
Inverse Toeplitz Eigenproblem on Personal

Computer Networks �

J. M. Bad��a1 A. M. Vidal2

June 27, 2000

1 Dpto. Inform�atica. Univ Jaume I.

12071, Castell�on, Espa~na.

badia@inf.uji.es
2 Dpto. Sistemas Inform�aticos y Computaci�on.

Univ. Polit�ecnica de Valencia.

46071, Valencia, Espa~na.

avidal@dsic.upv.es

Abstract

In this paper we present a parallel algorithm for solving the inverse

Toeplitz Eigenvalue Problem. The algorithm has been implemented by

using a cluster of personal computers, interconnected by a high per-

formance Myrinet network. We have utilized standard public domain

parallel environments for implementing the calculation part as well as

the communications, thus producing portable software. The results

obtained allow us to con�rm the scalability and eÆciency of the al-

gorithm. Besides, we have checked that by using the theoretical cost

model provided by the ScaLAPACK we can predict the behaviour of

the experimental results.

1 Introduction

The rapid development of parallel computers has made it possible to

tackle problems which cannot be dealt with by classic sequential com-

puters owning the storage and time requirements. Distributed Mem-

ory Machines are probably among the most extended computers in the

market. This is due basically to the scalability of this kind of ma-

chines which allows us to increase the performance with the number of

processors, even up to hundreds or thousands of processors.

The main reasons that prevented a widespread use of the massive

parallel computers were the diÆculty of programming and their high

�This paper was partially supported by the project CICYT TIC96-1062-C03: \Parallel

Algorithms for the computation of the eigenvalues of sparse and structured matrices"

1

economic cost. However, the recent development of message passing

environments such as the PVM [11] or the MPI [19], facilitates the

implementation of eÆcient, portable and scalable algorithms on this

kind of parallel architecture.

Nevertheless, the use of custom processors and, specially, the use

of very fast interconnection networks, enormously increases the cost of

this kind of computer, if we want to have a large number of processors

(> 100). This problem is being alleviated by two phenomena: �rst, the

use of standard processors in the MMP, which allows the price of these

components to be decreased, and the platform to be easily updated

as the technology evolves. Second, and in a more radical way, the

appearance on the market of the high performance networks connecting

personal computers, is enlarging the scope of the multiprocessors.

Nowadays, a big e�ort is being made in the development of high

performance interconnection networks, which allow us to group several

personal computers or workstations to form a multiprocessor architec-

ture. In this sense, it is worth noticing the development of Fast Eth-

ernet network (100 Mbits/s.) and, specially, the presence of networks

with a bandwidth of 1 Gbit/s., such as the Myrinet networks [4], [18].

Just to cite an example, currently the most powerful computer, in peak

performance, is a parallel computer of this kind, formed by thousands

of Pentium processors [8].

Quite recently, multiprocessor architectures were restricted to a few

universities, research centres and big companies. However, with the

personal computer networks, multiprocessors can extend their applica-

tion �eld enormously, reaching even small and medium size companies,

and spreading their use to a larger number of di�erent users.

One of the �elds where the use of multiprocessors is specially ad-

equate is the Numerical Linear Algebra. One of the problems in this

�eld that is most complex and costly in terms of computational time,

is represented by the inverse problems, because their solution involves

the solution of several, sometimes many, direct problems. In this paper

we focus on the inverse eigenvalue problem. This problem arises in a

remarkable variety of applications, such as control design, seismic to-

mography, antenna array processing, system identi�cations, structural

analysis, circuit theory, particle physics and so on.

In [6] a wide summary and a classi�cation of a collection of inverse

eigenvalue problems, and the most recently theoretical and algorithmic

results related to these problems are presented. One of the types of the

inverse problems identi�ed in that paper is the structured eigenvalue

problem, that is, the reconstruction of a matrix with a predetermined

spectrum and with a de�nite structure, for example Toeplitz structure

(all the elements in a diagonal have the same value). In this paper

we present a parallel algorithm which solves the inverse eigenvalue

problem with Toeplitz matrices, on a high performance network of

personal computers.

On the other hand, several parallel libraries for numerical linear

algebra have been recently developed on distributed memory environ-

ments. These libraries contain very eÆcient numerical methods to

2

solve a large number of numerical and matrix problems. ScaLAPACK

[3] and PLAPACK [21] are examples of this kind of library.

This paper focuses on three objectives. First, to analyze the pos-

sibility of using personal computers clusters with a high performance

interconnection network to solve a problem with high computational

cost, in an eÆcient and scalable way, by using parallel computing tech-

niques. The idea is to take advantage of the excellent ratio price/per-

formance of this kind of platforms to extend the �eld of high perfor-

mance parallel computing.

Second, to implement a portable algorithm, based on the use of real

standard software to perform the basic calculation operation (BLAS,

PBLAS, LAPACK, ...) and to carry out the necessary communications

(BLACS, MPI, ...). Moreover, we try to make a portable implemen-

tation by using a public domain operating system like LINUX, and

standard C or FORTRAN compilers. The use of this kind of environ-

ments and programming tools allows us to obtain portable algorithms.

Besides, the algorithms can be easily adapted to the new versions of

di�erent applications, executable on very spread platforms and with a

performance that can be increased with new versions of the software

or hardware.

