
Complex numbers for Java

Michael Philippsen and Edwin G�unthner

Computer Science Department, University of Karlsruhe
Am Fasanengarten 5, 76128 Karlsruhe, Germany
phlipp@ira.uka.de, edwin.guenthner@gmx.de

http://wwwipd.ira.uka.de/JavaParty/

Abstract. E�cient and elegant complex numbers are one of the precon-
ditions for the use of Java in scienti�c computing. This paper introduces a
preprocessor and its translation rules that map a new basic type complex
and its operations to pure Java. For the mapping it is insu�cient to just
replace one complex-variable with two double-variables.
Compared to code that uses Complex objects and method invocations to
express arithmetic operations the new basic type increases readability
and it is also executed faster. On average, the versions of our benchmark
programs that use the basic type outperform the class-based versions by
a factor of 2 up to 21 (depending on the JVM used).

1 Introduction

In regular Java there is just one reasonable way to use complex numbers, namely
to write a class Complex containing two values of type double. Arithmetic op-
erations have to be expressed by method invocations as shown in the following
code fragment. The alternative, to manually use two double-variables where a
complex number is needed, is too error-prone and too cumbersome to be accept-
able.

Complex a = new Complex(5,2);

Complex b = a.plus(a);

Class-based complex numbers have three disadvantages: Once written without
operator overloading, arithmetic operations are hard to read and maintain. Sec-
ond, since Java does not support so-called value classes, object creation is slower
and objects need more memory than variables of a basic type. Arithmetic op-
erations based on classes are therefore much slower than arithmetics on built-in
types. Even worse, method-based arithmetic causes frequent creation of tem-
porary objects to return values. To return temporary arithmetic results with
basic types, no such object creation is needed. The third disadvantage is that
class-based complex numbers do not seamlessly blend with basic types and their
relationships. For example, an assignment of a double-value to a Complex-object
will not cause an automatic type cast { although such a cast would be expected
for a genuine basic type complex. Additionally, there is no natural way to express
complex literals; instead a constructor call is needed.

The fraction of people using Java for scienti�c computing is quite small, so
it is unlikely that the Java Virtual Machine (JVM) or the Java bytecode will
be extended to support a basic type complex { although this might be the best
solution from a technical point of view. It is also hard to tell whether Java will
ever be extended to support operator overloading and value classes; and if so,
whether there will be e�cient implementations. But even given such features
our work would remain important because, �rst, the same level of seamlessness
cannot be achieved, see the above type cast problem. And second, our work can
still be used to rate the e�ciency of implementations of the general features.

The next section discusses the related work. Section 3 gives an overview
of complex numbers in the cj preprocessor/compiler. The central ideas of the
translation are presented in Section 4. Section 5 shows the quantitative results.

2 Related work

With support from Sun Microsystems, the Java Grande Forum [7, 13] strives
to improve the suitability of Java for scienti�c computing. The challenge is to
identify and bundle the needs of this small user group in such a way that they
can be respected in the continuing evolvement of Java although that is driven
by the main stream.

The Java Grande Forum is working on a reference implementation of a class
Complex that can be used to express arithmetics on complex numbers [14, 6].
Special attention is paid to problems of numerical stability. IBM is extending
their Java-to-native compiler to recognize the use of this class [15]. By under-
standing the semantics of the Complex class, the compiler can optimize away
method invocations and avoidable temporary objects. Hence { at least on some
IBM machines { high performance can be achieved even when using class-based
complex numbers. However, the other disadvantages mentioned above still hold,
i.e. there is no operator overloading and Complex objects lack a seamless inte-
gration into the basic type system.

There are considerations to add value classes to the o�cial Java language [5,
12]. But although there is no proper speci�cation and no implementation yet,
the Borneo project [3] is at least in a stage of planning. Since there are already
object-oriented languages that support value classes, e.g. Sather [11], the basic
technical questions of compiling value classes to native code can be regarded as
solved.1 However, it is still unclear whether and how value classes can e�ciently
be added to Java by a transformation that expresses value classes with original
language elements. In particular, it remains to be seen whether value classes will
require a change of the bytecode format.

