IN ProCc. WORKSHOP ON JAVA FOR HIGH PERFORMANCE NETWORK COMPUTING AT EUROPAR’9S,
SOUTHAMPTON, SEPTEMBER 2-3, 1998. EARLIER VERSION: PROC. 7TH INT. WORKSHOP ON COMPILERS
FOR PARALLEL COMPUTERS CPC’98, PAGES 34-41, LINKOPING, SWEDEN, JUNE 29 — Jury 1, 1998.

Locality optimization in JavaParty by means of static type analysis

Michael Philippsen and Bernhard Haumacher
University of Karlsruhe, Germany
phlipp@ira.uka.de and hauma@ira.uka.de

Abstract

On clusters and DMPs, locality of objects and threads
and hence avoidance of network communication, are
crucial for performance. We show that an extension
of known type inference mechanisms can be used to
compute placement decisions that improve locality.

In addition to this general contribution, the paper
specifically addresses the problems that are caused by
the distributed Java environment. Since the JVM is
assumed to be fized, the optimization is done as source-
to-source transformation.

1 Introduction

For programming languages that target distributed
memory parallel computers (DMPs), locality is cru-
cial for performance. Data structures that are used
together should be stored on the same node, pro-
cesses/threads should be executed where the data is
located that they access. If either form of locality is
not achieved, network access (high latency and low
bandwidth) is likely to become a bottleneck.

For imperative programming languages, literature
is full of techniques that enhance locality. Various
parallel Fortran dialects have compiler pragmas to ex-
press distributed layout of array data [5, 12]. Some
work has been done to determine distributed array lay-
out through the analysis of index expressions [10, 18].
Loop restructuring techniques have been studied ex-
tensively in parallelizing compilers and for cache op-
timization purposes [2, 20]. The owner-computes-rule
and the inspector-executor [11] are used to determine
the scheduling of expression evaluation in distributed
environments.

However, these techniques can rarely be applied
to object-oriented code since, in general, it is not
array-based. Moreover parallelism does not stem from
forall-, doacross, or doall-loops but is instead ex-
pressed by means of thread objects. Little work has
been done specifically for parallel object-oriented lan-
guages. From over a hundred existing imperative con-
current object-oriented languages (COOL) surveyed in

[15] more than half do not consider the locality prob-
lem at all. The reasons are different: Some languages
have only been implemented in a prototypical way on
a single workstation, where network latencies do not
occur; their developers have mainly been interested
in the design of coordination mechanisms and a proof
of concept. Other languages are restricted to shared
memory multiprocessors, they rely on the cache sys-
tems provided by those machines. Most of the other
languages are used to do research in concurrency co-
ordination constructs. Threads and explicit synchro-
nization as used in Java are not optimal for object-
oriented languages because this approach suffers from
various types of inheritance anomaly[13].

There are at least three orthogonal approaches
to deal with locality in parallel object-oriented lan-
guages. The basic approach is to let the programmer
specify placement and migration explicitly. Since lo-
cality does not affect the semantics of a program, the
programmer in general is required to express locality
information by means of annotations. Several sugges-
tions have been made, e.g. [19]. In contrast to explicit
locality information in the code, both the runtime sys-
tem and the compiler might help. Dynamic object
distribution is based on a runtime system that keeps
track of the call graph and the invocation frequencies.
Clever graph distribution techniques are used to (re-)
distribute objects and threads by migration. Dynamic
object distribution has two disadvantages. First, since
there is no knowledge about future call graphs and in-
vocation frequencies, in general object placement de-
cisions for newly created objects are far from optimal.
Second, creation of objects that cannot migrate be-
cause they are only meaningful on a certain node (e.g.

LA very basic introduction to inheritance anomaly: The
problem is that the lines of code that implement the synchro-
nization requirements may be spread across all methods of a
class. If a subclass has slightly different synchronization needs,
inheritance anomaly is likely to occur: then instead of inheriting
methods from the parent, nearly all methods must be re-coded
in the subclass. However, in the re-implementations, the algo-
rithms remain unchanged, just the synchronization code lines
are modified. Code duplication results in higher maintenance
efforts.

file handles, GUI-windows, etc.) often results in a
broad re-distribution of other objects. Static object
distribution is the compile time alternative. Whereas
dynamic object distribution is predominantly aimed
at the improvement of locality in running programs,
static object distribution kicks in at the time of object
creation. Based on a thorough program understand-
ing developed during compile time, the compiler tries
to predict the best node for a new object, i.e. the com-
piler predicts the node that will result in best locality
during runtime.