The third objective of this paper is to study the validity of a theoret-

ical cost and communication model, used by ScaLAPACK, to analyze

the cost of an algorithm which combines di�erent routines of this li-

brary and other routines that parallelize intermediate operations, and

which also perform several redistributions of data.

The rest of the paper is structured as follows: In section 2, the

environment utilized for implementing the algorithm and the commu-

nication and computation cost model is presented. Section 3 contains

a brief description of the problem to solve, the sequential algorithm

utilized and its theoretical cost. In section 4, an outline of the parallel

algorithm and its theoretical cost is presented. Experimental results

and a thorough study of the scalability of the parallel algorithm in the

environment used is presented in section 5. Finally, section 6 contains

our conclusions.

2 Description and features of the environ-

ment

The target platform for our experimental study is a personal computer

cluster connected through a Myrinet network [4]. More speci�cally

speaking, the cluster consists of 32 PCs, based on 300MHz Pentium

II processors, with 128 Mbytes of SDRAM each. The interconnection

network consists of two switches of SAN type, from Myricom, model

M2M-OCT-SW8, with 16 ports each.

A Myricom network card has been incorporated in each PC in order

to connect it with one of the switches by means of a bidirectional link,

with a bandwidth of 1,28 Gbits/s. Thus, a bisection bandwidth of

20.48 Gbits/s. on each switch of 16 ports is achieved. The connection

3

between both switches allows this added bandwidth to be scaled.

Each switch is a crossbar, and both together allow the de�nition of

any kind of topology by means of the manual or automatic stating of

a set of paths among the di�erent ports. Communications are carried

out by using a cut-through protocol with low latency and
ow control.

There exist speci�c implementations for Myrinet networks of some

message passing environments such as MPI [17] which o�er small la-

tencies and high bandwidths. Below, we analyze the performance of

the cluster and the interconnection network.

2.1 Communication cost

To analyze the communication cost we have adopted the same scheme

used in [7]. We have used a well-known model to represent the cost,

tc, of performing a communication of m bytes through a link:

tc = tm +mtv (1)

Here, tm stands for the startup time of the transference or latency

time, and tv represents the time of sending a byte through a link.

Thus, the bandwidth of a link is given by 1=tv. It is worth noticing

that in the communication costs, not only factors related to the speed

of the physical links but also the environment utilized to implement the

message-passing must be taken into account. In this case, the results

shown have been obtained by using the MPI environment, GM version,

which has been developed by the manufacturer of the interconnection

network.

To determine the values of the constants in (1) we have utilized the

double ping-pong algorithm, that is, a processor sends a set of packets

of di�erent sizes to another processor and the last one returns them.

The time measured is the half of that required to send and return each

packet. By sending packets of minimum size it is possible to obtain

the value of tm, while the value of tv can be obtained by sending large

size packets.

For the latency time, tm, we have obtained a value of 33 �s. How-

ever, the bandwidth depends on the size of the messages sent. Sending

a message of a few hundred bytes provides a bandwidth of 15 Mbytes/s.

When the messages are of a few Kbytes the bandwidth reaches 23

Mbytes/s. Finally, for messages of tens of Kbytes, the bandwidth tends

asymptotically to a maximum of 33 Mbytes/s. Thus, the maximum

speed of transference through a link, obtained in this environment,

gives a value of tv = 0; 03 �s/byte. This can be seen in Figure 1.

2.2 Arithmetic cost

To analyze the arithmetic performance of the processors it is important

to distinguish between the peak performance and the real performance

that we can obtain during the execution of a de�nite algorithm. The

average execution time of a
oating point operation (
op) in a concrete

4

M
es

sa
g

e
S

iz
e

Mbytes/sec.

05

1
0

1
5

2
0

2
5

3
0

3
5

0
1

2
3

4
5

6
7

8
9

1
0

x
 1

0
K

b

x
 1

K
b

x
 1

0
0
b

S
iz

e

F
ig
u
re

1
:
B
a
n
d
w
id
th

o
f
th
e
M
y
ri
n
et

n
et
w
o
rk

w
it
h
m
es
sa
g
es

o
f
d
i�
er
en
t
si
ze
s

u
si
n
g
M
P
I-
G
M
. D
G
E
M
V

D
G
E
M
M

D
G
E
T
R
F

n
M
F
lo
p
s

t f
(�
s.
)

M
F
lo
p
s

t f
(�
s.
)

M
F
lo
p
s

t f
(�
s.
)

2
0
0

8
4
,4
2

1
,1
8
E
-0
2

1
7
7
,7
8

5
,6
3
E
-0
3

1
3
2
,8
3

7
,5
3
E
-0
3

4
0
0

4
8
,3
6

2
,0
7
E
-0
2

1
8
0
,2
8

5
,5
5
E
-0
3

1
4
6
,8
5

6
,8
1
E
-0
3

6
0
0

4
7
,9
3

2
,0
9
E
-0
2

1
8
3
,0
5

5
,4
6
E
-0
3

1
5
4
,6
5

6
,4
7
E
-0
3

8
0
0

4
7
,5
7

2
,1
0
E
-0
2

1
8
4
,8
4

5
,4
1
E
-0
3

1
6
5
,5
4

6
,0
4
E
-0
3

1
0
0
0

4
7
,3
4

2
,1
1
E
-0
2

1
8
5
,5
3

5
,3
9
E
-0
3

1
6
9
,9
4

5
,8
8
E
-0
3

T
a
b
le
1
:
A
ri
th
m
et
ic
p
er
fo
rm

a
n
ce

o
f
th
e
p
ro
ce
ss
o
rs
.

a
lg
o
ri
th
m

d
ep
en
d
s
o
n
th
e
ty
p
e
o
f
o
p
er
a
ti
o
n
,
o
n
th
e
m
em

o
ry

a
cc
es
s

o
u
tl
in
e,
a
n
d
o
n
th
e
ex
p
lo
it
a
ti
o
n
o
f
a
ll
th
e
fe
a
tu
re
s
o
f
th
e
p
ro
ce
ss
o
r.

