
Interceptors for Java Remote Method Invocation�

Nitya Narasimhan, L. E. Moser and P. M. Melliar-Smith

Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106

Abstract

Interceptors are software mechanisms that are inserted into an application at runtime, and can

subsequently provide hooks to introduce new services to the application in a transparent manner.

We have developed three distinct interceptors that are targeted at Java Remote Method Invocation.

Our interceptors are novel in that they are developed independent of the application, and are easy

to deploy, requiring little or no modi�cation to the application. We exploit interception in the

Aroma System that we have developed, to install mechanisms for the consistent replication of Java

objects at runtime. These replication mechanisms can be exploited to provide fault tolerance and

high availability to a distributed application, in a transparent manner.

1 Introduction

The Distributed Java Object Model [12] provides support for object serialization, distributed garbage

collection, dynamic classloading and remote method invocation mechanisms to ease the development

of distributed Java applications. However, the model lacks the support required to ensure that these

applications operate in a reliable and highly-available manner. As a result, if continuous, fault-tolerant

operation is desired, the developer must develop and integrate the necessary fault tolerance mechanisms

into the application.

This approach has several disadvantages. Most application developers do not possess the skills

or the expert knowledge to implement complex fault tolerance mechanisms correctly. Furthermore,

developing these mechanisms, and integrating them into every application that requires them, is a

diÆcult and ineÆcient process. The ideal solution is to have fault tolerance experts develop the

necessary mechanisms and to make them available to the distributed application in a transparent

manner.

An interceptor is a software device that can be introduced at runtime into the communication

path of a distributed application, and can subsequently be exploited to analyze, modify, or reroute,

the intercepted communication. Such interceptors can be used to facilitate replication by routing

the intercepted messages to replication middleware. The middleware can subsequently route the

message to one or more replicas of the intended destination, and can implement the infrastructure

and mechanisms required to ensure replica consistency. Thus, by taking advantage of interception,

replication mechanisms can be deployed at runtime, and can be exploited by distributed applications

for reliable, highly-available operation.

In this paper, we describe the design and implementation of three distinct interception mechanisms

for Java Remote Method Invocation (Java RMI)[11], and the advantages and disadvantages of each

�This research has been supported by AFOSR MURI under Contract F49620-00-1-0330.

1

Proxy Layer
(Skeleton)

Proxy Layer
(Stub)

Client Server

JVM

TCP Connection

JVM

Remote Reference
Layer

Remote Reference
Layer

Transport
Layer

Invocation

InvocationResponse

Response

Physical Network

Transport
Layer

Operating
System

Operating
System

Figure 1: The JRMI Architecture.

of these mechanisms. Preliminary performance measurements are provided to evaluate the overhead

associated with each approach. We also discuss the design of the Aroma System, where the interception

mechanism is used to enhance Java RMI with mechanisms for the consistent replication of Java RMI

objects.

2 The Java RMI Architecture

The interception mechanisms that we have developed are targeted at the Java RMI model, with the

deployment of the interceptor being dependent on functionality that is speci�c to this model. Figure

1 shows an overview of the Java RMI model, illustrating its three-tier protocol stack.

A Java RMI server object must implement at least one java.rmi.Remote interface to identify

its ability to service remote method invocations. The set of Remote interfaces implemented by the

server de�nes the list of methods that can be invoked on it by a remote client. The server reference {

consisting of a TCP/IP endpoint, and an object identi�er unique to that host { helps to identify the

server uniquely within the distributed system. Every Java RMI server is also associated with a stub

that implements the same set of Remote interfaces, and contains a copy of the server reference.

A client wishing to invoke methods on this server must retrieve a copy of the server stub, and

install the stub on its local JVM. A rmiregistry process facilitates this bootstrapping by maintaining

a transient database of stringi�ed server names that map to the corresponding server stubs. An active

server can bind its stub to a well-known name in the registry. Subsequently, a client equipped with

this name can lookup the registry to retrieve the stub. Once bootstrapping is completed, the registry

plays no further role in the client-server communication.

A JRMI operation is initiated by a client making an invocation on the installed server stub; the

stub uses the server reference to establish a TCP/IP connection to the server, and forwards the

2

request parameters. The request is delivered to the server-side skeleton, which acts as a client proxy,

invoking the request locally on the server, retrieving the response, and returning this response to the

stub. Subsequently, the stub uploads the result to the client. Thus, the interaction between stub and

skeleton masks all remote communication from the application.

The Java2 Standard Edition (J2SE) supports two implementations of the JRMI architecture,

namely, RMI-JRMP and RMI-IIOP. The RMI-JRMP implementation uses the Java Remote Method

Protocol (JRMP) [11], an indigenous TCP/IP-based protocol with simple semantics. JRMP exploits

Java-speci�c mechanisms and, thus, can be used only for pure Java client-server applications. The

RMI-IIOP model adopts the Internet Inter-ORB Protocol (IIOP), native to the CORBA [9] standard,

as its underlying transport protocol. By exploiting IIOP, RMI-IIOP facilitates communication between

modi�ed RMI-JRMP objects and CORBA objects implemented in languages such as C++. In this

paper, all interception mechanisms are designed for the RMI-JRMP model, unless speci�ed otherwise.

