)

Non-
devirtualized/
Polymorphic
Non-
devirtualized/
Monomorphic
Revirtualized
Devirtualized/
Inlining
Devirtualized/
Call

Figure 7: Devirtualization of Dynamic Method Call Sites at Runtime

6.7 Performance
We measured the execution time of twelve of the programs; since the other two programs were difficult to measure because of

their interactive nature. Figure 8 shows the performance improvements resulting from various optimizations. The white bar repre-

sents the best execution time. All values are given as percent improvements over the non-optimization case. Each figure is divided

into three categories (separated by doted lines): the effectiveness of a single optimization, the effectiveness of all but one optimiza-
tion, and the effectiveness of all optimizations. The optimizations include common subexpression elimination (CSE, No CSE),

exception elimination and lightweight exception checking (Exception, No exception), simple type inclusion test (Ty-
petest, No typetest), inlining of static method calls (Inlining, No inlining), and devirtualization of dynamic

method calls (CHA, No CHA).

In Figure 8 (a), both inlining of static method calls and optimizations of exception checking improve the performance of com-
press. In Figure 8 (b), optimizations of exception checking, simple typetest, and inlining of static method calls improve the per-

formance of jess. In Figure 8 (c), both devirtualization of dynamic method calls and optimizations of exception checking im-

prove the performance of raytrace. In Figure 8 (d), simple typetest improves the performance of db. In Figure 8 (e), optimiza-

tions of exception checking improve the performance of javac. In Figure 8 (f), both CSE and optimizations of exception check-

ing improve the performance of mpegaudio. In Figure 8 (g), optimizations of exception checking improve the performance of

jack. In Figure 8 (h), both simple typetest and optimizations of exception checking improve the performance of cst. Figure 8 (i),

all optimizations make virtually no difference in the benchmarks of si. Figure 8 (j), devirtualization of dynamic method calls,

simple type test, and inlining of static method calls improve the performance of richards. Figure 8 (k), both CSE and optimiza-

tions of exception checking improve the performance of tsgp. Figure 8 (l), both CSE and optimizations of exception checking

also improve the performance of tmix. Figure 8 thus shows that all optimizations contribute to an improvement in the perform-

ance of some programs.

0.3%

8.3%

0.2%

2.4%

1.2%

12.2%

8.6%

13.0%

-1.3%

13.1% 13.1%

CS
E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

0.0%

5.0%

10.0%

15.0%

Pe
rc

en
t

sp
ee

du
p

ov
er

 n
o

op
ti

mi
za

ti
on

Single Optimization All but One Optimization

(a)compress

1.1%

3.9%

7.1%

3.0%

1.8%

16.5%

15.3%

8.3%

11.8%

14.3%

16.3%

CS
E

Ex
ce
pt
io
n

Ty
pe
te
st

In
li
ni
ng CH
A

No
 C
SE

No
 e
xc
ep
ti
on

No
 t
yp
et
es
t

No
 i
nl
in
in
g

No
 C
HA AL
L

0.0%

5.0%

10.0%

15.0%

Pe
rc
en
t
sp
ee
du
p
ov
er
 n
o
op
ti
mi
za
ti
on

Single Optimization All but One Optimization

(b)jess

1.6%

7.8%

2.5% 2.2%

7.2%

24.6%

20.7%
21.8%

18.4%

8.7%

24.5%

CS
E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pe
rc

en
t

sp
ee

du
p

ov
er

 n
o

op
ti

mi
za

ti
on

Single Optimization All but One Optimization

(c)raytrace

1.4%

4.8%

1.5%
1.2% 1.4%

9.8%

8.0%

7.4%

8.5%
9.0%

8.7%

CS
E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

0.0%

5.0%

10.0%

Pe
rc

en
t

sp
ee

du
p

ov
er

 n
o

op
ti

mi
za

ti
on

Single Optimization All but One Optimization

(e)javac

-0.4%

7.1%

2.5% 2.9%
4.2%

18.5%

16.2%

18.0%
19.1%

20.0%

22.3%

CS
E

Ex
ce
pt
io
n

Ty
pe
te
st

In
li
ni
ng CH
A

No
 C
SE

No
 e
xc
ep
ti
on

No
 t
yp
et
es
t

No
 i
nl
in
in
g

No
 C
HA AL
L

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pe
rc
en
t
sp
ee
du
p
ov
er
 n
o
op
ti
mi
za
ti
on