The discussion on how to add a primitive type complex to a given language
has a long tradition. Java is special because of its very strict de�nitions of eval-
uation orders, in particular with respect to the visibility of side e�ects in case
of exceptions. A related question of extending a language with a primitive type

1 C++ can emulate value class semantics by means of pass-by-value mechanisms.

complex is whether there should be a separate primitive type for imaginary
numbers as well, as proposed by Kahan [9]. It is debated whether and how such
a separate imaginary type should be included in the C9X proposal [2]. To avoid
the complexity of an extra type, our work only adds the type complex although
future extensions might have the imaginary type as well.

3 Complex numbers in cj

Cj extends the set of basic types by the type complex. A value of type complex
represents a pair of two double precision oating point numbers. All the common
operations for basic types are de�ned for complex in a straightforward way. The
real and imaginary part of a complex can be accessed through the member
�elds real and imag. Note, that the names of these �elds are not new keywords.
Since the basic type complex is a supertype of double, a double-value will be
implicitly casted where a complex is expected. A second new keyword, I, is
introduced to represent the imaginary unit and to express constant expressions
of type complex, as shown in the following code fragment.

void foo(complex x, complex y) {

complex const = 5.0 + y.real * I;

complex sum = const + x + y;

...

In our experience, any extension of Java will only be accepted if there is a
transformation back to pure Java. But in general better e�ciency can be achieved
by using optimization techniques during bytecode generation. Our compiler cj,
which is an extension of gj [1], therefore supports two di�erent output formats,
namely Java bytecode and Java source code. In this paper, we focus on the latter
and mention optimizations only briey.

4 Recursive transformation rules for complex

In any current Java compiler, inner classes are transformed to earlier Java 1.0
(without inner classes). Similarly, cj has another transformation phase that re-
solves complex numbers and complex operations. This section discusses the cen-
tral ideas of this transformation.

4.1 Name mangling for separate compilation

The basic part of the transformation is done by modifying the names used by
the programmer. For example, by appending cjreal to a variable name, the
name of the resulting real part of the corresponding complex-variable is derived.
A similar technique is used to adapt the names of methods when their signature
includes arguments of type complex.

By making the name mangling rules also known to the bytecode loader it is
possible to compile di�erent Java programs separately, even when complex is al-
ready transformed into bytecode. Hence, if the compiler �nds a mangled method
de�nition in a bytecode �le it internally generates an additional method symbol
entry representing the method with its original signature and type information.

4.2 Transformation of complex expressions

The central part of the transformation deals with complex expressions. For sim-
plicity, we call any expression that uses complex values a complex expression.
The transformation of complex expressions to expressions that only use double
causes several problems.

Transformation locality. If a complex expression is used where only an expression
is allowed it must not be mapped to a sequence of statements.

while (u == v && x == (y = foo(z))) {...}

For example, for transforming the complex condition of this while-loop into its
real and imaginary parts it is necessary to introduce several temporary variables
whose values have to be calculated within the body of the loop. Therefore, the
loop has to be reconstructed completely.

In general, to replace complex expressions by three-address statements, one
needs non-local transformations that reconstruct surrounding statements as well,
although local transformation rules that replace expressions by other expressions
(not statements) were simpler to implement in a compiler and it would be easier
to reason about their correctness.

Semantics. To achieve platform independence, Java requires a speci�c evalua-
tion order for expressions (from left to right). Any transformation of complex
arithmetics must implement this evaluation order using double-arithmetic.

To preserve these semantics for complex expressions, it is not correct to
fully evaluate the real part before evaluating the imaginary part. Instead, the
transformation has to achieve that a side e�ect is only visible on the right hand
side of its occurrence, but both for the real and imaginary part. Similarly in
case of an exception, only those side e�ects are to become visible that occur on
the left side of the exception. Additionally, by separating the real part from the
imaginary part, it is also unclear how to treat method invocations (foo(z) in
the above example). Shall foo be called two times? Is it even necessary to create
two versions of foo?

4.3 Sequence methods

To avoid both types of problems we introduce what we call sequence methods as a
central idea of cj. Each complex expression is transformed into a sequence of ex-
pressions. These new expressions are then combined as arguments of a sequence

method. The return value of a sequence method is ignored. This technique en-
ables us to keep the nature of an expression and allows our transformation to be
local. A sequence method has an empty body; all operations happen while eval-
uating the arguments of the method invocation. The arguments are evaluated
in typical Java ordering from left to right.2 In case of nested expressions, the
arguments of a sequence method invocation are again invocations of sequence
methods. By using this concept we are able to evaluate both parts of each node
of a complex expression tree at a time. Moreover, the evaluation order (in terms
of visibility of side e�ects and exceptions) is guaranteed to be correct.