T
o
a
n
a
ly
ze

th
e
a
ri
th
m
et
ic
p
er
fo
rm

a
n
ce

o
f
th
e
p
ro
ce
ss
o
r
th
re
e
w
i-

d
es
p
re
a
d
st
a
n
d
a
rd

a
lg
o
ri
th
m
s
h
a
v
e
b
ee
n
u
se
d
:
th
e
�
rs
t
o
n
e,

D
G
E
M
V
,

p
er
fo
rm

s
th
e
m
a
tr
ix
-v
ec
to
r
p
ro
d
u
ct

a
n
d
is
in
te
g
ra
te
d
in

th
e
le
v
el
2
o
f

th
e
co
m
p
u
ta
ti
o
n
a
l
k
er
n
el
B
L
A
S
.
T
h
e
se
co
n
d
o
n
e,
D
G
E
M
M
,
p
er
fo
rm

s
m
a
-

tr
ix
p
ro
d
u
ct
s
a
n
d
b
el
o
n
g
s
to

B
L
A
S
le
v
el
3
,
a
n
d
th
e
th
ir
d
o
n
e,
D
G
E
T
R
F
,

p
er
fo
rm

s
th
e
L
U

d
ec
o
m
p
o
si
ti
o
n
o
f
a
m
a
tr
ix

a
n
d
is
in
te
g
ra
te
d
in

th
e

L
A
P
A
C
K
li
b
ra
ry

[1
].
In

th
e
ca
se

o
f
th
e
ro
u
ti
n
es

in
cl
u
d
ed

in
th
e
B
L
A
S

k
er
n
el
,
w
e
h
a
v
e
u
se
d
a
v
er
si
o
n
sp
ec
ia
ll
y
d
ev
is
ed

to
ta
k
e
a
d
va
n
ta
g
e
o
f

P
en
ti
u
m

p
ro
ce
ss
o
rs
,
w
h
ic
h
is
in
co
rp
o
ra
te
d
in

th
e
A
S
C
I
R
ed

P
en
ti
u
m

P
ro

B
L
A
S
1
.1
.N

[1
2
],
[1
3
].

In
ta
b
le

1
w
e
p
re
se
n
t
th
e
re
su
lt
s
o
b
ta
in
ed

b
y
th
e
p
re
v
io
u
s
ro
u
-

ti
n
es

in
a
P
en
ti
u
m

II
-3
0
0
p
ro
ce
ss
o
r,
in
cl
u
d
ed

in
th
e
cl
u
st
er

u
ti
li
ze
d
to

p
er
fo
rm

th
e
ex
p
er
im
en
ts

w
it
h
th
e
p
a
ra
ll
el

a
lg
o
ri
th
m
.
W
e
ca
n
v
er
if
y

th
a
t
th
e
p
er
fo
rm

a
n
ce

o
b
ta
in
ed

b
y
th
e
tw
o
la
st
ro
u
ti
n
es

a
p
p
ro
a
ch
es
th
e

2
0
0
M
F
lo
p
s,
w
h
il
e
th
e
�
rs
t
o
n
e
a
ch
ie
v
es
a
cl
ea
rl
y
in
fe
ri
o
r
p
er
fo
rm

a
n
ce
.

T
h
is
is
u
n
d
o
u
b
te
d
ly
d
u
e
to

th
e
ra
ti
o
b
et
w
ee
n
th
e
n
u
m
b
er

o
f
o
p
er
a
ti
o
n
s

5

and the number of memory accesses in each subroutine. While in the

�rst one we use the level 2 of BLAS, in the second and third ones we

refer to BLAS 3.

The di�erent performances of the previous subroutines result in

very di�erent values for the average time of execution of a
oating

point operation. While in the case of the two last subroutines this

value is approximately 0,006 �s, in the �rst one the value is around

0,02 �s. Thus, the value of constant tf , which is more appropriate

to model our system, strongly depends on the characteristics of the

arithmetic operations to be performed and on the exploitation of the

di�erent levels of BLAS.

3 Description of the problem and its se-

quential solution

In this section we brie
y describe the inverse eigenproblem to be solved,

the sequential algorithm and its theoretical cost. This problem has

been previously studied in [15] and [10]. To obtain a more detailed

information of the algorithm [20] and [2] can also be consulted. Let

t = [t0; t1; : : : ; tn�1] be a real n-vector. We say that T (t) is a Real

Symmetric Toeplitz Matrix (TRS) generated by t if

T (t) =
�
tji�jj

�n
i;j=1

:

This kind of matrix appears in the solution of many problems in

Physics or Engineering.