Single Optimization All but One Optimization

-2.2%

1.2%

15.8%

-0.4%

2.2%

18.9%
18.0%

2.4%

18.4%

16.7%

18.6%

CS
E

Ex
ce
pt
io
n

Ty
pe
te
st

In
li
ni
ng CH
A

No
 C
SE

No
 e
xc
ep
ti
on

No
 t
yp
et
es
t

No
 i
nl
in
in
g

No
 C
HA AL
L

0.0%

5.0%

10.0%

15.0%

20.0%

Pe
rc
en
t
sp
ee
du
p
ov
er
 n
o
op
ti
mi
za
ti
on

Single Optimization All but One Optimization

(g)jack

(d)db

5.2%

20.1%

1.8%

3.7% 3.0%

26.9%

35.5%
37.6%

30.8%

37.1% 37.3%

CS
E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

Pe
rc

en
t

sp
ee

du
p

ov
er

 n
o

op
ti

mi
za

ti
on

Single Optimization All but One Optimization

0.5%

1.6%
2.1%

0.1%

1.0%

5.2%

6.9%

8.1%

6.1%

6.5%

7.4%

CS
E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

0.0%

5.0%

10.0%

Pe
rc

en
t

sp
ee

du
p

ov
er

 n
o

op
ti

mi
za

ti
on

Single Optimization All but One Optimization

(h)cst

(f)mpegaudio

Figure 8: Execution Times of the JIT'ed code

7. Related Work
The Intel JIT compiler [19] applies simple array-bounds check elimination in the extended basic block. Our JIT compiler ap-

plies array-bounds and null-pointer check elimination to the whole method, using our algorithm. The results of our experiment

show that it is effective. Exception check elimination [5, 20] has been proposed as a means of reducing the overhead of certifying

the correctness of a program. We have extended the elimination algorithm, using more exact program analysis.

Type inclusion test [9, 10] has been investigated for efficient type conformance test in an object-oriented language. In previous

research, the class hierarchy was encoded in a small table, so that it could be tested in a constant time. The table may be recon-

structed later by dynamic class loading. To avoid the time and space overhead, we investigated the behavior of type inclusion test

in Java. The results show that simple checks with the cache of the referenced object account for an average of 87% of all tests.

Therefore, we chose a simple implementation. The Intel JIT compiler inlines the code for traversing the hierarchy up to two levels
[21], as in our approach. For javac, the inlined codes of both approaches are sufficient to decide 92% of all type inclusion tests.

Our approach generates a smaller amount of inlined code than Intel’s.

Polymorphic inline cache (PIC) [13] has been proposed as means of reducing the overhead of polymorphic method call. PIC

compiles a dynamic method call as though it was being inlined into the context of the caller. The call site is patched to jump to a

stub that conditionally executes the inlined code on the basis of the types of an object. Type prediction [11, 12] and method test

[14] have also been proposed, with type analysis for languages supporting dynamic class loading. Type prediction and method test

predict the type of an object, which are called frequently, at compile time. PIC, type prediction, and method test introduce an addi-

tional runtime test, since they are executed on the basis of the cache mechanism with memory references. In implementations of

Java, the cost of dynamic method call is not so different from that of PIC, type prediction, and method test. According to the results