When cj is used as preprocessor and Java code is produced, the method invo-
cations of the sequence methods { which are declared final in the surrounding
class { are not removed. However, they may be inlined by a Just-in-time (JIT)
compiler. When cj generates bytecode, the compiler directly removes the method
invocations { only the evaluations of the arguments remain. The resulting byte-
code has the same e�ciency as if C/C++'s comma operator was available in
Java.

4.4 An example of Sequence methods

Let us �rst consider the right hand side of the complex assignment z = x + y.
To avoid any illegal side e�ects we use temporary variables to store all operands.
The following code fragment shows the (yet unoptimized) result of the transfor-
mation of the right hand side.

seq(seq(tmp1_real = x_real, tmp1_imag = x_imag),

seq(tmp2_real = y_real, tmp2_imag = y_imag),

tmp3_real = tmp1_real + tmp2_real,

tmp3_imag = tmp1_imag + tmp2_imag)

In this example, 6 double-variables would have to be declared in the surround-
ing block (not shown in the code). When evaluating this new expression, Java
will start with the inner calls of sequence methods (from left to right). Thus,
both parts of x and y are stored in temporary variables. The subsequent call of
the enclosing sequence method performs the addition (in the third and fourth
argument). A subsequent basic block optimization detects the copy propagation
and eliminates passive code. So we only need a minimal number of temporary
variables and copy operations. In the example, just two temporary variables and
one sequence method remain.

seq(tmp3_real = x_real+y_real, tmp3_imag = x_imag+y_imag)

Now look at the assignment to z and the two required elementary assignments.

2 Exceptions are not thrown within a sequence method but within the invocation con-
text. Hence, it is unnecessary to declare any exceptions in the signature of sequence
methods.

seq(seq(tmp3_real = x_real+y_real, tmp3_imag = x_imag+y_imag),

z_real = tmp3_real, z_imag = tmp3_imag)

In this case the basic block optimization also reduces the number of temporary
variables and prevents the declaration of a sequence method. Thus, the resulting
Java code does not need any temporary variables; only a single sequence method
needs to be declared in the enclosing class.3

seq(z_real = x_real + y_real, z_imag = x_imag + y_imag)

When we directly construct bytecode, there is no need for the sequence method.
Instead, only the arguments are evaluated. The resulting bytecode is identical
to the one that would result from a manual replacement of complex expressions
with three-address statements.

4.5 Basic transformation rules in detail

In the next sections we consider an expression E that consists of subexpressions
e1 through en. The rewriting rule eval[E] describes (on the right hand side of
the 7!-symbol) the recursive transformation into pure Java that applies eval[ei]
to each subexpression. In most cases complex expressions are mapped to calls
of sequence methods whose results are ignored. Sometimes it is necessary to
access the real or imaginary part of a complex expression. For this purpose
there are evalR and evalI . Both cause the same e�ect as eval but are mapped
to special sequence methods (seqREAL or seqIMAG) that return the real or the
imaginary part of the complex expression. If evalR or evalI are applied to
an array of complex-values the corresponding sequence methods will return an
array of double-values. Expressions that are not complex remain unchanged
when treated by eval, evalR, or evalI . The =-symbol refers to Java's assignment
operator. In contrast, we use � to de�ne an identi�er (left hand side of �) that
has to be expanded textually by the expression on the right hand side.

To process the left hand side of assignments we use another rewriting rule:
access[E] does not return a value but instead returns the shortest access path
to a subexpression, requiring at most one pointer dereferencing.

From the above example, it is obvious that a lot of temporary variables are
added to the block that encloses the translated expressions. Most of these tempo-
rary variables are removed later by optimizations.4 The following transformation
rules do not show the declaration of temporary variables explicitly. However, they
can easily be identi�ed by means of the naming convention: if e is a complex ex-
pression, the identi�ers ereal and eimag denote the two corresponding temporary
variables of type double. The use of any other temporary variables is explained

3 Since user de�ned types may appear in the signature of sequence methods it is
impossible to prede�ne a collection of sequence methods in a helper class.