3 Interception

An interceptor is a software device that can be deployed at runtime, and subsequently exploited to

introduce new functionality to an executing application. In the Aroma System described in Section 7.2,

we exploit interceptors to enhance the Java RMI model with the support required for transparent

replication of Java RMI objects. For this purpose, the basic function of the interceptor is to capture

the parameters of a Java RMI invocation. By embedding custom code within the interceptor, we can

subsequently analyze, modify or enhance the request; alternatively, we can reroute the invocation to

one or more replicas of the intended destination. Based on the functionality of this custom code, we

can operate an interceptor in one of three modes:

� Read-only mode for analyzing intercepted messages

� Enhancement mode for augmenting the content of the intercepted messages

� Transformation mode for modifying the existing content of the intercepted messages.

By selecting the mode of operation, we can exploit the interceptor for di�erent purposes. For

instance, read-only interceptors can log invocations, enhancement interceptors can append contextual

information to the message, and transformation interceptors can execute encryption algorithms to

enforce privacy.

Read-only interceptors do not modify default application behavior. However, enhancement and

transformation interceptors have the potential to introduce behavior that is visible to the application,

usually an undesirable consequence. Thus, we enforce a simple rule in using interceptors; for every en-

hancement or transformation interceptor in the system, there must exist a complementary interceptor

that reverses the enhancement or modi�cation, respectively.

3.1 Interception Points in the Java RMI model

An interception point identi�es locations along the Java RMI communication path at which an

interceptor can be successfully deployed; the interception point also decides the content and signi�cance

of the intercepted data. Typically, the interception point can occur within one of the three layers of

the Java RMI protocol stack, namely the proxy layer, the remote reference layer and the transport

layer. Because all Java RMI objects communicate over TCP/IP, additional interception points can

also be identi�ed at the Java networking infrastructure, allowing Java RMI messages to be intercepted

at a much lower level in the communication path.

3

JVM JVM

Network Network

Standard Java API
java.net.*
packages

sun.net.*
packages

libnet.soJava Native Interface
Libraries

OS-dependent
JVM Libraries

OS-independent
JVM Libraries

Host
Programming

Interface

Application Application

TCP/IP message
path from

application to
physical socket

The Java
Programming Stack

The Java Network
Programming Stack

Operating System Solaris 2.6

Java Implementation

JVM Socket
Libraries

Figure 2: The java.net support infrastructure.

Figure 2 shows the implementation hierarchy for a standard Java API, and identi�es the speci�c

implementation levels that correspond to the standard Java networking API. An interceptor at the

networking layer could be located at one of the following levels:

� The java.net level. This level contains networking classes implemented in Java, that use stan-

dard APIs. Interceptors at this level are born portable.

� The sun.net level. This level contains networking classes implemented in Java, and uses hidden,

non-standard APIs. Interception points that exploit features at this level cannot be guaranteed

the same support in subsequent releases of the JDK.

� The libnet level. This level contains the Java Native Interface (JNI) code that provides the

glue between the Java classes and the underlying native libraries. Interceptors at this level will

have standard interfaces to exploit, but will need to deal with portability issues.

� The JVM Socket Libraries level. This level contains native libraries implemented at the JVM

level. These libraries contain code that is either independent of the operating system, or that

maps onto operating system-speci�c functionality.

The existence of an interception point at any level is decided by three factors. First, the availability

of some \hook" at that level, that can be exploited to introduce the interception code at runtime.

Second, the performance penalty incurred by introducing interception code at that level, and �nally,

the portability of the interceptor mechanism. Based on the �rst of these factors, we have identi�ed

three possible approaches to developing an interceptor for the Java RMI model. The second and third

factors allow us to compare the di�erent approaches for building interceptors, and, consequently, to

select the approach that is most appropriate to the application at hand.

The three approaches to building interceptors are based on speci�c interception \hooks", namely,

the Dynamic Proxy, the RMISocketFactory and library mediation. The Dynamic Proxy approach

4

Interfaces[]
list of interfaces supported by the proxy

and implemented by the server

CLIENT

INVOCATION HANDLER

DYNAMIC
PROXY

SERVER
OBJECTHandler

Ref

Impl
Ref

1.

Client makes method

invocation on one of

the supported interfaces

2.

Proxy encodes invocation

producing Method and

Object[]

m

args

3.

Proxy dispatches and

to InvocationHandler

m

args

4.

InvocationHandler makes

the invocation on the object

that implements that interface

.invoke(implref,)m args

Figure 3: The Dynamic Proxy mechanism.

places the interception point at the proxy layer of the Java RMI protocol stack, the RMISocketFac-

tory approach achieves interception at the java.net level of the networking stack, and the Library

Mediation approach performs interception at the JNI level of the networking library, as represented

by the libnet library.