Given n real values such as

�1 � �2 � : : : � �n; (2)

the inverse eigenvalue problem consists in computing a generator t, so

that the spectrum of the TRS matrix associated coincides with (2).

The TRS matrices verify some properties [5], [15] that allow their

spectrum to be divided in two parts with the same number of eigen-

values, known as even and odd eigenvalues, and associating them with

the symmetric and skew-symmetric eigenvectors, respectively. On the

other side, it is possible to compute both spectra separately, substan-

tially reducing the cost of calculating the eigenvalues and eigenvectors

of the matrix.

In [16] a method for solving the inverse eigenproblem with TRS ma-

trices is proposed. This method is equivalent to the Newton method.

This algorithm is improved in [20] by means of the adequate exploita-

tion of the previous spectral properties.

3.1 Sequential Algorithm

In this section, we brie
y describe the sequential method proposed in

[20]. We will call p1(t); : : : ; pr(t) the symmetric eigenvectors of T (t)

6

and q1(t); : : : ; qs(t) its skew-symmetric eigenvectors. On the other side,

we will denote the target spectrum as

� = [�1; �2; : : : ; �r; �1; �2; : : : ; �s] (3)

where the even and odd spectra have been separated, and each one has

been written in increasing order.

Let t0 be a n-vector and let � be the target spectrum, as de�ned

in (3). By using t0 as an initial generator, the method computes a

sequence tm, m = 1; 2; : : : as the solution of the equations:

pi(t
m�1)TT (tm)pi(t

m�1) = �i; 1 � i � r

qj(tm�1)TT (tm)qj(tm�1) = �j ; 1 � j � s
(4)

where r = dn=2e and s = bn=2c. The previous equations can be written
as a linear system of dimension n = r + s; and we can obtain tm from

tm�1, thus producing an iterative method.

In each iteration of the algorithm, we start by constructing the

matrix associated with the linear system in order to solve (4). This

is performed from the eigenvectors of the TRS matrix of the previous

iteration, which have been computed with a small cost by separating

the odd and even spectra. Then, the linear system is solved, thus

obtaining a new generator for a TRS matrix, whose spectrum is calcu-

lated. The convergence of the algorithm is reached when the di�erence

between the computed spectrum and the target spectrum is smaller

than a given error �0.

Broadly speaking, the sequential algorithm we have implemented

is the following:

REPEAT

�(T (tm�1)) Compute the spectrum (eigenvalues and eigenvectors)

of T (tm�1)

C Build the linear system from (4) and the computed eigenvectors.

tm Solve the linear system Ctm = �

UNTIL j�(T (tm))� �j < �0

The method described is equivalent to Newton's method. Since

the Newton method is not globally convergent, this algorithm does

not necessarily converge to a solution of the problem. In [20] several

improvements are proposed in order to achieve the convergence of the

method. Speci�cally, if the convergence fails, we try to linearly con-

verge to a modi�ed spectrum with a less restrictive stopping criterion.

When this new convergence is reached, the computed spectrum is used

as a starting point to quadratically converge on the target spectrum.

3.2 Analysis of the theoretical cost

Each iteration of the previous sequential method performs three basic

tasks: the computation of the spectrum of a TRS matrix, the con-

struction of the coeÆcient matrix of a linear system and, �nally, the

solution of the linear system.

7

By exploiting the spectral properties of the TRS matrices, the cost

of computing their spectrum is

t1 = 11n3=6 + n
2
=4
ops:

The construction of the coeÆcient matrix implies a cost of

t2 = n
3
=2 + 3n2
ops:

Finally, the solution of the linear system by means of gaussian

elimination produces a cost of:

t3 = 2n3=3
ops:

Thus, if we call it the number of necessary iterations to reach the

convergence, the total cost of the sequential algorithm is given by:

t2 = (t1 + t2 + t3) = (3n3 + 13n2=4) � it
ops: (5)

4 Outline of the parallel algorithm

The parallelization of the sequential method is based on the use of the

ScaLAPACK parallel linear algebra library [3]. In this environment

the algorithms use a SPMD model and a block cyclic data distribution

among the processors of a logical bidimensional mesh.

The algorithm parallelizes the three main steps of the sequential

version and performs the communications needed to redistribute the

data appropriately in order to start each step. A very simpli�ed version

of the parallel algorithm is summarized in the following pseudocode:

WHILE not converged

Compute the odd and even spectra of T (tm�1) in parallel.

Gather the eigenvectors in the �rst row of processors.

IF the processor is in the �rst row of the mesh THEN

Compute the corresponding rows of matrix C in the linear system.

Redistribute matrix C among all the processors in the mesh.

Solve the linear system in parallel.

In order to accomplish the parallel solution of the linear system

and the computation of the spectra, we have used several ScaLAPACK

routines, namely, PDGETRF, PDGETRS and PDSYEV. To compute the co-

eÆcient matrix for the linear system we have exploited the fact that

each row depends on one eigenvector, and therefore, all matrix rows

can be computed in parallel.

Due to the mesh topology of the environment and the data depen-

dencies of the problem, we have to perform some redistributions of the

data in each iteration of the algorithm. These communications greatly

increase the cost of the parallel algorithm.