0.9%

6.8%

11.8%

8.0%

17.7%

49.9%
47.8%

39.3% 39.6%

24.7%

50.4%

CS
E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

Pe
rc

en
t

sp
ee

du
p

ov
er

 n
o

op
ti

mi
za

ti
on

Single Optimization All but One Optimization

-9.7%

-7.1%

-1.1%

-2.4%

2.3%

-0.9%

3.0%

1.0% 0.8%
0.2%

0.9%
CS

E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

-10.0%

-5.0%

0.0%

5.0%
Pe

rc
en

t
sp

ee
du

p
ov

er
 n

o
op

ti
mi

za
ti

on
Single Optimization All but One Optimization

(i)si (j)richards

25.4%

14.1%

-0.4% -0.8% 1.3%

18.1%

32.4%
33.2%

32.4%
30.9%

33.0%

CS
E

Ex
ce

pt
io

n

Ty
pe

te
st

In
li

ni
ng CH
A

No
 C

SE

No
 e

xc
ep

ti
on

No
 t

yp
et

es
t

No
 i

nl
in

in
g

No
 C

HA AL
L

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Pe
rc

en
t

sp
ee

du
p

ov
er

 n
o

op
ti

mi
za

ti
on

Single Optimization All but One Optimization

11.0%
10.1%

1.2% 1.3% 1.0%

11.0%

15.3%

18.1% 18.5%

17.3%
17.8%

CS
E

Ex
ce
pt
io
n

Ty
pe
te
st

In
li
ni
ng CH
A

No
 C
SE

No
 e
xc
ep
ti
on

No
 t
yp
et
es
t

No
 i
nl
in
in
g

No
 C
HA AL
L

0.0%

5.0%

10.0%

15.0%

20.0%

Pe
rc
en
t
sp
ee
du
p
ov
er
 n
o
op
ti
mi
za
ti
on

Single Optimization All but One Optimization

(l)tmix(k)tsgp

of simple experiments under a monomorophic situation [22], type prediction without inlining at 100% accuracy cannot outperform

devirtualization of dynamic method call by direct binding without inlining. Type prediction with inlining must achieve 90% accu-

racy to outperform devirtualization by direct binding without inlining. It also says that nothing can outperform devirtualization by

direct binding with inlining.

Direct binding with class hierarchy analysis (CHA) [15, 16] can replace a dynamic method call with a faster static method call

at compile time. It has been investigated and implemented for languages that support static class loading. To avoid the runtime test

overhead of PIC, type prediction, and method test, we developed a version of direct binding with CHA adapted to dynamic class

loading. It allows the JIT compiler to inline dynamic method call without a runtime execution overhead. Inlining increases the op-

portunity for other optimizations. The experimental results showed the effectiveness of our approach.

The Java HotSpot compiler [23] adopts a recompilation approach that includes on-stack replacement [24]. Preexistence [14] is

an approach for reducing the number of on-stack replacements. It requires recompilation of a whole method when a method is

overridden. On the other hand, our approach has a lower overhead than other approaches because direct binding code is undone by

rewriting only a single instruction.

8. Conclusions
In this paper, we presented optimizations that we developed for a production JIT compiler. The compiler supports dynamic

class loading without compromising flexibility and safety. We validated our approach on the basis of various statistics collected by

running fourteen large Java programs. We evaluated each of the optimizations by turning them on or off one by one. Finally, by

investigating the statistics collected in our experiment, we showed that there is still room for further performance improvement.

Acknowledgement
We are grateful to the people in our group at Tokyo Research Laboratory for implementing our JIT compiler and for partici-

pating in helpful discussions. We also thank Michael McDonald for checking the wording of this paper.

References

[1] James Gosling, Bill Joy, and Guy Steele: “The Java Language Specification,” Addison-Wesley, 1996.

[2] James Gosling: “Java Intermediate Bytecodes,” ACM SIGPLAN Workshop on Intermediate Representations, 1995.

[3] International Business Machines Corp. “AIX Java Development Kit 1.1.8,” Available at http://www.ibm.com/java/

[4] Frederick Chow and John Hennessy: “The priority-based coloring approach to register allocation,” ACM Transactions on Pro-

gramming Languages and Systems, vol. 12, no. 4, pp. 501-536 1990.

[5] Rajiv Gupta: “Optimizing array bound checks using flow analysis,” ACM Letters on Programming Languages and Systems,

2(1-4): pp. 135-150, 1993.

[6] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman: “Compiler: Principle, Techniques, and Tools,” Addison-Wesley, 1986.