4 In case of static code or the initialization of instance variables the remaining tem-
porary variables are neither static nor instance variables: they can be converted to
local variables by enclosing them with static or dynamic blocks.

in the text. Arrays of complex are discussed in Section 4.6; method invocations
are described in Section 4.7. The rules for unary operations, constant values,
and literals are trivial and will be skipped. Details can be obtained from [8].

Plain identi�er: The transformation rule for E � c is:
eval[c] 7! seq(Ereal = creal; Eimag = cimag)

Both components of the complex variable c are stored to temporary variables
that represent the result of the expression E. If c is used as left hand side of an
assignment, it is su�cient to use the mangled names.

Selection: The transformation rule for E � F:e is:
eval[F:e] 7! seq(tmp = eval[F]; Ereal = tmp:ereal; Eimag = tmp:eimag)

F is evaluated once and stored in a temporary variable tmp. Then tmp is used
to access the two components.

If F:e is used as the left hand side of an assignment, F is evaluated to a
temporary variable that is used for further transformations of the right hand
side:

access[F:e] 7! tmp = eval[F]

^ E#

real � tmp:ereal; E
#
imag � tmp:eimag

It is important to note that the transformation rule for assignments (see below)
demands that the code on the right hand side of the 7!-symbol is inserted at
the position where access[F:e] is evaluated. Secondly, the identi�ers E#

real and

E#
imag have to be replaced textually with the code following the �-symbol. (The

#-notation and the textual replacement are supposed to help understanding by
clearly separating the issues of the access path evaluation from the core assign-
ment. See example below.)

Assignment: The transformation rule for E � e1 = e2 is:
eval[e1=e2] 7!seq(access[e1]; eval[e2];

Ereal=e#
1real=e2real; Eimag=e#

1imag=e2imag)
First the access to e1 is processed. Then the right hand side of the assignment
is evaluated. The last two steps perform the assignment of both parts of the
complex expression. Since the assignment itself is a Java expression it is neces-
sary to initialize additional temporary variables that belong to E. Occurrences
of e# are inserted textually according to access.

For example, consider the following statement X.Y.z = x. With e1 = X:Y:z
and e2 = x, the transformation results in:

eval[e1=e2] 7!seq(access[X:Y:z]; eval(x); : : :)
The evaluation of access needs the transformation rules for selections, see above.

tmp = eval[X:Y] and E#

real � tmp:zreal; E
#
imag � tmp:zimag

We ignore the fact that X.Y is itself is a selection and that it would require to
apply the same transformation rule again. The assignment to tmp is the imme-
diate result of access and will show up in the sequence method's �rst argument.
Since access has been applied on e1, the #-expressions are to be inserted tex-
tually for every occurrence of e1real and e1imag in the subsequent arguments of
the sequence method:

eval[e1=e2] 7!seq(: : : ; Ereal = tmp:zreal| {z }
e
#

1real

= e2real; Eimag = tmp:zimag
| {z }

e
#

1imag

= e2imag)

Since in the example the assignment is a statement there is no need to actu-
ally assign to Ereal and Eimag . Hence, after removing temporary variables and
redundant calls of sequence methods, the �nal result is:

seq(tmp = X.Y, tmp.z_real = x_real, tmp.z_imag = x_imag)

Combination of assignment and operation: The transformation rule for E �
e1�= e2, where � 2 f+;�; �; =g, is:

eval[e1�= e2] 7! seq(access[e1]; e#
1
= eval[e#

1
� e2])

The address of the left hand side of the assignment is evaluated; every occurrence
of e#

1
is replaced textually with the code determined by access. The address is

used as left operand of the operation. Finally, the result of the operation is
written to the calculated address. This strategy is essential to avoid repetition
of side e�ects while evaluating e1.

Comparison: The transformation rule for E � e1 == e2 is:
eval[e1 == e2] 7! seqvalue(eval[e1]; eval[e2];

e1real == e2real && e1imag == e2imag)
In contrast to the sequence methods used before, this one is not returning a
dummy value. Instead seqvalue returns the value of its last argument. The result
of the whole expression is a logical AND of the two comparisons. Inequality
tests can be expressed in the same way, we just have to use != and jj instead of
== and &&. This special kind of sequence method can also be removed while
generating bytecode.