4 The Dynamic Proxy Approach

The concept of dynamic proxies was introduced in release 1.3 of the Java2 Standard Edition, and

exploits the reection mechanism supported by Java. A Dynamic Proxy class is by de�nition \a class

that implements a list of interfaces speci�ed at runtime such that a method invocation through one of

the interfaces on an instance of the class will be encoded and dispatched to another object through a

uniform interface". This mechanism can be used to create, at runtime rather that at compile-time, a

proxy for any object that implements the speci�ed list of interfaces.

The Dynamic Proxy class is associated with an InvocationHandler object that implements a

single invoke method, as shown in Figure 3. When a method invocation occurs on an instance of the

Dynamic Proxy class, the parameters of the invocation { namely the method and the arguments { are

encoded, using reection, into a java.lang.reflect.Method object (that identi�es the method), and

an array of objects containing the values of the arguments. The Dynamic Proxy instance dispatches

these encoded parameters of the invocation to the InvocationHandler; the value returned by the

InvocationHandler is subsequently returned as the result of the invocation.

The InvocationHandler is an interface de�ning a single invokemethod that takes, as parameters,

a proxy instance, a Method object and an array of arguments. This interface must be implemented

by any \delegate" class that wishes to register itself as the invocation handler for a Dynamic Proxy

instance. This delegate class can either provide a concrete implementation of the list of interfaces

de�ned for the Dynamic Proxy, or can, in turn, delegate the invocation to one or more objects that

provide concrete implementations of that method.

5

SMART
REGISTRY

(INVOCATION HANDLER)

JRMI
SERVER
OBJECT

InterceptorStub

JRMI
CLIENT
OBJECT

Name Server Stub

Ibind (MyName,
MyStub)

Ilookup (serverName)

Dynamic
Proxy

returned

MyName

MyStub

DYNAMIC
PROXY

MyStub

Iinvoke(Method m,
Object[] args,
Proxy p)

M.invoke(MyStub, args)

Custom
code

Figure 4: The Dynamic Proxy approach to interception.

4.1 Design

This functionality of the InvocationHandler allows it to separate the invocation interface from the

implementation of the method that executes the invocation; this is the \hook" that we exploit for

interception. Any custom code inserted at the InvocationHandler level can be used to analyze or

modify the invocation parameters, or to reroute the invocation to one of many distinct objects that

provide a concrete implementation of the invoked method. Therefore, by generating a Dynamic Proxy

for a Java RMI server, and creating a custom InvocationHandler, we can intercept all invocations

destined for that server.

In this case, the set of interfaces implemented by the Dynamic Proxy must correspond to the

set of Remote interfaces implemented by the Java RMI server. Further, the InvocationHandler

implementation must contain a reference to the server object, to facilitate the invocation of methods on

that object. Because we are dealing with remote objects, the server reference in this case corresponds

to the Java RMI server reference, and consists of a TCP/IP endpoint and an object identi�er. With

the existing Java RMI APIs, there are no methods to obtain this server reference directly; however,

we can obtain a copy of the server stub (which holds a copy of this reference), and make invocations

on the stub rather than directly on the server.

4.2 Implementation

Our simple interceptor mechanism consists of a Dynamic Proxy generated for the Java RMI server stub

as illustrated in Figure 4. If, in a future release of the Java2 Standard Edition, standard API methods

can be exploited to retrieve a copy of the server reference directly, then the interceptor mechanism

will consist of a dynamic proxy generated directly for the Java RMI server object

The InterceptorStub implements the InvocationHandler interface, and maintains a handle to the

stub for the server object. The dynamic proxy is created for the list of java.rmi.Remote interfaces

supported by the stub, and, as a result, by the server. An invocation made on the Dynamic Proxy is

encoded into the corresponding Method and arguments format, and dispatched to the InterceptorStub.

Custom code can be inserted at this point to process the invocation parameters before actually invoking

the method on the server stub. In the simple example shown, the custom code logs the invocation

parameters before delegating the invocation.

6

To deploy this interceptor, we need to ensure that the client uses the Dynamic Proxy in place of

the standard server stub. Further, to maintain transparency to the application, we need to achieve

this without modifying application code. Our solution is to use a custom SmartRegistry instead of the

standard rmiregistry, as illustrated in Figure 4. The SmartRegistry maintains a transient database that

maps server names onto a Dynamic Proxy for that server, rather than onto the server stub. When the

server invokes the bind method on the SmartRegistry, it passes as parameters, its standard stub and

a stringi�ed server name. The SmartRegistry subsequently creates an InterceptorStub instance using

the standard stub, and creates a Dynamic Proxy instance with this InterceptorStub as the invocation

handler. This Dynamic Proxy is bound against the stringi�ed server name in the SmartRegistry, in

place of the standard server stub. A client that looks up the registry by server name will retrieve, and

install, a copy of this Dynamic Proxy by default. Subsequently, all invocations made by the client are

dispatched through the proxy, and can thus be intercepted by our mechanisms.