First, in each iteration, we must gather the eigenvectors in the

�rst row of processors in order to compute the coeÆcient matrix of the

8

linear system. On the other side, we compute the odd and even spectra

separately, obtaining two matrices distributed in the whole mesh. To

obtain a properly distributed matrix containing all the eigenvectors,

once we have the eigenvectors in the �rst row of processors, we have to

redistribute them. Finally, once we have built the coeÆcient matrix, we

must redistribute its elements among all the processors of the mesh in

order to solve the linear system. The computation and communication

outline in each iteration of the parallel algorithm is shown in �gure 2.

Computation and gathering
of the spectrum

Redistribution of the eigenvectors
and Computation of matrix C

Scattering of matrix C and
linear system solving

Figure 2: Computation and communication outline of the parallel algorithm.

To perform all the communications of the algorithm we have used

the routines in BLACS [9] and the auxiliary redistribution routines

included in the ScaLAPACK library.

4.1 Theoretical cost analysis

In this section we use the ScaLAPACK model in order to analyze the

theoretical cost of the parallel algorithm. In this model, p processors

are distributed in a square mesh and the matrices of size n � n are

distributed by using a block cyclic scheme with block size nb�nb. The
cost of a driver routine in ScaLAPACK ([3], pag. 97) is given by:

T (n; p) = Cf

n3

p
tf + Cv

n2p
p
tv + Cm

n

nb
tm; (6)

where Cfn
3=p represents the total number of
oating point operations,

Cvn
2=
p
p represents the total number of bytes communicated through

the algorithm, and Cmn=nb represents the number of messages trans-

ferred.

We make some assumptions in order to simplify the cost analysis.

First, we are going to represent the cost in the case of a square mesh,

though, as we will see in the following sections, the con�guration of

the mesh greatly a�ects the experimental results. Second, we perform

the redistribution of the matrices using messages of size nb� nb, and

we suppose that there is no overlapping among these messages.

In the previous conditions, we have computed the values of the con-

stants in (6) which corresponds to the part of the parallel algorithm

9

that is not computed using ScaLAPACK drivers. Therefore, the fol-

lowing constants include the computation of the coeÆcient matrix and

the data redistributions in each iteration.

Cf �
p

2
p
p

(7)

Cv �
3

2
(
p
p+ 1) (8)

Cf �
3

2
(
p
p� 1)

n

nb
(9)

If we want to obtain the total cost of the parallel algorithm we have

to add the values associated to the ScaLAPACK routines used in each

iteration ([3], table 5.8) to the previous constants. We also have to

recall that we compute the odd and even spectra separately, and so,

we call the routine PDSYEV twice with two matrices of size n=2.

In �gure 3 we show the performance of the parallel algorithm ob-

tained by applying the previous theoretical model. Speci�cally, we

have substituted in (6) the values of the parameter tf , tv and tm

which corresponds to our parallel architecture (see x3). If we ana-

lyze the computations developed in the parallel algorithm, we can see

a combination of several BLAS levels. Therefore, we have used a value

of tf = 0; 015�s., corresponding to an intermediate point among BLAS

levels 2 and 3.

The results in �gure 3 show that the speedups are quite far from the

maximum. This behaviour is mainly due to the large communication

cost obtained if we substitute (8) and (9) in (6). Taking into account

our assumptions, both expressions represent maximum bounds for the

communication cost.

Speedup

Pr
oc

es
so

rs

0

1

2

3

4

5

6

7

8

9

10

4 9 16 25

1200

1000

800

600

400

200

Matrix Size

Figure 3: Performance using the theoretical model.

Figure 4 shows the in
uence of the three factors in (6) in the the-

oretical performance of the algorithms. Speci�cally, this �gure repre-

10

sents their value using 25 processors for matrices of several sizes. We

can see that the computation cost grows more quickly than the com-

munications cost, but it is larger only with matrices of size 600 or more.

Therefore, the overload due to the communications limits the speedup

that we can obtain with the parallel algorithm except for very large

matrices.

Matrix Size

Ti
m

e
(s

ec
.)

0

1

2

3

4

5

6

200 400 600 800 1000 1200

Comput.

Bandw.

Latency

Factor

Figure 4: E�ect of the communications and computations in the duration

of the parallel algorithm. (p=25).

5 Experimental analysis

First, in table 2 we show the execution time of both, sequential and

parallel algorithm, with matrices of several sizes and using di�erent

numbers of processors. This table shows the absolute performance of

the algorithms in the experimental environment. We can see a clear

reduction in the duration of the algorithm when we use the parallel

algorithm. For example, with a matrix size of n = 1200 we reduce

the duration from 2677.39 seconds in the sequential version, to 268.21

seconds in the parallel version using 25 processors.

In the following sections we study the e�ect of the con�guration of

the mesh in the performance of the parallel algorithm and we analyze

its scalability using di�erent metrics.

5.1 E�ect of the con�guration of the mesh

In this section we study the e�ect of the con�guration of the mesh in the

performance of the parallel algorithm. This factor has a large in
uence

in our algorithm, because an important part of the communication cost

depends on it.

We have shown in section 4 that in each iteration of the algorithm

we must perform two redistributions of a matrix among all the proces-

11

Matrix size

proc. 200 400 600 800 1000 1200

1 5,99 60,96 282,30 782,94 1453,61 2677,39

4 6,84 37,85 104,83 210,28 274,19 731,62

9 8,23 36,48 88,72 154,58 199,81 404,47

16 8,45 30,67 30,67 128,54 155,76 288,94

25 9,57 36,51 72,87 112,39 180,56 268,21

Table 2: Duration of the sequential and parallel algorithms in seconds.

sors in the mesh. Speci�cally, we must gather the eigenvectors in the

�rst row of processors and we must redistribute the coeÆcient matrix

to all the processors. Both operations force an important communica-

tion cost whose real value depends on the con�guration of the mesh.