Addition and subtraction: The transformation rule for E � e1 � e2, where � 2
f+;�g, is:

eval[e1 � e2] 7! seq(eval[e1]; eval[e2]; Ereal = e1real � e2real;
Eimag = e1imag � e2imag)

Multiplication: The transformation rule for E � e1 � e2 is:
eval[e1 � e2] 7! seq(eval[e1]; eval[e2]; Ereal = e1real � e2real + e1imag � e2imag ;

Eimag = e1real � e2imag � e1imag � e2real)

Division: The rule for division is structurally identical to the rule for multi-
plication but the expressions are considerably more complicated. cj o�ers two
versions to divide complex expressions: a standard implementation and a slower
but numerically more stable version. The second alternative is based on the
reference implementation [14]. For brevity, neither of the versions is shown.

Type cast: Because complex is de�ned as a supertype of double, implicit type
casts are inserted where necessary. Furthermore, it is appropriate to remove
explicit type casts to complex if the expression to be casted is already of type
complex. The only remaining case (E � (complex) e) can be handled with the
following rule:

eval[(complex) e] 7! seq(eval[e]; Ereal = e; Eimag = 0)

String concatenation: Since string concatenation is not considered as time-
critical cj creates an object of type Complex and invokes the corresponding
method toString. An additional bene�t is that the output format can be
changed without modifying the compiler. The transformation rule is:

eval[str + e] 7! str + (new Complex(evalR[e]; eimag):toString())
EvalR[e] evaluates e and returns its real part. Furthermore evalR declares a
temporary variable eimag and initializes it with the imaginary part of e. This
asymmetry is necessary to ensure that e is evaluated exactly once. For brevity,
we skip similar rules for e+ str and the + =-operation.

4.6 Transformation rules for arrays

Although it is obvious that a variable of type complex must be mapped to a
pair of two double-variables, there is no obvious solution for arrays of complex.
There are two options: an array of complex can either be replaced by two double-
arrays or by one double-array of twice the size. For the latter, our performance
measurements indicated that in general it is faster to store pairs of double-values
in adjacent index positions than to store all real parts en bloc before storing all
the imaginary parts.

For various array sizes, we compared the speed of array creation, initialization
and garbage collection (called `init' in Figure 1) for the 1-array and the 2-array
solution. The lines show how much faster (< 1) or slower (> 1) the 2-array
solution is over the 1-array solution (= 100%). Similar for read and write access
to the array elements. All measurements have been repeated several times to be
able to ignore clock resolution and to achieve a small variance.

It can be noticed that there is no clear advantage of either the 1-array solution
of the 2-array solution. The average of all measurements is within [0:98; 1; 02] for
both platforms. We got similar results on other platforms and with other JITs.
Read and write access is much more stable with HotSpot, however there is some
peculiar behavior for initialization. HotSpot probably uses di�erent mechanisms
for arrays of di�erent sizes.

We implemented the 2-array solution, since it is neither faster nor slower
than the 1-array solution and since use of the 2-array solution eases the imple-
mentation of cj.

Array creation: Java o�ers di�erent language elements to create arrays or to
create and initialize arrays in one step. Let us �rst discuss the transformation
rule for pure array creation:

eval[new complex[e1] : : : [en]] 7!
seq(Ereal = new double[e0

1
= eval[e1]] : : : [e

0
n = eval[en]];

Eimag = new double[e01] : : : [e
0
n])

When calculating Ereal, additional temporary variables e0i are used to allow the
reuse of size expressions in the imaginary part.

Array creation with initialization: Array initialization is done according to the
following rule:

Java 1.2.2 (no JIT), Sun

0,50

0,75

1,00

1,25

1,50

10
00

0

11
00

00

21
00

00

31
00

00

41
00

00

51
00

00

61
00

00

71
00

00

81
00

00

91
00

00

array size

re
la

tiv
e

sp
ee

d
of

 2
-a

rr
ay

so

lu
tio

n
ve

rs
us

 a
dj

ac
en

t
do

ub
le

s init
read
write

Java 1.2.2 (HotSpot), Sun

0,50

0,75

1,00

1,25

1,50

10
00

0

11
00

00

21
00

00

31
00

00

41
00

00

51
00

00

61
00

00

71
00

00

81
00

00

91
00

00

array size

re
la

tiv
e

sp
ee

d
of

 2
-a

rr
ay

so

lu
tio

n
ve

rs
us

 a
dj

ac
en

t
do

ub
le

s init
read
write

Fig. 1. Performance of 2-array solution compared to 1-array solution in two di�erent
JVM/JIT-environments.

eval[new complex [] : : : []fe1; : : : ; eng] 7!
seq(Ereal = new double[] : : : []fevalR[e1]; : : : ; evalR[en]g;

Eimag = new double[] : : : []fe1imag; : : : ; en imagg)
EvalR is able to handle inner array initialization by applying the same rule
recursively to array initializations with a smaller number of dimensions.

