
Analysis and Measurement of the E�ect of

Kernel Locks in SMP Systems

Akihiro Kaieda and Yasuichi Nakayama

Department of Computer Science,

The University of Electro-Communications

Chofu, Tokyo 182-8585 Japan

Atsuhiro Tanaka, Takashi Horikawa,

Toshiyasu Kurasugi and Issei Kino

C&C Media Research Laboratories,

NEC Corporation

Kawasaki 216-8555 Japan

Abstract

This paper reports the use of case studies to evaluate the performance

degradation caused by the kernel-level lock. We de�ne the lock ratio as a

ratio of the execution time for critical sections to the total execution time

of a parallel program. The kernel-level lock ratio determines how e�ective

programs work on Symmetric MultiProcessor systems. We have measured

the lock ratios and the performance of three types of parallel programs on

SMP systems with Linux 2.0: matrix multiplication, parallel make, and

WWW server programs. Experimental results show that the higher the

lock ratio of parallel programs, the worse their performance becomes.

keywords: SMP Systems, Operating Systems, Parallel Programs, Per-

formance Evaluation, Kernel Lock

1



1 Introduction

SMP (Symmetric MultiProcessor) systems have recently become quite common

even in the PC market, and free UNIX-compatible operating systems (e.g.,

Linux and FreeBSD) supporting the e�ective use of multiple processors have

been developed. Some application programs (e.g., server daemons, thread li-

braries) which consist of several processes work e�ectively on SMP systems,

but their performance is sometimes degraded by the need to share resources in

the UNIX kernel. When one process uses shared resources, other processes are

excluded and serialized by the UNIX kernel.

Amdahl's law [1] and Gustafson's law [4] are usually used for estimating the

e�ciency of application programs. According to these laws the e�ectiveness of a

program on massively parallel systems is determined by execution time of serial

and parallel parts of that program. When there are several programs running on

a system, however, the laws are not able to estimate the performance of on an

individual program because kernel-level locks between the programs are beyond

their scope.

This paper shows, through case studies, that the performance of SMP system

varies with changes in the kernel-level lock ratio. We de�ne the lock ratio as the

ratio of the time for critical sections of a process to the total execution time.

Our goal in this study was to quantitatively evaluate the e�ects of di�erent lock

ratios on the performance of SMP systems.

In particular, one of the most widely used operating systems, Linux 2.0,

has only one type of kernel-level lock. In this case the entire kernel is locked

2



whenever any process is in a kernel (supervisor) mode. Thus, the lock ratio

on the Linux 2.0 is almost equivalent to the ratio of total execution time of

system calls to the total execution time. The performance of parallel programs

deteriorates when a lot of system calls are invoked.

We have measured the performance of three types of parallel programs |

matrix multiplication, parallel make, and WWW server programs | on two

types of SMP systems (with 1 to 4 CPUs) with Linux 2.0. These are typical par-

allel programs which have di�erent kernel-level lock ratios from one another. In

order to measure the lock ratios and the performance of these parallel programs

accurately, we have employed a hybrid event tracer consisting of a hardware

tracer and a software probe inserted into the kernel [5]. Experimental results

show that the higher the lock ratio, the worse the performance. In particular,

the performance of WWW server programs, which have considerably high lock

ratios, are worse on SMP systems than on uniprocessor systems.

The remainder of this paper is organized as follows. In Section 2 we de-

scribe some related work, and in Section 3 we de�ne the lock ratio and discuss

performance degradation caused by the lock ratio. In Section 4 we show the

lock ratios and the performance instrumentations of three applications. And in

Section 5 we conclude by summarizing the paper very briey and mentioning

some future work.

3



2 Related Work

Amdahl's law [1] has been widely used for evaluating the speedup e�ect of

parallel numerical computations (e.g., matrix multiplication, LU-decomposition,

CG-kernel, FFT). This e�ect is determined by the amounts of time spent on the

serial and parallel sections of a target application program. Amdahl assumed

that the size of a target problem was constant, but Gustafson pointed out that

a size of a target problem will increase as the number of available CPU increases

[4].

Sun and Rover [10] were the �rst to formally de�ne scalability, and they

studied the relation between their scalability and other measures of parallel

performance.

The studies mentioned above, however considered only the behavior of ap-

plication programs. Serialization caused by kernel-level lock was not considered.

Chen et al. [3] and Lai et al. [7] studied the comparison of the performance

of personal computer operating systems (e.g., Linux, FreeBSD, NetBSD, So-

laris, Windows). They measured system call latency, context switch latency,

memory bandwidth, �le system performance, network bandwidth, and applica-

tions performance. But all the systems they used were for uniprocessor personal

computers, so the performance of SMP systems have not yet been carefully ex-

amined.