If we use an unidimensional mesh with only one row of processors, the

cost of these communications is zero, while if we only use one column of

processors, its cost is the maximum one. However, with large matrices

we must also take into account that the behaviour of the ScaLAPACK

routines is better with square meshes, and that this class of meshes

improve the load balance of the whole algorithm.

In �gure 5 we can see how if we use meshes with a large number

of rows, the speedups decrease due to the larger cost of the redistri-

butions, while the best performance with large matrices (n=1200) is

obtained using square or almost square meshes.

Processors

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

10

4 9 16 25

squ

1xp

px1

Mesh configuration

Figure 5: E�ect of the con�guration of the mesh in the speedups.

(n = 1200).

12

5.2 Scalability analysis

In this section we analyze the scalability of the parallel algorithm.

By scalability we mean the capacity of the algorithm to maintain the

performance when we increase the number of processors. To achieve

this behaviour we have to increase the size of the problem appropriately

while increasing the number of processors.

We use two metrics to analyze the scalability. In the �rst metric,

called isotemporal, we increase the size of the problem so that the du-

ration of the parallel algorithm can be the same as the duration of the

sequential algorithm. In the second metric, called isospatial, we keep

the size of the problem constant in each processor, thus maintaining

the memory usage per node.

5.3 Isotemporal scalability

We use the concept of scaled speedup de�ned in [14] to represent the

isotemporal scalability:

Sp =
pW

T (p; pW)
;

where W represents the cost of the sequential algorithm and T (p; pW)

represents the cost of the parallel algorithm to solve a problem of cost

pW using p processors.

As we are dealing with an algorithm with sequential cost W =

O(n3), we must increase the matrix size, n, with 3
p
p, if we want to

keep the same computation cost in the parallel algorithm.

Processors

Sc
al

ed
 S

pe
ed

up

0

2

4

6

8

10

12

14

16

18

2x2 3x3 4x4 5x5

800

600

400

200

Matrix Size

Figure 6: Scaled speedup using an isotemporal metric.

Figure 7 shows the speedups obtained without scaling, that is, if

we maintain the size of the problem while increasing the number of

processors. If we compare this �gure with �gure 6, we can see the

e�ect of scaling in the performance of the algorithm.

13

P
ro

ce
ss

o
rs

Speedup

0123456789

1
0

2
x
2

3
x
3

4
x
4

5
x
5

1
2
0
0

1
0
0
0

8
0
0

6
0
0

4
0
0

2
0
0

M
a

tr
ix

 S
iz

e

F
ig
u
re

7
:
S
p
ee
d
u
p
w
it
h
o
u
t
sc
a
li
n
g
.

F
ig
u
re

7
a
ls
o
a
ll
o
w
s
u
s
to

co
n
�
rm

ex
p
er
im
en
ta
ll
y
th
e
re
su
lt
s
p
re
-

d
ic
te
d
b
y
th
e
th
eo
re
ti
ca
l
a
n
a
ly
si
s
in

se
ct
io
n

4
.1

a
n
d
re
p
re
se
n
te
d
in

�
g
u
re

3
.
T
h
e
p
a
tt
er
n
s
in

b
o
th

�
g
u
re
s
a
re

si
m
il
a
r,
a
n
d
th
e
d
i�
er
en
ce
s

a
re

d
u
e
to

se
v
er
a
l
re
a
so
n
s.

F
ir
st
,
th
e
th
eo
re
ti
ca
l
co
m
p
u
ta
ti
o
n
co
st

is

b
a
se
d
o
n
a
va
lu
e
fo
r
th
e
p
a
ra
m
et
er

t f
th
a
t
d
o
es

n
o
t
h
a
v
e
to

co
in
ci
d
e

w
it
h
th
e
m
ea
n
co
st
o
f
a

o
p
in

o
u
r
a
lg
o
ri
th
m
,
a
n
d
th
a
t
is
b
a
se
d
o
n
th
e

p
er
fo
rm

a
n
ce

o
f
se
v
er
a
l
B
L
A
S
a
n
d
L
A
P
A
C
K

ro
u
ti
n
es
.
In

g
en
er
a
l,
th
e

co
m
p
u
ta
ti
o
n
p
er
fo
rm

a
n
ce

o
f
o
u
r
a
lg
o
ri
th
m

is
q
u
it
e
fa
r
fr
o
m

th
e
p
ea
k

o
f
th
e
m
a
ch
in
e,

a
n
d
it
is
n
ea
re
r
to

th
e
va
lu
es

o
b
ta
in
ed

w
it
h
ro
u
ti
n
e

D
G
E
M
V
th
a
n
to

th
e
v
a
lu
es

o
b
ta
in
ed

w
it
h
ro
u
ti
n
e
D
G
E
M
M
,
(s
ee

ta
b
le
1
).