Array access: The transformation rule for E � F [e1] : : : [en] is:
eval[F [e1] : : : [en]] 7!seq(eval[F];

Ereal=Freal[e
0
1
=eval[e1]] : : : [e

0
n=eval[en]];

Eimag = Fimag [e
0
1] : : : [e

0
n])

Again, temporary variables e0i are used to allow the reuse of index expressions
in the imaginary part.

Array access used as left hand side of an assignment: Such expressions may be
a�ected by side e�ects because the evaluation of index expressions could modify

the array itself. For example, in F[foo()]�=. . . , foo() could alter some elements
of F. Hence, the address evaluation for F which is needed repeatedly for the �=-
operation must be separated from the evaluation of the index expression which
must be evaluated exactly once. To achieve this it is in general necessary to store
a reference to the array in a temporary variable.

For one-dimensional arrays, the transformation rule is:
access(F [e]) 7! tmp = eval[F]

^ E#

real � tmpreal[e
0 = eval[e]]; E#

imag � tmpimag[e
0]

As before, the #-notation emphasizes that the given expressions are to be tex-
tually inserted on the right hand side of the assignment. Hence, in the example,
the resulting sequence method would execute foo() exactly once.

For n-dimensional arrays (n > 1), it is su�cient to keep a temporary reference
to the (n-1)-dimensional sub-array F [e1]:::[en�1]. The transformation rule for the
general case is:
access[F [e1] : : : [en]] 7! tmp = eval[F [e1] : : : [en�1]]

^ E#

real � tmpreal[e
0
n = eval[en]]; E

#
imag � tmpimag [e

0
n]

Again we are using a new temporary variable e0n to make sure that the index
expression is evaluated exactly once.

4.7 Transformation rules for method calls

We discuss complex parameters and complex return values separately. Moreover,
constructors must be treated di�erently.

Complex return value: There are no means in the JVM instruction set to return
two values from a method. An obvious work-around would be to create and
return an object (or an array of two doubles) every time the method is called.
In most cases, this object is only necessary to pass the result out of the method
and can be disposed right afterwards. In contrast, cj creates a separate array
of two doubles for each textual method call. This array is not de�ned in the
enclosing block but at the beginning of the method that encloses the call. This
strategy minimizes the number of temporary objects that have to be created,
e.g. for a call inside a loop body. Instead of calling the original method foo we

are calling a method cfoo with a modi�ed signature: we pass a reference to this
temporary array as an additional argument. This temporary array is created once
per textual call of the enclosing method and may be reused several times. So the
transformation rule for E � foo() is (similar for methods with arguments):

eval[foo()] 7! seq(cfoo(tmp); Ereal = tmp[0]; Eimag = tmp[1])
Two details are important to ensure the correctness of this transformation for
recursive calls and in multithreaded situations: First, the temporary array is
local to the enclosing method and second, every textual occurrence of a call of
foo causes the creation of a di�erent temporary variable.

The return type of cfoo is not void. Instead it returns a dummy value (null)

so that cfoo still can be used inside expressions.5

5 Before returning, the elements of the newly added array argument are initialized.

Complex argument: We use the obvious approach by again modifying the signa-
ture of the method. Instead of passing one argument of type complex we hand
over two double-values. It is important that not only the argument list of the
method but also its name is changed. This is necessary to avoid collisions with
existing methods that have the same argument types as the newly created one.
The transformation rule can be formalized as (similar for methods expecting
several arguments of type complex):

eval[bar(e)] 7! cbar(evalR[e]; eimag)

Constructor method: Calls of constructor methods can be treated in the same
way { except for the fact that it is not possible to modify the name of a construc-
tor.6 Since the �rst statement in the body of a constructor needs to be a call
of another constructor the techniques described above would cause the creation
of invalid programs if one of its parameters is of type complex. The solution is
demonstrated by means of the following example.

public Foo(complex x, complex z) {

super((x+x)+z);