Kurasugi et al. developed a performance model for SMP systems by using

queueing network models, and they reported the performance predicted for SMP

systems showed good agreement with simulation results. Their performance

4



model is one of the two-layer queueing network models [6].

In the work reported in this paper, we measured the lock ratios and the

performance of parallel programs running on a SMP system. Our results show

that the degradation of the performance of parallel programs increases with the

kernel-lock ratio.

3 Performance Degradation Caused by the Kernel-

Level Lock

Operating systems for SMP systems manage shared resources in the kernel as

exclusive parts. This is because the kernel maintains the consistency of shared

resources when processes try to access them simultaneously. These exclusive

parts are called critical sections.

When a process tries to hold the shared resource, it behaves as follows.

1. It transits from the user mode to the kernel mode by invoking a system

call.

2. It acquires kernel-level locks for using shared resources, and it holds them.

3. It enters the critical section and continues its execution.

4. It releases the locks and transits to the user mode.

When many processes try to enter a critical section simultaneously, only one

process is able to enter it; the others are excluded and serialized by the ker-

nel. Thus, the performance of parallel programs composed of several processes

5



Time sequence invoke system call

hold lock release lock

hold lock

process A

process B

user mode kernel mode
(holding lock)

user mode

user mode

invoke system call

kernel mode
waiting until lock

is released

Figure 1: The kernel-level lock on Linux 2.0

sometimes deteriorates if those processes often try to use shared resources at

the same time.

For this reason, it is important that this conict at the critical sections be

analyzed. In the UNIX operating systems this conict is caused by the lock

operations in the kernel that manage the critical section. Thus we need to

analyze how kernel lock occurs in UNIX.

To quantitatively evaluate the e�ects of di�erent lock ratios on the perfor-

mance of application programs running on SMP systems, we de�ned the lock

ratio for a process as a ratio of the execution time in critical sections to the

total execution time.

The lock ratios for parallel programs can be measured on uniprocessor sys-

tems before execution on SMP systems because the execution time in the critical

section on SMP systems is almost equivalent to that on the uniprocessor sys-

tems. Then we can measure lock ratios for parallel programs on uniprocessor

systems.

In Linux 2.0, for example, the kernel has only one type of kernel-level lock.

6



When any process is in a kernel mode because it invoked a system call, the

entire kernel is locked and the other processes have to wait for the process to

release the lock even if they are invoking di�erent system calls (Fig. 1). The

lock ratio on the Linux 2.0 kernel is therefore almost equivalent to the ratio of

the execution time of system calls to the total execution time. The more system

calls invoked, the worse the performance of parallel programs on Linux 2.0.

Library functions may invoke system calls even when the programmer does

not explicitly use system calls. In Linuxthreads [8], for example, most of the

thread primitives invoke system calls.

The kernel-level lock operations on Linux 2.0 are implemented using spinlock.

The waiting ratio for a process is de�ned as the ratio of waiting time until the

lock is released by other process. We predict that the higher the lock ratio of

parallel programs have, the higher the waiting ratio they become. Thus their

performance becomes worse.

We predict that some parallel programs (e.g., matrix multiplication) will

have lock ratios low enough that the programs will run better on SMP systems.

These will be programs executed mostly in the user mode. The parallel pro-

grams which have the intermediate lock ratios (e.g., parallel make) may invoke

a few system calls, and their performance may therefore be worse than that

of programs invoking no system calls. The parallel programs which have ex-

cessively high lock ratios (e.g., WWW server programs) cannot take advantage

of parallel processing on SMP systems. The processes in these programs must

frequently invoke system calls resulting in their holding shared resources.

7



4 Case Studies

We measured the lock ratios and performances of three types of parallel pro-

grams, and in this section we show the causal relations between lock ratios and

speedup.

4.1 Measured System

In our experiment, we used two types of SMP PC systems. One was composed of

two CPUs (180MHz Intel PentiumPro processors), 256KB second-level caches,

and 128MB of main memory, the other was composed of four CPUs (500MHz

Intel PentiumIII Xeon processors), 512KB second-level caches and 256MB of

main memory.

The operating system was Linux 2.0.36. Because in Linux 2.0, the lock ratios

are equivalent to the ratios of the execution time of the system calls to total

execution time, we could measure lock ratios easily. In addition, we could easily

insert the codes for the measurement because Linux 2.0 is free implementations

of UNIX.