S
ec
o
n
d
,
th
e
co
m
m
u
n
ic
a
ti
o
n
co
st
in
th
e
th
eo
re
ti
ca
l
m
o
d
el
is
b
a
se
d
o
n

so
m
e
si
m
p
li
�
ca
ti
o
n
s
th
a
t
d
o
n
o
t
ta
k
e
in
to

a
cc
o
u
n
t
th
e
p
o
ss
ib
le
o
v
er
la
p
-

p
in
g
a
m
o
n
g
d
i�
er
en
t
m
es
sa
g
es
,
th
e
u
se

o
f
p
ip
el
in
ed

co
m
m
u
n
ic
a
ti
o
n
s,

th
e
re
a
l
to
p
o
lo
g
y
o
f
th
e
in
te
rc
o
n
n
ec
ti
o
n
n
et
w
o
rk
,
th
e
p
o
ss
ib
le

o
v
er
-

la
p
p
in
g
a
m
o
n
g
co
m
p
u
ta
ti
o
n
s
a
n
d
co
m
m
u
n
ic
a
ti
o
n
s,
et
c.

W
e
m
u
st

a
ls
o

ta
k
e
in
to

a
cc
o
u
n
t
th
a
t
th
e
b
a
n
d
w
id
th
,
a
n
d
th
u
s
th
e
va
lu
e
o
f
t v
,
d
e-

p
en
d
s,
a
s
w
e
ca
n
se
e
in

�
g
u
re

1
,
o
n
th
e
si
ze

o
f
th
e
m
es
sa
g
e.

A
ll
th
es
e

a
sp
ec
ts

o
f
th
e
im
p
le
m
en
ta
ti
o
n
d
e�
n
e
th
e
re
a
l
co
st

o
f
th
e
co
m
m
u
n
ic
a
-

ti
o
n
s
a
n
d
ca
n
ju
st
if
y
th
e
p
o
ss
ib
le

d
i�
er
en
ce
s
b
et
w
ee
n
th
e
th
eo
re
ti
ca
l

a
n
d
ex
p
er
im
en
ta
l
re
su
lt
s.

5
.4

Is
o
s
p
a
t
ia
l
s
c
a
la
b
il
it
y

W
h
en

w
e
u
se

th
e
is
o
sp
a
ti
a
l
sc
a
la
b
il
it
y
w
e
m
u
st
m
a
in
ta
in
th
e
si
ze

o
f
th
e

p
ro
b
le
m
in
ea
ch

p
ro
ce
ss
o
r.
In

th
e
ca
se
o
f
th
e
S
ca
L
A
P
A
C
K
li
b
ra
ry
,
if
w
e

h
o
ld
co
n
st
a
n
t
th
e
ra
ti
o
n
2
=
p
w
h
il
e
in
cr
ea
si
n
g
th
e
n
u
m
b
er
o
f
p
ro
ce
ss
o
rs
,

th
e
eÆ

ci
en
cy

o
f
th
e
d
ri
v
er

ro
u
ti
n
es

is
a
lm
o
st

m
a
in
ta
in
ed
.
W
h
en

th
is

co
n
d
it
io
n
h
o
ld
s,
it
is
sa
id

th
a
t
th
es
e
ro
u
ti
n
es

sc
a
le
is
o
eÆ

ci
en
tl
y.

In
�
g
u
re

8
w
e
sh
o
w

th
e
p
er
fo
rm

a
n
ce

o
b
ta
in
ed

w
h
en

w
e
u
se

a
n

is
o
sp
a
ti
a
l
sc
a
li
n
g
in

o
u
r
p
a
ra
ll
el
a
lg
o
ri
th
m
.
F
ir
st
,
w
e
ca
n
se
e
a
cl
ea
r

d
ec
re
a
se

o
f
th
e
M
F
lo
p
s/
s.

p
er

n
o
d
e
w
h
en

w
e
in
cr
ea
se

th
e
n
u
m
b
er

o
f

1
4

processors. This behaviour is due to the fact that we are not using a

ScaLAPACK routine, but a combination of some of them, with some

routines implemented speci�cally for this algorithm. Besides we per-

form some redistributions of the data in each iteration that clearly

a�ect the global scalability of the algorithm.

On the other hand, we must point out that the biggest reduction

occurs when we go from the sequential version to the parallel version.

If we increase the number of processors in the parallel version, the per-

formance is almost maintained. This behaviour is due to the overload

of the parallelization, and mainly, to the communication cost. Besides,

when we begin with large matrices, the decrease of the performance is

not so large and we go from 64 MFlop/s. per node in the sequential

case to 33 MFlop/s. per node using 25 processors.

Processors

M
Fl

op
s/p

ro
ce

ss
or

0

10

20

30

40

50

60

70

80

1x1 2x2 3x3 4x4 5x5

500

400

300

200

100

n/sqrt(p)

Figure 8: Mega
ops per processor using an isospatial scaling.

6 Conclusions

In this paper we present a parallel algorithm that solves eÆciently and

in a quite scalable way the inverse eigenproblem for real symmetric

Toeplitz matrices. We show the possibility of implementing this type of

algorithm on an architecture with an excellent rate cost/performance.

Speci�cally, we have used a cluster of personal computers connected

with a high performance network.

We must always take into account that we are dealing with a com-

plex problem that involves a large number of communications. This

factor is crucial in the performance that we can obtain working with

a distributed memory multicomputer. We have tested this e�ect both

theoretically and experimentally.