}

In this example the transformation of (x+x)+zwould insert statements to declare
temporary variables before the call of super. As pointed out, this is not legal in
Java. To allow the use of complex in constructor calls an additional constructor
is created. This new constructor expects the same argument list as the �rst one
plus additional arguments, one for each of the necessary temporary variables.

private Foo(double x_real, double x_imag, //arguments of the

double z_real, double z_imag, //first constructor

double tmp1_real, double tmp1_imag, //temp.vars.

double tmp2_real, double tmp2_imag) {

super(seqREAL(seq(tmp1_real = x_real+x_real, //generated

tmp1_imag = x_imag+x_imag),//when

tmp2_real = tmp1_real+z_real, //translating

tmp2_imag = tmp1_imag+z_imag), //super((x+x)+z)

tmp2_imag);

}

The call of super has also been modi�ed to accept two double-values instead
one complex expression.

As a last step, the method call itself is transformed. Instead of calling super

the newly created constructor is called (by using this). All parameters of the
surrounding constructor plus an arbitrary value for each temporary variable are
passed as arguments.

6 To avoid collisions that may be caused by altering the argument list, cj adds a
dummy parameter of a helper type. This is not shown in the example.

public Foo(double x_real, double x_imag,

double z_real, double z_imag) {

this(x_real, x_imag, z_real, z_imag, 0, 0, 0, 0);

}

The semantic analysis of cj is able to detect pathological situations where this
strategy fails; cj issues suitable error messages. For example, an assignment
within an argument of a constructor call (in our above example: super(x =

0.0+x)) cannot be handled.

5 Benchmarks

5.1 Setup

On a Pentium 100 with 64 MB of RAM and 512 KB of cache we have installed two
operating systems: Linux 2.0.36 (Suse 6.0) and Windows NT Version 4 (service
pack 4). We have studied several di�erent Java virtual machines for our tests: a
pre-release of SUN's JDK 1.2 for Linux, SUN's JDK 1.2.1 for Windows, a JDK
from IBM, the JVM that is included in Microsoft's Internet Explorer 5, and the
beta release of SUN's new JIT compiler HotSpot.

Our benchmarks fall into two groups: the group of kernel benchmarks mea-
sures array access, basic arithmetics on complex, and method invocations with
complex return values. The other group measures small applications: complex
matrix multiplication, complex FFT, and Microstrip calculation. (The Mi-
crostrip benchmark [10] computes the value of the potential �eld �(x; y) in a
two-dimensional microstrip structure [4].) There are at least two versions of
each program { one uses our basic type complex and the other uses a class to
represent complex numbers.

5.2 Results

On average over all benchmarks, the programs using the basic type complex

outperform the class-based versions by a factor of 2 up to 21, depending on
the JVM used. We achieve the best factor with SUN's JDK 1.2 for Windows,
which is the slowest JVM in our study. The smaller improvement factors are
achieved with better JVMs (HotSpot and Internet Explorer) that incorporate
certain optimization techniques, e.g., removal of redundant boundary checks,
fast creation and handling of objects, and aggressive inlining of method bodies.

5.3 Results in detail

Figure 2 gives an overview over all benchmarks, labeled (a) to (f). In each of these
six sub-�gures there are �ve groups of bars, each group represents a di�erent
JVM. The most important item within a group is the black bar. This bar shows
the relative execution time of the class-based version. The factor by which this

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

(a) access of arrays using complex (b) complex-based arithmetics

100%

500%

Execution time in %

1000%

5.6
4.8

12.1

2.5
1.4

4.8

14.9

7.5

4.2 3.5 3.5

1500%

5.9

1.5
2.6

2.2

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

(c) Method invokation (return value complex) (d) FFT using complex numbers

100%

500%

Execution time in %

1500%

1000%

2000%

2500%

8.5

3.6 3.9

1.1

2.9

13.6

26.6

7.9 8.3

3.0

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

(f) Microstrip-Benchmark(e) matrix multiplication using compelx

100%

500%

1000%

Execution time in %

4000%

15.1

42.1

1.1
1.9

3500%

3000%

2500%

2000%

1500%

4.9
3.5

6.7

2.2

22.9

class base type manually optimized base type (slow division)

Fig. 2. Results of the benchmark programs

version is slower than the basic type version (grey bar) is printed on top of the
black bar. Some groups have more than two bars: here we did an additional
transformation by hand, substituting each complex by two variables of type
double. Those manually optimized programs (white bar) are just slightly faster
than code generated by cj.