4.2 A Measurement Method for SMP System Behavior

The lock ratios are measured by analyzing the behavior of operating systems.

We observe the behavior of operating systems by the events of processes (e.g.,

invoking system call, process scheduling). The events of processes are detected

by the codes inserted in the kernel sources.

Some measurements for the event of process on SMP systems are required

8



as follows.

1. The time of events on each processor is managed by the same time se-

quence.

2. The overhead created by the measurement is small.

The measurements by a software alone tool such as system call (e.g., gettimeofday)

is used in general. These measurements must accomplish detecting, collecting,

recording, and sometimes analyzing events. Therefore, those overheads are very

large.

Other measurements are by a hardware counter in the processor (e.g., Pen-

tium TSC operation). This resolution is high because of the clock cycle counter

and this overhead is small because of a few assembly operations. However, the

counter value in each processor is di�erent on SMP systems because boot time

of each processor is di�erent. Therefore, this measurement is not suitable on

SMP systems.

In our experiments we measured the lock ratios by using a hybrid event

tracer consisting of a hardware tracer and a software probe inserted into the

kernel [5].

The hybrid event tracer records an event data as follows

1. A software probe detects events.

2. It then output event ID and related information to the interface board.

These data are sent to the hardware tracer.

9



3. The hardware tracer produces an event record according to data it receives

from the interface board and the hardware time counter.

4. The hardware tracer writes the data directly to a hard disk, and this trace

data becomes a record of the event sequence.

A hybrid event tracer is suitable for use on SMP systems because the time

sequence of events in each processor is managed by the timer in the hardware

tracer.

Soft Probe overhead is about 250 nanoseconds on 500MHz PentiumIII Xeon

PC.

4.3 Experimental Results

In this section we describe and discuss the speedup measured for three types

of parallel programs: matrix multiplication, parallel make, and WWW server

programs.

The speedup is given by

Speedup =
execution time on the uniprocessor system

execution time on the SMP system

We used the uniprocessor kernel and the SMP kernel, on the uniprocessor sys-

tems and on the SMP systems respectively. We compared performance on the

SMP systems with 1 to 4 CPUs. We referred to the experimental results on the

SMP system with 1 CPU (used SMP kernel) as \1 CPU SMP".

10



Table 1: Experimental results on the SMP system with 2 CPUs (matrix multi-

plication program ).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 415 1.00 less than 0.1 {

1 CPU SMP 418 0.99 { {

2 CPU 213 1.95 { less than 0.1

4.3.1 Matrix Multiplication

We implemented a program, that multiplies one 1000�1000 matrix by another.

The matrix multiplication is divided into several multiplications of partial ma-

trices. These multiplications of partial matrices are executed in parallel and

independently by each process on SMP systems. This matrix multiplication

program can be executed on main memory.

The matrix for the results was allocated on the shared memory region, which

was not excluded because the results of partial matrix multiplications were

independent.

The experimental results for this matrix multiplication program are listed

in Table 1 and 2, where it can be seen that the lock ratio was less than 0.1%.

This is because the processes in this program rarely invoke system calls during

multiplication. This program therefore performs very well on SMP systems.

11



Table 2: Experimental results on the SMP system with 4 CPUs (matrix multi-

plication program ).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 100 254 less than 0.1 {

1 CPU SMP 257 0.99 { {

2 CPU 127 1.99 { less than 0.1

3 CPU 87 2.93 { less than 0.1

4 CPU 64 3.96 { less than 0.1

4.3.2 Parallel Make

We have measured GNU make 3.77. Make is a program designed to simplify the

maintenance of other programs. Because \make -j max jobs" runs on parallel

the number of jobs that was appointed by \max jobs" at any one time on SMP

systems, \make -j" is called the parallel make.

In our experiment, we built Linux 2.2.14. We appointed \max jobs" with 2

and 4, on the SMP systems with 2 CPUs and 4 CPUs respectively.

Table 3 and 4 show these results. make forks several commands. The lock

ratio for make is determined by the lock ratios these commands have. Table

5 shows several typical commands, their execution time ratios and lock ratios.

The execution time ratio is de�ned as a ratio of the execution time of each

command to the total execution time.

The greater part of execution time is spent by cc1. It takes charge of lexical

12



Table 3: Experimental results on the SMP system with 2 CPUs (parallel make

program).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 600 1.00 5.31 {

1 CPU SMP 636 0.94 { { 0

2 CPU 331 1.81 { 1.52

analysis, syntax analysis, intermediate language generator and optimization.