In the context of JavaParty — a transparent exten-
sion of Java for parallel programming of DMPs, [9, 16]
— we follow all three basic approaches to improve local-
ity; this paper focuses on the static object distribution
through careful type analysis. Static type analysis of
Java is more difficult than in imperative languages be-
cause of the dynamic dispatch. Object-oriented type
analysis for improving locality is more difficult than
type analysis for purposes of dispatch optimization
[1, 3, 4, 14, 17], since concurrently executing threads
must be taken into account.

In section 2 we present the details of JavaParty that
are relevant for this paper. Section 3 discusses the ba-
sics of type inference, section 4 presents the extensions
that are needed for threads and locality optimization.
The transformations that result from the analysis are
discussed in section 5. The paper is concluded after a
brief discussion of the results in section 6.

2 Parallelism and Distribution in Java-
Party

JavaParty is an extension of Java for programming
DMPs; the details can be found in [9, 16, 8]. JavaParty
provides the illusion of a shared address space, i.e.,
although objects can reside on different hosts, their
methods can be invoked as in regular Java. JavaParty
programs use thread objects as their sole means to
introduce parallelism.

The JavaParty compiler and runtime system map
this model to a system of Java virtual machines,
one per node, where communication is handled by
RMI. JavaParty threads are mapped to regular Java
threads.

2.1 Activity-Centered Approach

It is necessary to understand JavaParty’s execution
model before reasoning about thread and object dis-
tribution.

Although a Java thread cannot migrate, the control
flow — that will be called activity in the remainder of

the text — can: whenever a method of a remote object
is invoked, the activity conceptually leaves the JVM of
the caller object and is continued at the callee object’s
JVM.

address space
of JVM A

address space
of JVM B

o1

| o

|
|
|
|
|
|
invoke ‘
|
|
\
|
|
|

| return

(a) local invocation, concurrent activities

03

address space
of JVM A

address space
of JVM B

\
\
\
o1 ‘ 03
\
‘ 02

invoke remotely

return

b) remote invocation, time-sliced activities

Figure 1: JavaParty’s execution model

Figure 1(a) shows two activities, indicated by the
fat lines, in two JVMs (A and B). Time advances from
top to bottom of the graph. The activity in JVM A
first executes a method of object O1, then calls one of
02’s methods on the same JVM. The other activity
works on object O3.

Figure 1(b) shows the situation, when object O2 is
placed on JVM B. In contrast to a local invocation, the
time needed for a remote method call is higher than
for a local invocation. Moreover, during the execution
of 02’s method, the two activities face a time-sliced

execution in JVM B while JVM A is idle. The total
execution time increases.

In general, the following holds. Whenever an activ-
ity leaves its JVM, it competes with other activities
that are concurrently executed on the target JVM.
Since method invocation is synchronous in Java, the
original JVM might run idle during the remote method
invocation. Due to time-slicing and blocking, compet-
ing activities on one JVM decrease the total paral-
lelism. Additional costs are introduced by the remote
method invocation itself since communication latency
and bandwidth must be taken into account.

The general distribution strategy therefore must be
activity-centered: it is preferable to place different ac-
tivities onto different JVMs. Objects are co-located to
activities so that most often and as long as possible,
method invocation is local. Local method invocation
avoids costly network traffic and avoids competing ac-
tivities.

2.2 Co-location with Activities

Assume a hypothetical situation where the compiler
has total knowledge about objects and activities that
are created at runtime. Since for every single object
its concrete type is known, no dynamic dispatch is
needed, i.e., for each method invocation the code that
must be executed can be selected statically. In ad-
dition, assume two heuristic approximations: an es-
timate of runtime cost for each method (including
branches and loops) and an estimate of the probability
that a specific method is invoked.

With all that information at hand, the compiler can
build and trace the weighted call graph and can derive
estimates for two values: work(t,a) indicates the time
an activity ¢ would spend on methods of an object a
if ¢ and a are located on the same node. Note, that
in the weighted call graph, for a specific thread object
the execution of the run() method must be traced.

Similarly, we can determine cost(t, a) for the com-
munication time that would be necessary if t and a are
not stored on the same node. The cost information
takes into account that in the assumed hypothetical
situation the concrete types of parameters and return
values are known by the compiler. The compiler hence
can estimate the communication costs caused by the
sizes of the messages that must cross the network.