In sub-�gures (a) to (c) the improvement is smaller than in the other �gures.
It is also apparent that better implementations of the JVM (Internet Explorer
and HotSpot) are quite good in eliminating the overhead of object creation
within the class-based solutions. But cj still performs better by 10% to 40%.

Benchmarks (a) and (c) focus on array access and method invocation. In
contrast, programs (b) and (d-f) are predominantly calculating arithmetic ex-
pressions, where (d) and (e) are also showing some amount of array accesses.
For arithmetics the techniques applied by cj (inlining of all method invocations
and reducing the number of temporary variables) perform noticeably better than
the class-based solution. Even on the better JVMs cj is 3 times faster. On slow
JVMs cj achieves a factor of 8 or more. The main reason is that cj does a better
inlining and can avoid temporary objects almost completely.

6 Conclusion

Complex numbers can be integrated seamlessly and e�ciently into Java. Be-
cause of Java's strict evaluation order it is by far not enough to simply double
the operations for their real and imaginary parts. Sequence methods enable a
formalization of the necessary program transformations in a local context. Our
technique for dealing with complex return values is e�cient because it avoids
the creation of many temporary objects. In comparison with their class-based
counterparts, the benchmark programs that use the new primitive type perform
better by a factor of 2 up to 21, on average, depending on the JVM used.

Acknowledgements

The Java Grande Forum and Siamak Hassanzadeh from Sun Microsystems sup-
ported us in understanding the necessity of complex numbers in Java for scienti�c
computing. Thanks to Martin Odersky for providing gj. Bernhard Haumacher
and Lutz Prechelt gave valuable advice for improving the presentation.

References

1. Gilard Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java program-
ming language. In Proc. of OOPSLA'98, 13th Annual Conf. on Object-

Oriented Programming Systems, Languages, and Applications, October 1998.
http://www.cis.unisa.edu.au/�pizza/gj/.

2. C9x proposal. ftp://ftp.dmk.com/DMK/sc22wg14/c9x/complex/ and
http://anubis.dkuug.dk/jtc1/sc22/wg14/.

3. Joseph D. Darcy and William Kahan. Borneo language.
http://www.cs.berkeley.edu/�darcy/Borneo.

4. Terence C. Edwards. Foundations for Microstrip Circuit Designs. John Wiley &
Sons, 1992.

5. James Gosling. The evolution of numerical computing in Java.
http://java.sun.com/people/jag/FP.html.

6. IBM. Numerical intensive Java. http://www.alphaWorks.ibm.com/tech/ninja/.
7. Java Grande Forum. http://www.javagrande.org.
8. JavaParty. http://wwwipd.ira.uka.de/JavaParty/.
9. William Kahan and J. W. Thomas. Augmenting a programming language with

complex arithmetics. Technical Report No. 91/667, University of California at
Berkeley, Department of Computer Science, December 1991.

10. Jos�e Moreira and Sam P. Midki�. Fortran 90 in CSE: A case study. IEEE Com-

putational Science & Engineering, 5(2):39{49, April{June 1998.
11. Stephen M. Omohundro and David Stoutamire. The Sather 1.1 speci�cation. Tech-

nical Report TR-96-012, International Computer Science Institute, Berkeley, 1996.
12. Guy Steele. Growing a language. In Proc. of OOPSLA'98, 13th Annual Conf.

on Object-Oriented Programming Systems, Languages, and Applications, October
1998. key note.

13. George K. Thiruvathukal, Fabian Breg, Ronald Boisvert, Joseph Darcy, Geo�rey C.
Fox, Dennis Gannon, Siamak Hassanzadeh, Jose Moreira, Michael Philippsen,
Roldan Pozo, and Marc Snir (editors). Java Grande Forum Report: Making Java
work for high-end computing. In Supercomputing'98: International Conference on

High Performance Computing and Communications, Orlando, Florida, November
7{13, 1998. panel handout.

14. Visual Numerics. Java grande complex reference.
http://www.vni.com/corner/garage/grande/index.html, 1999.

15. Peng Wu, Sam Midki�, Jos�e Moreira, and Manish Gupta. E�cient support for
complex numbers in Java. In ACM 1999 Java Grande Conference, pages 109{118,
San Francisco, 1999.