[7] Etienne Morel and Claude Renvoise: “Global Optimization by Suppression of Partial Redundancies,” Communication of the

ACM, vol. 2, no. 2, pp. 96-103, 1979.

[8] Jens Knoop, Ruthing Oliver, and Steffen Bernhard: “Lazy Code Motion,” In Proceedings of the ACM SIGPLAN ’92 Confer-

ence on Programming Language Design and Implementation, pp. 224-234, 1992.

[9] Norman Cohen: ”Type-extension type tests can be performed in constant time,” ACM Transactions on Programming Lan-

guages and Systems, vol. 13 no.4, pp. 626-629, 1991.

[10]Jan Vitek, R. Nigel Horspool, and Andreas Krall: “Efficient Type Inclusion Test,” In Proceedings of the Conference on Object

Oriented Programming Systems, Languages & Applications, OOPSLA ’97, pp. 142-157, 1997.

[11]David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers: “Profile-Guided Receiver Class Prediction,” In Proceedings

of the Conference on Object Oriented Programming Systems, Languages & Applications, OOPSLA ’95, pp. 107-122, 1995.

[12]Gerald Aigner, and Urs Holzle: “Eliminating Virtual Function Calls in C++ Programs,” In Proceedings of the 10th European

Conference on Object-Oriented Programming – ECOOP ’96, volume 1098 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 142-166, 1996.

[13]Urs Holzle, Craig Chambers, and David Ungar: “Optimizing Dynamically-Typed Object-Oriented Langages with Polymorphic

Inline Caches,” In Proceedings of the 5th European Conference on Object-Oriented Programming – ECOOP ’91, volume 512

of Lecture Notes in Computer Science, Springer-Verlag, pp. 21-38, 1991.

[14] David Detlefs and Ole Agesen: “Inlining of Virtual Methods,” to appear in ECOOP '99.

[15]Jeffery Dean, David Grove, and Craig Chambers: “Optimization of object-oriented programs using static class hierarchy,” In

Proceedings of the 9th European Conference on Object-Oriented Programming – ECOOP ’95, volume 952 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 77-101, 1995.

[16]Mary F. Fernandez: “Simple and Effective Link-Time Optimization of Modula-3 Programs,” In Proceedings of the ACM

SIGPLAN '95 Conference on Programming Language Design and Implementation, pp. 103-115, 1995.

[17]Cheng-Hsueh A. Hiesh, John C. Gyllenhaal, and Wen-mei W. Hwu: “Java Bytecode to Native Code Translation: The Caffeine

Prototype and Preliminary Results,” In 29th Annual IEEE/ACM International Symposium on Microarchitecture, 1996.

[18]Standard Performance Evaluation Corp. “SPEC JVM98 Benchmarks,” Available at http://www.spec.org/osg/jvm98/

[19]Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and James M. Stichnoth: “Fast, Effective

Code Generation in a Just-In-Time Java Compiler,” In Proceedings of the ACM SIGPLAN ’98 Conference on Programming

Language Design and Implementation, pp. 280-290, 1998.

[20]Priyadarshan Kolte and Michael Wolfe: “Elimination of Redundant Array Subscript Range Checks,” In Proceedings of the

ACM SIGPLAN '95 Conference on Programming Language Design and Implementation, pp. 270-278, 1995.

[21] Aart Bik, Milind Girker, and Mohammad Haghighat: “JIT Compilation of Java for Intel Architechture,” ACM 1999 Java

Grande Conference Tutorial, 1999.

[22]David F. Bacon: “Fast and Effective Optimization of Statically Typed Object-Oriented Languages,” Ph.D. thesis, University of

California at Berkeley, 1997.

[23]Sun Corp.: “The Java HotSpot Performance Engine Architecture,” Available at

http://java.sun.com/products/hotspot/whitepaper.html

[24] Urs Holzle, Craig Chambers, and David Ungar: “Debugging optimized code with dynamic deoptimization,” In Proceedings of

the ACM SIGPLAN ’92 Conference on Programming Language Design and Implementation, pp. 32-43, 1992.