5 The RMISocketFactory Approach

An alternative approach to interception exploits the RMISocketFactory mechanism, and places the

the interception point within the transport layer of the Java RMI protocol stack. The abstract

java.rmi.server.RMISocketFactory class de�nes methods to create TCP/IP client and server sock-

ets for the RMI-JRMP runtime. A standard implementation of this interface, which we refer to as the

master socket factory, is installed as the default socket factory at runtime. The master socket factory

creates instances of java.net.Socket and java.net.ServerSocket, in response to createSocket()

and createServerSocket() requests, respectively, from the RMI-JRMP runtime. The default set-up

is illustrated in Figure 5(a).

The java.net.Socket object implements the Java interface to the physical socket; it has an as-

sociated InputStream object and an OutputStream object that facilitate read and write operations,

respectively, on the socket, as shown in Figure 5(b). An application can provide an alternative imple-

mentation of the RMISocketFactory interface and install this version as the JVM-wide socket factory

for the RMI-JRMP model, supplanting the default master socket factory. Our Interceptor comprises

the following classes.

� An InterceptorSocketFactory that implements

java.rmi.server.RMISocketFactory

� An InterceptorSocket that extends

java.net.Socket

� An InterceptorServerSocket that extends

java.net.ServerSocket

� An InterceptorOutputStream that extends

java.io.InputStream

� An InterceptorInputStream that extends

java.io.OutputStream

At runtime, the InterceptorSocketFactory instance caches a handle to the existing default master

socket factory, and installs itself as the new default socket factory. The InterceptorSocketFactory re-

turns instances of InterceptorSocket and InterceptorServerSocket, in response to createSocket() and

createServerSocket() requests, respectively. The latter classes constitute adapters [3] that internally

7

(a)

(c) (d)

(b)

Default
SocketFactory

Default
SocketFactory

MSF A

A

A

A

MSF

ISF

MasterSocketFactory (MSF) installed as default The java.net.Socket model

The InterceptorSocket modelInterceptorSocketFactory (ISF) installed as default

[1]

[1]

[2]

[3]

[4]

[2]

[2] java.net.Socket returned

[2] createSocket delegated

[1] createSocket() invoked

[1] createSocket() invoked

[4] InterceptorSocket returned
[3] java.net.Socket returned

The Physical
Socket

NETWORK

The Physical
Socket

NETWORK

read()

read()

read()

write()

write()

write()

java.io.
InputStream

java.io.
InputStream

Interceptor
InputStream

Interceptor
OutputStream

java.io.
OutputStream

java.io.
OutputStream

S
read() write()

IS OS

InSIS OS

SIS OS

Figure 5: The RMISocketFactory approach.

invoke the appropriate create() method on the cached socket factory to obtain a standard Socket

object to which they delegate calls at runtime. Figure 5(c) illustrates the interceptor con�guration

and behavior. The Interceptor socket classes contain InterceptorInputStream and InterceptorOutput-

Stream objects to facilitate read and write operations, respectively, on Interceptor sockets. These

interceptor stream objects are built over the corresponding streams associated with the underlying

Socket instance, as shown in Figure 5(d).

The InterceptorInputStream and InterceptorOutputStream objects are conduits between the appli-

cation and the streams associated with the underlying physical socket. Because all TCP/IP messages

generated by the application must pass through these objects, we can place custom code within them

to implement our Interceptor. The socket factory is inherently portable, being implemented completely

in Java. However, this mechanism is more suitable for RMI-JRMP applications than for RMI-IIOP ob-

jects. Further, the introduction of the interceptor is not achieved in a transparent manner. Interceptor

activation requires the addition of a single setSocketFactory() call within the application's main()

method, at the point where the Java Virtual Machine is being initialized. However, the interception

mechanisms themselves are invisible to the application.

8

java.net.*A

JVM Library Loader

Operating
System

LoadLibrary

(” ”)libnet Sun.boot.library.path =

“my_libnet_path:std_libnet_path”

Custom library

libnet
Custom library
wraps routines
provided by the
standard version

JVM Libraries
libjvm, libjava, etc.

Java Native
Interface

libnet

Standard

P
la

in
S
o
cketIm

p
l

ro
u
tin

es

SocketInputStream
routines

SocketOutputStream
routines

Figure 6: The Library Mediation Approach.

6 The Library Mediation Approach

The socket factory approach described in Section 5 introduced the interceptor at the Java API level

using standard Java mechanisms. Our second approach introduces the interceptor at a lower level in

the implementation hierarchy; in this case, however, the interceptor is activated in a manner that is

completely transparent to the application.