If work(t,a) > >, , cost(t;,a) it is wise to co-
locate object a with activity ¢, since activity ¢ spends
more time working on a than all other activities ¢;
together need to call methods of a remotely. Hence,
parallelism is increased.

For every single object a, the optimal activity

T = activity(a) is derived as the one that maximizes
work(r,a) — 32, cost(t;, a).

2.3 Placement of Activities

In general, more activities are used than there are
CPUs available. An activity increases parallel ex-
ecution when working on a co-located object (first
sum below); the overall parallel execution is de-
creased if the activity faces remote method invocations
(second sum). Therefore, we define the paralleliza-
tion win of ¢t as win(t) =) o=t work(t, a) —
Zactivity(b);ét COSt(t, b)

Activities are assigned in a round-robin fashion to
the available JVMs in decreasing order of their paral-
lelization wins until on every JVM a single activity has
been scheduled. For each of the remaining activities, a
new value of its parallelization win is computed. The
new value takes into account the potential co-location
with other activities and objects. With these new val-
ues derived, the next set of activities is scheduled to
the JVMs. This is repeated until all activities are
scheduled.

activity(

2.4 Reality Check

In sections 2.2 and 2.3 we motivated a perfect place-
ment methodology for JavaParty objects and threads.
Unfortunately, the presented techniques relied on se-
vere assumptions.

First of all, the technique needed complete knowl-
edge about concrete types of all objects that will be
created at runtime. Although such precision cannot
be available during compile time analysis, we show
in sections 3 and 4 that less precise (but sufficient)
information can be derived, categorizing objects and
threads into equivalence classes with known concrete
type information.

Second, heuristics have been used in optimizing
compilers for the cost estimates and the invocation
frequencies before, see for example [6]. We use similar
heuristice in our prototype.

3 Type Inference

Consider a method invocation a.foo(arg) in Java.
Due to Java’s static type system, it can be determined
at runtime which of several methods foo(param) is
used if the concrete type of a is known. The types
of arg and param are used at compile-time and are
irrelevant at runtime. Hence, the goal of the type
inference mechanism is to determine the concrete type
of a since the computation of work(t, a) needs to know
exactly which version of foo is used.

Since there are different control flow paths that can
lead to the invocation, in general a can hold one of a
set. of possible concrete types, called imprecise type
information. Especially if a is declared to be of an
interface type the set of possible concrete types can
get quite diverse. The type inference algorithm uses
constraint propagation and traverses the control flow
and data flow graphs to determine such sets. Depend-
ing on the nature of a, there are known strategies to
resolve the imprecise information: if a is the parame-
ter of the surrounding procedure, conceptual method
cloning can be used [1, 4, 3, 14]. If a is an instance
variable, conceptual class cloning can improve preci-
sion [17]. We will now explain both techniques.

3.1 Method Cloning

If a is a method parameter, say of method bar, and if
there is imprecise information about a’s concrete type,
the imprecision is usually caused at the points where
bar is called. Assume that there are two paths to two
invocations of bar, as shown in Figure 2. Both invoca-
tions use a different concrete argument type (precise
information, C or D). After the invocations, the con-
crete type of a can be either of these.

C} }

bar(x <) bar({™)

void bar(Aa C.b}

A

a{c' D} foo(arg) — 2

Figure 2: Reason for method cloning

Now, the type inference algorithm conceptually du-
plicates the called method. The invocation of bar that
has been processed first remains unchanged. For pro-
cessing the second invocation, bar is cloned and in-
stead of bar, the copy bar’ is called. Therefore, the
analysis has precise concrete type information for the
parameter a in bar and as well for the parameter a
of bar’.?2 Thus, type inference can determine which
version of foo(param) will be called in both bar and
bar’.

3.2 Conceptual Class Cloning

If a is an instance variable, local method cloning is in-
sufficient. Conceptually, whole classes must be cloned

2The presentation is simplified. Special care must be taken
to avoid endless code duplications in recursive methods.

instead. That in turn causes the type inference mecha-
nism to start over again — at least for a significant part
of the code. The reason is that while for parameters
there is only a single reaching definition (namely at the
very beginning of the method) for instance variables
there might be arbitrarily many reaching definitions
all over the code.

Assume a situation (see Figure 3) where two as-
signments in the code assign objects of two different
concrete types to a. Let a be an instance variable of
class A. From these reaching definitions the type in-
ference algorithms uses data flow information to track
back to the points where anew A(.) statement is used
to create the objects. (Since the paths to the reaching
definitions might have common segments, the graph
can have nodes with imprecise type information. Sep-
aration of common path segments may require cloning
even during inverse tree traversal.)