The greater part of these processing is executed on memory. Thus, cc1 invokes

few system calls, and its lock ratio is 1.97% on SMP system with 2 CPUs. In

contrast with cc1, the lock ratio for cpp is 14.8% because a lot of execution time

is spent reading sources �les (by read system call) and expanding the macro.

The average of lock ratio for make is 5.31% and 4.09% on SMP system with

2 CPUs and 4 CPUs respectively.

4.3.3 WWW server

We have also measured the performance of the Apache 1.3.9 WWW server [2],

which has come into widespread use all over the world. The Netcraft Web Server

Survey [9] reports that over 50% of all public Internet websites use Apache

WWW Servers.

This server creates several child processes for handling requests from clients.

It would run better on SMP systems if the requests were handled by these child

13



Table 4: Experimental results on the SMP system with 4 CPUs (parallel make

program).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 217 1.00 4.09 {

1 CPU SMP 223 0.97 { {

2 CPU 115 1.90 { 1.27

3 CPU 80 2.73 { 2.41

4 CPU 62 3.48 { 3.46

Table 5: The lock ratio for typical commands of which compose make (on SMP

systems with 2 CPUs).

commands (number of called) execution time ratio (%) lock ratio (%) waiting ratio (%)

make(74) 4.97 11.8 2.24

ld(29) 0.39 32.3 4.03

gcc(298) 0.96 33.9 4.12

cc1(289) 74.8 1.97 1.00

cpp(297) 14.1 14.8 3.15

ar(13) 0.09 47.4 6.47

14



0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Throughput (requests/sec)

requests

15KB 2 CPU

15KB 1 CPU

150KB 2 CPU

150KB 1 CPU

Figure 2: Throughput for the Apache 1.3.9 on the SMP system with 2 CPUs.

processes in parallel.

A client program on another PC (Celeron 450MHz) connected by a 100Mbit

Ethernet simulates parallel connections and send many requests simultaneously

to the server. The �le size requested by clients is either 15KB or 150KB.

The throughput for a WWW server program is given by

Throughput(requests=sec) =
requests

response time+ clients processing time

The clients processing time is regarded as 0 because these clients don't use the

data sent from the server.

At �rst, we show experimental results on SMP system with 2 CPUs. Ex-

perimental results show that the performance of the server on the SMP systems

become worse than that of the uniprocessor system (Fig. 2). Note that SMP

kernel includes overhead of SMP processing.

Thus, we have measured the lock ratio for WWW server and its speedup on

15



Table 6: Experimental results on the SMP system with 2 CPUs (WWW server,

64 requests, �le size 15KB).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 0.25 1.00 49.0 {

1 CPU SMP 0.26 0.96 { {

2 CPU 0.27 0.93 { 24.3

Table 7: Experimental results on the SMP system with 2 CPUs (WWW server,

64 requests, �le size 150KB).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 1.16 1.00 63.6 {

1 CPU SMP 1.21 0.96 { {

2 CPU 1.21 0.96 { 35.9

16



the SMP system for 64 requests (Table 6, 7). We show that WWW server had a

higher lock ratio (63.6%) when the client requested 150KB �les. This is because

that WWW server invokes system calls frequently since it reads (by read system

call or mmap system call) requested �les and sends (by writev system call) them

through the network.

WWW server has too high waiting ratio (63.6%) caused by too high lock

ratio (35.9%) with 150KB �le. To have high lock ratio is evidently one of the

reasons of the performance degradation of WWW server because the idle ratio

is low with 150KB �le.

In next, we show experimental results on the SMP system with 4 CPUs (Fig.

3, Table 8 and 9). This program did not perform well on the SMP system with 4

CPUs, e.g., the maximum speedup was 1.04. However, each CPU often became

idle because CPUs (500MHz PentiumIII Xeon processors) were faster than the

network interface. In case of the WWW server on 4 CPUs, the result may not

be expressed in our model.

4.4 Discussion

Our experimental results (Table 10) show the following.

1. The parallel programs which have the lower lock ratios, such as the matrix

multiplication programs, get note of an e�ect from parallel processing.

2. The parallel programs which have higher lock ratio than above, such as

parallel make, degrades its performance than above.

17



0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

Throughput(requests/sec)

requests

15KB 4 CPU

15KB 1 CPU

150KB 4 CPU

150KB 2 CPU

150KB 1 CPU

15KB 2 CPU

Figure 3: Throughput for the Apache 1.3.9 on the SMP system with 4 CPUs.