We exploit the fact that the JVM uses the services of the Java library loader to load the native

libraries requested by a Java application, at runtime. The loader searches for libraries in locations

speci�ed by the sun.boot.library.path property; the �rst library encountered that matches the

request is loaded into the Java runtime. Therefore, by implementing a custom version of the native

library, and pre-pending its location to sun.boot.library.path, we \trick" the loader into �nding our

custom version ahead of the standard native library. We refer to this approach as library mediation.

The Java networking model employs two sets of native libraries, one at the JNI level, and the other

at the JVM level. Mediation on one of these libraries gives us the hook that we need to introduce

our interceptor code transparently; this approach entails no modi�cation to the application code. We

elected to mediate the JNI libnet library, rather than the JVM socket libraries, for two reasons:

� The JVM socket libraries contain operating system speci�c code. Implementing a portable

interceptor would require maintaining versions of the interceptor for every operating system

that supports the JVM. The JNI library interfaces are more consistent across JVMs; the method

signatures in libnet.so are easily derived from the native method declarations provided in the

standard java.net package. Because the java.net code is unchanged across JVMs, the libnet

method signatures remain the same; porting the interceptor requires recompilation of the same

code for di�erent operating systems.

� The term \JVM socket libraries" represents a logical collection of routines implemented within

larger native libraries at this level. Substitution of a larger library merely to intercept calls to a

subset of its routines is impractical, and impossible to achieve without access to the source code.

The libnet library, on the other hand, contains all of the routines used by java.net classes,

and implements no other functionality. Because the libnet library is essentially a JNI wrapper,

implementing a custom version is considerably easier.

9

The �rst step in building the interceptor is to deduce the de�nition of the libnet library interface.

The JDK contains a javah utility that operates on a Java class and generates a native header �le;

this �le contains the JNI signatures of all native methods declared in that class. Because JNI routines

use fully-quali�ed names, an analysis of the symbol table of libnet provides an accurate assessment

of the classes that declared the JNI routines; running the javah utility on those classes enables us

to discover the JNI signatures that we need to de�ne within our libnet library. For convenience,

we will use libnet to refer to the standard version of this library, and libnet to refer to our custom

implementation.

Our libnet implementation provides the ideal location to embed our interceptor code. We develop

libnet as a collection of wrappers around the routines of the standard libnet implementation; by

default, all calls on the libnet wrapper are delegated to the corresponding implementation of those

calls in the libnet version. Because we are interested in intercepting only TCP/IP communication,

we introduce code within the TCP/IP-related routines in libnet to perform pre-delegation and post-

execution processing for those routines. This code can enhance or modify the messages handled by the

libnet routines, and provides the foundation for our interceptor implementation. This interceptor

approach does not provide the inherent portability of the Java-based interceptor described in Section 5

due to its use of native JNI code. However, the portability of our interceptor is not as issue because

the interceptor lies within the framework of the JVM; the portability o�ered by the JVM is implicitly

extended to the interceptor.

7 Exploiting Interception to Provide Transparent Fault-Tolerance

Replication is a well-known solution for providing fault-tolerant, highly-available operation. However,

this raises a number of issues, depending on the type of object being replicated, and the replication

scheme enforced.

7.1 Simple Failover using the Dynamic Proxy Approach

In a simple case, stateless Java RMI server objects can be replicated for availability. Because the state

of the server object is not modi�ed as the result of an invocation, maintaining a consistent state across

replicas is relatively simple. Further, because the objects are replicated for availability, we can choose

to route distinct client requests to di�erent server replicas based on the current load at each replica.

In this context, a measure of fault-tolerance can be provided by using a simple fail-over mechanism.

The invocation is forwarded to any one of the available replicas; in the event that the replica fails, the

mechanisms detect the fault, select a live server replica and retry the invocation, thus concealing the

fault from the client. Because the replicas are stateless, we do not require complicated mechanisms to

ensure that the state of all replicas is maintained consistent.

The Dynamic Proxy interceptor can be exploited to support this replication scheme. Each replica

of the stateless server binds itself to the same name in the SmartRegistry. The InterceptorStub (which

implements the InvocationHandler interface) is created for the �rst such bind request, and a Dynamic

Proxy registered for that stringi�ed name. The InterceptorStub is equipped to hold an array of server

stubs, each corresponding to a replica of the same server object. When a second replica invokes the

bind method with the same stringi�ed name, the SmartRegistry determines that a Dynamic Proxy

is currently registered for that name; the stub is subsequently added to the array maintained by the

InvocationHandler for that proxy. A client that looksup the SmartRegistry will retrieve a Dynamic

Proxy and its associated InvocationHandler.

10

Transport Transport Transport Transport

Stub

C S1
S2

S3

Remote Ref

Aroma

Operating
System

Invocation

Reliable Totally Ordered Multicast

Server Group

Response

Skeleton Skeleton Skeleton

Remote Ref

Aroma

Operating
System

Remote Ref

Aroma

Operating
System

Remote Ref

Aroma

Operating
System

Transport
Layer

Operating System

Aroma
Message
Handler

Aroma Parser

Aroma Multiplexer

Totem Group
Communication System

Aroma
Interceptor

TCP

TCP/IP
message

UDP

Physical Network

Figure 7: The Aroma System Architecture.