To implement the algorithms we have used a standard environment

based mainly on public domain and very well known tools (Linux, MPI,

BLAS, LAPACK, ScaLAPACK, . . .). Therefore, we have obtained a

15

portable algorithm for a large range of parallel architectures. Moreover,

the performance of the algorithm can improve with the quick evolution

of the characteristics of personal computers and of high performance

networks (Fast Ethernet, Gigabit, Myrinet, . . .).

The utilization of the ScaLAPACK parallel linear algebra library

imposes a program model based on a bidimensional mesh and a block

cyclic distribution of the matrices. In the case of our algorithm, and

due to its communication pattern, the con�guration of the mesh greatly

a�ects the performance.

At the same time, we have applied the theoretical cost analysis

model of the ScaLAPACK to our algorithm. Even taking into account

several important simpli�cations and the e�ect of the communications,

the results o�ered by the model allow us to approach the general be-

haviour of the parallel algorithm and permits the analysis of the in-

uence of the di�erent factors involved, such as the computation cost,

bandwidth and latency of the communications.

We must also point out that the implementation of this type of

algorithms proves that it is possible to obtain good performances by

applying parallel programming techniques and tools to architectures

based on clusters of personal processors. It is not necessary to use

big supercomputers, with very expensive hardware and speci�cally de-

signed software to obtain good result in the solution of complex linear

algebra problems.

Besides, we have obtained a considerable degree of scalability on a

cluster of personal computers connected with an external network with

excellent performance as the Myrinet. This result is very promising, as

it proves the possibility of increasing the area of application of parallel

algorithms to architectures based on standard components with low

cost and using standard software tools.

References

[1] E. Anderson, Z. Bay, and C. Bischof. LAPACK User's Guide.

SIAM, 1992.

[2] J.M. Badia and A.M. Vidal. Parallel solution of the inverse eigen-

problem for real symmetric toeplitz matrices. Tech. Report DI

01-04/99, Dpt. Informatica, Univ. Jaume I, 1999.

[3] L.S. Blackford, J. Choi, and A. Cleary. ScaLAPACK Users'

Guide. Software, Environment, Tools. SIAM, 1997.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.

Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A gigabit-per-second

Local Area Network. IEEE Micro, 15(1):29{36, February 1995.

[5] A. Cantoni and F. Butler. Eigenvalues and eigenvectors of sym-

metric centrosymmetric matrices. Lin. Alg. Appl, (13):275{288,

1976.

[6] Moody T. Chu. Inverse eigenvalue problems. SIAM Review,

40(1):1{39, March 1998.

16

[7] J. J. Dongarra and T. Dunigan. Message-passing performance

of various computers. Technical Report UT-CS-95-299, Dpt. of

Computer Science, Univ. of Tennessee, July 1995.

[8] Jack J. Dongarra, Hans W. Meuer, and Erich Strohmaier.

TOP500 supercomputer sites. Technical Report UT-CS-98-391,

Department of Computer Science, University of Tennessee, June

1998.

[9] Jack J. Dongarra and R. Clint Whaley. LAPACK working note 94:

A user's guide to the BLACS v1.0. Technical Report UT-CS-95-

281, Department of Computer Science, University of Tennessee,

March 1995.

[10] Shamuel Friedland. Inverse eigenvalue problems for symmetric

Toeplitz matrices. SIAM Journal on Matrix Analysis and Appli-

cations, 13(4):1142{1153, October 1992.

[11] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert

Manchek, and Vaidy Sunderam. PVM 3 Users Guide and Refer-

ence manual. Oak Ridge National Laboratory, Oak Ridge, Ten-

nessee 37831, May 94.

[12] G. Henry. ASCI red pentium pro BLAS 1.1N. Technical report,

www.cs.utk.edu/ ghenry/distrib, 1999.

[13] B. Kagstrom, P. Ling, and C. van Loan. GEEM-based level

3 BLAS: High-performance model implementations and perfor-

mance evaluation benchmark. Technical Report UT-CS-95-315,

Department of Computer Science, University of Tennessee, Octo-

ber 1995. Fri, 27 Aug 99 3:05:19 GMT.

[14] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction

to Parallel Computing. Design and Analysis of Algorithms. The

Benjamin/Cumming Pub. Company, Redwood, California, 1994.

[15] H.J. Landau. The inverse eigenvalue problem for real symmetric

toeplitz matrices. J. Amer. Math Soc., (7):749{767, 1994.

[16] Dirk P. Laurie. A numerical approach to the inverse Toeplitz

eigenproblem. SIAM Journal on Scienti�c and Statistical Com-

puting, 9(2):401{405, March 1988.

[17] Myricom. The GM message-passing system. Technical report,

Myricom Inc., 1998.

[18] VITA Standards Org. Myrinet-on-VME protocol speci�cation.

Draft Standard. Technical Report 26-199x Draft 1.1., VITA, 1998.

[19] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W.

Walker, and Jack Dongarra. MPI: the complete reference. MIT

Press, Cambridge, MA, USA, 1996.

[20] William F. Trench. Numerical solution of the inverse eigenvalue

problem for real symmetric Toeplitz matrices. SIAM Journal on

Scienti�c Computing, 18(6):1722{1736, November 1997.

[21] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Al-

gebra Package. MIT Press, Cambridge, MA, USA, 1997. With

contributions by Philip Alpatov and others.

17