Table 8: Experimental results on the SMP system with 4 CPUs (WWW server,

64 requests, �le size 15KB).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 0.23 1.00 48.0 {

1 CPU SMP 0.23 1.00 { {

2 CPU 0.25 0.92 { 7.86

3 CPU 0.25 0.92 { 7.10

4 CPU 0.22 1.04 { 35.2

18



Table 9: Experimental results on the SMP system with 4 CPUs (WWW server,

64 requests, �le size 150KB).

number of CPUs execution time (sec) speedup lock ratio (%) waiting ratio (%)

1 CPU 1.00 1.00 62.8 {

1 CPU SMP 1.03 0.97 { {

2 CPU 1.07 0.93 { 7.27

3 CPU 1.06 0.94 { 4.86

4 CPU 1.03 0.97 { 20.7

3. The performance of parallel programs which have high lock ratios (e.g.,

WWW server programs) actually deteriorates when they are run on SMP

systems. These programs therefore get no advantage from parallel process-

ing on SMP systems because the processes constituting those programs are

excluded and serialized by the kernel.

The speedup for a WWW server is less than 1 when its lock ratio is more

than 49.0%.

The degradation of the performance of parallel programs increases with the

kernel-level lock ratio. It is therefore important to analyze the lock ratios.

19



Table 10: The causal relation between speedup and the lock ratio.

SMP systems matrix multiplication parallel make WWW server

2 CPUs lock ratio (%) less than 0.1 5.91 63.6

speedup 1.95 1.81 0.96

4 CPUs lock ratio (%) less than 0.1 4.08 62.8

speedup 3.96 3.48 0.97

5 Conclusions

In this paper we have reported our use of case studies to evaluate the perfor-

mance degradation caused by the kernel-level lock. We have de�ned the lock

ratio as the ratio of the execution time for critical sections of a process to the

total execution time. We have explained the causal relation between the perfor-

mance of parallel programs on the SMP systems and their lock ratio as measured

in experiments on Linux 2.0. We have measured lock ratios for and the perfor-

mance of three types of parallel programs on two types of SMP systems (with 1

to 4 CPUs). As a result, we have shown the parallel program which have lower

lock ratios perform better when executed in parallel and that the performance

of parallel program which has higher lock ratios is worse on SMP systems than

on uniprocessor systems. The analysis of kernel-level lock is therefore very im-

portant because this lock is one of the reasons for the performance degradation

on SMP systems.

We think future work should include the following.

20



1. Measurements on the operating systems which have the �ne grain of lock

operations.

2. Measurements on a system that has extended I/O subsystems (e.g., the

RAID controller).

3. Comparison of the results in this paper and the performance prediction

model.

References

[1] G. Amdahl, \Validity of the Single-processor Approach to Achieving Large

Scale Computing Capabilities", Proc. AFIPS Conference, pp. 483-485, Apr.

1967.

[2] Apache Software Foundation, http://www.apache.org/, June 1999.

[3] J.B. Chen, Y. Endo, K. Chen, D. Mazi�eres, A. Dias, M. Seltzer and M.D.

Smith, \The Measured Performance of Personal Computer Operating Sys-

tems", ACM Trans. on Computer Systems, vol. 14, no. 1, pp. 3-40, Feb.

1996.

[4] J. Gustafson, \Reevaluating Amdahl's Law", CACM, vol. 31, no. 5, pp.

532-533, May 1988.

[5] T. Horikawa, \TinyTOPAZ: A Hybrid Event Tracer for Unix Servers",

Proc. of the 1999 Symposium on Performance Evaluation of Computer and

Telecommunication Systems, pp. 203-210, July 1999.

21



[6] T. Kurasugi and I. Kino, \Approximation Methods for Two-layer Queueing

Networks", Performance Evaluation, vol. 36-37, pp. 55-70, Aug 1999.

[7] K. Lai and M. Baker, \A Performance Comparison of UNIX Operating

Systems on the Pentium", Proc. of the USENIX 1996 Technical Conference,

pp. 265-278, Jan. 1996.

[8] X. Leroy, \Linuxthreads - POSIX 1003.1c kernel threads for Linux",

http://pauillac.inria.fr/~xleroy/linuxthreads, 1996.

[9] Netcraft, \The Netcraft Web Server Survey", http://www.netcraft.com/

survey/, Aug. 1999.

[10] X.-H. Sun and D.T. Rover, \Scalability of Parallel Algorithm-Machine

Combinations", IEEE Trans. on Parallel and Distributed Systems, vol. 5,

no. 6, pp. 599-613, June 1994.

22