Simple fail-over mechanisms can be implemented as custom code within the InvocationHandler.

An invocation dispatched to the handler is invoked on the �rst stub in the array maintained by the

handler. A server fault, detected by a java.io.IOException, can be caught at the InvocationHandler

using a simple try-catch block around the implementation of the invoke method. At this point, the

handler can retrieve a second stub from its local array, and retry the invocation, thereby masking the

server fault from the client.

7.2 Consistent Replication Using the Aroma System

The more diÆcult case involves replicating stateful objects, and supporting additional replication

schemes such as active and passive replication. In this context, every invocation is typically forwarded

to all replicas of the intended server, and every generated response is returned to all replicas of the

client that made the invocation. More complex mechanisms are required to guarantee that all replicas

of a given Java RMI object are maintained consistent at all times. Some of these issues are discussed

in [7].

The Aroma System that we have developed is middleware that exploits interception to enhance

the Java RMI model with support for replication, in a transparent manner. Both client and server

objects are replicated, with little or no modi�cation of the application code. This section provides a

high-level overview of the design of the Aroma System; more details can be found in [6, 7]

The Aroma System adopts the object group paradigm [4] for transparent replication of JRMI

objects. All replicas of an object form an object group, and are represented by the Remote interface

associated with the object. To achieve replica consistency, all replicas (members) of a replicated object

(object group) must \see" the same sequence of messages in the same order; thus, they will perform the

same operations, resulting in the same state being maintained across all of the replicas. The Aroma

system exploits the services of a reliable totally-ordered multicast group communication system, such

as Totem [5], for communication between and within object groups. The reliable total ordering of

messages is crucial to achieving replica consistency in an eÆcient manner.

Figure 7 gives an overview of the Aroma System, and highlights three main components: the

Aroma Interceptor, the Aroma Parser and the Aroma Message Handler.

� The Aroma Interceptor is based on the library mediation approach, and resides at the transport

11

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Primitive Types

Overheads associated with Interception, using primtive arguments

Standard JRMP
Intercepted JRMP

BYTE
SHORT INT

LONG

FLOAT

DOUBLE

0 50 100 150 200 250 300
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Size of String Argument (bytes)

Overhead Associated with Interception in the JRMP Model

Normal JRMP Application
Intercepted JRMP Application

Figure 8. Latency introduced into RMI-JRMP

applications by the Dynamic Proxy Interceptor,

for primitive arguments.

Figure 9. Latency introduced into RMI-JRMP

applications by the Dynamic Proxy Interceptor,

for string arguments.

layer of the Java distributed object model. It captures networking calls made by the applica-

tion, including read and write calls required to receive and send TCP/IP messages, respectively.

By handling the reads, the Interceptor can manipulate inbound messages to the application;

similarly, by handling the writes, it can control the format and content of outbound messages

generated by the application. Because Aroma intercepts every TCP/IP call made by the ap-

plication, the Aroma Parser is needed to �lter those TCP/IP messages that conform to known

JRMI formats. All valid JRMI messages are forwarded to the Aroma Message Handler; all other

TCP/IP messages are released, and continue their progress along the default TCP/IP path.

� TheAroma Message Handler achieves two important functions; it adapts the intercepted TCP/IP

messages for multicast over the group communication system, and it performs the mapping be-

tween group-speci�c identi�ers and the corresponding local replica's identi�ers. In this context,

the Message Handler constitutes the boundary that separates group-level communication from

object-level communication.

� The Aroma Multiplexer provides the interface to the underlying multicast protocol. It encapsu-

lates the adapted JRMI message, along with an Aroma-speci�c header, into a message suitable

for multicast over the reliable totally-ordered multicast protocol.

By exploiting the Interceptor, the Aroma System introduces these mechanisms transparently to

JRMI, thereby enhancing it with the basic support required for replication. By exploiting an eÆcient

multicast protocol for communication between replicated objects, the Aroma Interceptor provides

higher performance for fault-tolerant Java applications than could be obtained using multiple TCP/IP

connections.

8 Interceptor Performance

To determine the feasibility of exploiting interception for our replication mechanisms, we evaluated

the overheads associated with introducing the Interceptor into standard RMI-JRMP applications, and

12

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Primitive Types

Overheads associated with Interception, using primtive arguments

Standard JRMP
Intercepted JRMP

BYTE

SHORT
LONG

INT
FLOAT

DOUBLE

0 50 100 150 200 250 300
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Size of String Argument (bytes)

Overhead Associated with Interception in the JRMP Model

Normal JRMP Application
Intercepted JRMP Application

Figure 10. Latency introduced into RMI-JRMP

applications by the SocketFactory Interceptor,

for primitive arguments.