{A} {A}

c, =new AQ); ¢, =new AQ);
— 4 - 7
Vs /
N N /o
(C 1{A} .a§C’ D} -)éC} (C 2{A} .aSC, D} =y {D}
(c 1{A} .aic, ' .foo(arg) (c 2{A} -aSC' o foo(arg)
” ?

Figure 3: Reason for class cloning

At the new A(.) statements, class A is concep-
tually cloned, one of the new statements is modified
to create an object of class A’ instead.® Due to this
cloning, there are suddenly two different instance vari-
ables: a of class A and a of class A’. Let us rename
the latter to a’ for clarity. Both instance variables
keep their concrete types, they are not combined by
the two assignment statements that now affect differ-
ent instance variables. Thus, type inference can de-
termine which version of foo (param) will be called at
runtime in both a.foo(arg) and a’.foo(arg).

3.3 Reality Check

Of course, type inference cannot determine the con-
crete classes for every method invocation. Especially,

3Actual cloning would break the type system: Neither is
there a well-defined relationship between A and A’ in Java, nor
can objects of type A’ be used instead of A, and vice versa.
Section 5 briefly explains how conceptually cloned classes are
transformed back into regular Java.

method and class cloning cannot handle imprecise
type information for local variables. Similarly, for
arrays or polymorphically used recursive data struc-
tures, no precise type inference can be done.

4 Type Inference for Thread Locality

Although after type inference the target method of
each invocation is known, still no placement decision
can be derived, the analysis might not be able to tell
thread objects apart. Consider the following exam-
ple where, unfortunately, standard type inference will
neither clone methods nor classes.

class MyThread extends Thread {
public void run() {
A x = new AQ);
x.foo();
}
}

class A {
void foo() {

new MyThreaad().start();
new MyThreaad().start();

The analysis does not realize that each of the
threads* uses a private object of type A since every-
thing is monomorphic. We will extend the mechanism,
so that both the classes MyThread and A will be cloned.
Then MyThread uses A whereas MyThread’ uses A’.
This fact can be used to guide placement decisions so
that the activity MyThread and the object of type A
end up in the same JVM whereas the primed versions
end up in another JVM.

4.1 Introduction of Helper Polymorphism

We now present how enough polymorphism can be in-
troduced to force the necessary cloning. This is done
in two steps: First, wherever a thread is created, the
corresponding thread class is cloned. Objects that
implement the Runnable interface are treated anal-
ogously. Second, the original source code is (concep-
tually) transformed so that it carries and keeps thread
ids as additional parameters through all method invo-
cations.

4In Java a thread object has a run() method that is invoked
by calling start(). start() returns immediately to the caller;
run() is executed concurrently.

In the above example, we first use different classes
MyThread and MyThread’.

new MyThreaad().start();
new MyThreaad()’.start();

Second, the source-to-source transformation carries
and keeps thread ids. The idea is to pass the current
thread as an additional parameter $thread to each
method invocation. Each non-static method stores
this thread parameter as a supplementary instance
variable of its class (called $thread). The run()
method is the only exception of this rule. This is the
only method which is never called from within another
method. The run() method is invoked in a new thread
and as its first action stores the this variable in its
$thread variable. For the example, the transformed
code is shown below.

class MyThread extends Thread {
Thread $thread; //new instance var
public void run() {
Thread $thread = this;
this.$thread = $thread;
A x = new A(Q);
x.foo($thread) ;

//keep thread id
//keep thread id

//new argument

}
}
class A {
Thread $thread; //new instance var
void foo(Thread $thread) { //new parameter
this.$thread = $thread; //keep thread id
}
}

4.2 Helper Polymorphism is Sufficient

We now explain why the above two-step modification
is sufficient to cause the desired cloning.

All the activities of a given program commence at
the run() methods of the thread classes. As shown
in Figure 4 there are two paths in the example pro-
gram that reach foo($thread). Along the two paths,
thread objects of different conceptual types are used:
One path carries a thread object of type MyThread,
the other carries a thread object of type MyThread’.
The type inference algorithm therefore faces an impre-
cision in the parameter of foo, since the set of possible
concrete types has more than one element. This causes
foo to be cloned so that foo is called with MyThread
whereas foo’ is called with MyThread’; see section 3.1.