Figure 11. Latency introduced into RMI-JRMP

applications by the SocketFactory Interceptor,

for string arguments

into RMI-IIOP applications when appropriate. The experiments were conducted on a network of

167 MHz Sun Ultra-SPARC dual-processor machines running Solaris 2.6, and operating over a 100

Mbps Ethernet. Our performance measurement was the round-trip latency associated with a simple

invocation-response, averaged over 100 round trips. The setup time { measured from the point when

the client performs a lookup on the registry, to the point when it makes the �rst invocation { was also

noted for reference, and represents a one-time cost. The test application consisted of a simple echo

server deployed on the standard Sun Java Virtual Machine (version 1.2.2) for Solaris. The latency of

a round-trip invocation and response was determined for parameters ranging from strings of varying

length, to primitive types.

8.1 The Dynamic Proxy Approach

This interceptor exploits the Dynamic Proxy mechanism introduced in Java2 release 1.3, and makes

use of the reection capabilities of the Java model. Figure 8 and Figure 9 show the overheads as-

sociated with the Dynamic Proxy Approach to interception. The experiment was conducted with

the SmartRegistry used in place of the standard rmiregistry. The interceptor was used to provide a

simple logging service that displayed the parameters associated with the invocation. The overhead

associated with just the interception mechanism varied between 1% to 15%, unlike in the other two

approaches where the overhead remained almost constant. The average latency introduced by the

Dynamic Proxy interceptor is 270 �s, with setup taking an additional 300ms when the interceptor is

deployed. Although this interceptor has relatively poor performance, it is implemented in Java and is

portable as a result. Deployment of the interceptor requires a SmartRegistry to be run in place of the

rmiregistry ; however, no modi�cation of application code is required. In this respect, the interception

is transparent to the application.

8.2 The RMISocketFactory Approach

The RMISocketFactory-based interceptor is also implemented completely in Java. In comparison to

the other approaches, this interceptor registered the least overhead, and required just 16ms more for

13

0 50 100 150 200 250 300
3.5

4

4.5

5

5.5

6

6.5

7

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Size of String Argument (bytes)

Overhead Associated with Interception in the JRMP Model

Standard JRMP Application
Enhanced JRMP Application

0 50 100 150 200 250 300
4

4.5

5

5.5

6

6.5

7

7.5

8

R
ou

nd
 tr

ip
 in

vo
ca

tio
n−

re
sp

on
se

 la
te

nc
y

(m
s)

Size of String Argument (bytes)

Overhead Associated with Interception in the RMI−IIOP Model

Standard RMI−IIOP Application
Enhanced RMI−IIOP Application

Figure 12. Latency introduced into RMI-JRMP

applications by the Aroma Interceptor, for string

arguments.

Figure 13. Latency introduced into RMI-IIOP

applications by the Aroma Interceptor, for string

arguments

setup when the interceptor was deployed. Figure 10 and Figure 11 show the overheads associated with

exploiting the RMISocketFactory-based interceptor. The interceptor incurred a maximum overhead of

5.3%, and introduced an average latency of 100 �s to normal Java RMI operation. In addition to the

low latency, this approach has the advantage of being portable, and of being supported by the Java RMI

speci�cation. However, analysis of invocation paramters requires the services of a parser component

capable of understanding both JRMP and serialization formats; deploying such mechanisms adds

appreciable overhead. Further, this interceptor cannot be deployed without modi�cation of application

code, requiring the addition of a single line of code to install the InterceptorSocketFactory.

8.3 The Library Mediation Approach

This interceptor exploits the Library Mediation approach described in Section 6. The measurements

for this section were taken using the implementation of the interceptor used in the Aroma System.

Thus, the overheads reect the latency associated with deploying both the Aroma Interceptor and the

Aroma Parser components. The Library Mediation approach is the only interceptor that provides a

single solution applicable equally to both RMI-JRMP and RMI-IIOP applications.

Because the experiment did not involve the Message Handler and Multiplexer components of the

Aroma System, we programmed the Parser to process the message and subsequently release the inter-

cepted messages back into the default TCP/IP communication streams. Thus, the latency measured

reects the overhead associated with read-only interception. Our measurements were taken for four

di�erent con�gurations:

� A standard RMI-JRMP client with

a standard RMI-JRMP server

� An Interceptor-enhanced RMI-JRMP client with

an Interceptor-enhanced RMI-JRMP server

� A standard RMI-IIOP client with

a standard RMI-IIOP server

14

0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
ou

nd
 tr

ip
 in

vo
ca

tio
n-

re
sp

on
se

 la
te

nc
y

(m
s)

Primitive Types

Overheads associated with Interception, using primtive arguments

Standard JRMP
Enhanced JRMP
Standard RMI-IIOP
Enhanced RMI-IIOP

BYTE SHORT INT LONG FLOAT DOUBLE

Figure 14: Latency introduced by the Aroma Interceptor for primitive arguments.

� An Interceptor-enhanced RMI-IIOP client with

an Interceptor-enhanced RMI-IIOP server

In each case, we determined the latency of a round-trip invocation and response, for parameters

ranging from strings of varying length, as shown in Figure 12 and Figure 13, to primitive types (int,

long, float, etc.), as shown in Figure 14.

The results indicate that the Interceptor and Parser introduce an overhead of approximately 200 �s

for RMI-JRMP applications, and 375 �s for RMI-IIOP applications. This di�erence can be attributed

to the fact that RMI-IIOP messages use �xed-length headers that are considerably larger than those

used by RMI-JRMP.

Latency overheads in the hundreds of microseconds are normally considered signi�cant; however, it

can be observed that the standard JRMI applications (both RMI-JRMP and RMI-IIOP) themselves

exhibit a minimum latency of 3-4 ms. In this context, our Interceptor introduces less than a 10%

overhead to the application performance. Moreover, as shown by the results, the performance of the

JRMI applications deteriorates with increasing parameter size; regardless, our interception mechanisms

incur an almost constant overhead.

9 Related Work

While interceptors are an accepted mechanism for CORBA [10], little work has been done on intercep-

tion for the Java distributed object model. The Eternal System [8] exploits interceptors for providing

transparent fault tolerance for CORBA applications. Eternal's Interceptor exploits the operating

system's linker-loader facilities to interpose on networking libraries at the operating system level.

The primary development platform for the Interceptor has been Solaris. However, both Solaris

and Linux provide additional facilities to support interception, such as the /proc interface [1] for

interception at the system call level. For the Windows NT operating system, the mediation connectors

approach [2] de�nes mechanisms to build wrappers around dynamically linked libraries (DLLs) that

can subsequently be used to mediate calls on those libraries; we can implement the Interceptor by

exploiting these connectors to mediate calls to the libnet library.

15

10 Conclusion

Interceptors are software mechanisms that, when deployed, provide hooks to introduce new services to

an application at runtime. We have developed three di�erent interceptor mechanisms for applications

that are based on the Java Remote Method Invocation model. These interceptors facilitate the capture

of Java RMI messages, and can be exploited to analyze, modify or reroute these messages at runtime.

The interceptors have been developed independent of the application, and are easy to deploy. Further,

the interceptors can be deployed with minimal modi�cation to the application. Our preliminary

measurements show that, depending on the approach used, the overhead added by the interceptor

is between 1% and 15%. With the SocketFactory interceptor, the maximum overhead measured was

just 5%. The Dynamic Proxy approach showed relatively poor performance, but is easy to deploy,

and can be used to provide simple fail-over capability for stateless server objects. With the Library

Mediation approach, the overhead was less than 10%, but remained fairly constant for di�erent kinds

of applications and for di�erent types of invocation parameters. This approach is applicable to both

RMI-JRMP and RMI-IIOP applications, and is exploited in the Aroma System to enhance the existing

Java RMI model with support for consistent replication of Java RMI client and objects.

References

[1] A. Alexandrov, M. Ibel, K. E. Schauser, and C. Scheiman. Ufo: A personal global �le system

based on user-level extensions to the operating system. ACM Transactions on Computer Systems,

16(3):207{233, August 1998.

[2] R. Balzer and N. Goldman. Mediating connectors. In Proceedings of the 19th IEEE International

Conference on Distributed Computing Systems Workshop, pages 73{77, Austin, TX, June 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Publishing Company, July 1997.

[4] S. Ma�eis. The object group design pattern. In Proceedings of the 1996 USENIX Conference on

Object-Oriented Technologies, pages 155{163, Toronto, Canada, June 1996.

[5] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos.

Totem: A fault-tolerant multicast group communication system. Communications of the ACM,

39(4):54{63, April 1996.

[6] N. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Interception in the Aroma system. In

Proceedings of the ACM 2000 Java Grande Conference, pages 107{115, San Francisco, CA, June

2000.

[7] N. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Transparent consistent replication of Java

RMI objects. In Proceedings of the Distributed Objects and Applications Conference, Antwerp,

Belgium, September 2000.

[8] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Using interceptors to enhance CORBA.

IEEE Computer, pages 62{68, July 1999.

[9] Object Management Group. The Common Object Request Broker Architecture and Speci�cation,

1998. Version 2.3 OMG Technical Committee Document (formal/98-12-01).

16

[10] Object Management Group. Portable interceptors, Revised Joint Submission, December 1999.

OMG Technical Committee Document (orbos/99-12-02).

[11] Sun Microsystems, Inc. Java Remote Method Invocation Speci�cation, revision 1.50 edition, Oc-

tober 1998. http://java.sun.com/products/jdk/rmi/index.html.

[12] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the Java system. Computing

Systems, 9(4):265{290, Fall 1996. MIT Press.

17