Since both foo and foo’ belong to the same
class A, they refer to the same instance variable
this.$thread. When foo and foo’ assign the thread

void run() {

Thread $threagwyThread}
X {A

_ thiS{MyThread};

=new A();
x{A} .foo($thread{MyThread});
} void run() {
Thread $threa£|v'yThread = this{NIyThread };
x{A} =new A();
x{A} .foo(Sithrcead{wIyThread });
}
void foo($thread{MyThread’ MyThread}
}
Figure 4: Type imprecision after introduction of

helper polymorphism and cloning of thread creations.
Two run() methods invoke the same method foo(.),
causing an imprecision in the $thread parameter.

id to that instance variable, the same imprecision re-
appears. The instance variable $thread can either
contain a thread object of type MyThread or of type
MyThread’. At that point, the type inference algo-
rithm uses conceptual class cloning to resolve that im-
precision; see section 3.2. For that purpose, the type
inference algorithm must find the point where the ob-
ject is created to which the instance variable $thread
belongs. Due to the cloning of MyThread there are two
run methods, each of which calls new A(). Concep-
tual cloning of A solves the problem: The run method
of MyThread’ creates an object of type A’ instead;
there is no longer an imprecision at the assignment to
this.$thread. The resulting types are illustrated by
Figure 5.

Therefore, the added polymorphism is sufficient to
clearly separate the activities and objects into two dis-
joint groups according to their locality requirements.
More details can be found in [7].

5 Transformation

Instead of actual cloning of methods and classes, the
JavaParty system modifies a “cloned” method to ac-
cept a new parameter. This parameter carries a ver-
sion number into the method. Inside of the method,
this version number is used to decide which versions
of other methods are to be called. Similarly, “cloned”
classes are mapped to classes that carry an additional
version number.

void run() {

Thread $threagwyThread}
X {A

o A

_ thiS{MyThread};

=new A();
.foo($thread{MyThread});

void foo($thread{MyThread}) {

A MyTh
this{) St reaé yThread}

yThread’} - this{MyThread };

-

void run() {
Thread $threagvI
x{A} =new A'();

x{A’} foo’($threao{MyThread'}

);

void foo’($thread {MyThread?}){

this) .$threaéMyThread'} = $thread;

Figure 5: Resulting type information. Method foo is
cloned. The imprecision in this.$thread has been
resolved by cloning class A.

The JavaParty system includes a ByteCode disas-
sembler that is used to analyze existing Java programs
that are not translated/optimized. To allow for seam-
less integration with existing code, in addition to the
“cloned” method with its extended signature, there is
a method with the original signature.

5.1 Transformation of cloned Methods

The method bar (a) of section 3.1 is roughly modified
as follows:

void bar$clone(A a, int method$version)

a.foo$clone(arg,
bar$apply [method$version] [42]) ;

}

void bar(A a) {
bar(a, default$version);

}

There are two versions of bar; the second invokes
a default version of the first. Since the two clones of
bar introduced in section 3.1 invoke different versions
of foo, a lookup table bar$apply is used. The lookup

table is a static final array that is computed by the
optimizer. There is one such lookup table per cloned
method. It has entries for every single method invo-
cation that appears textually within the method. In
the above code, the invocation of foo is assumed to
be the 42nd method that is called inside bar. The
optimizer avoids the table lookup if a constant value
will be returned for all versions.

In addition, type case operations on a might be nec-
essary. In this case, the optimizer introduces another
lookup table for switching between replicated invoca-
tions of foo, each of which is guarded with the correct
type case.

5.2 Transformation of cloned Classes

Each “cloned” class is augmented with a new instance
variable class$version. Two new parameters are
added to constructor routines. In addition to the
method$version, a class$version is passed into the
constructor.

Let us study a new A() statement that appears in-
side of method gee and the (simplified) result of its
transformation.

seq{
RuntimeSystem.setTarget (
gee$newAt [method$version] [17]);
return new A(gee$apply[method$version] [29],
gee$new[method$version] [17]) ;

First of all, the runtime system is ordered to create
the next object at a node whose number comes from
the lookup table gee$newAt. This table has two di-
mensions: As before, the first dimension refers to the
version of the method. The second dimension gives
the numer of the new statement within gee (17 in the
example). The constructor’s first parameter refers to
the version of gee, indexed by the number of method
invocations inside gee, say 29. The second parame-
ter selects the particular “clone” of A that is to be
created. The seqg-block is a shorthand notation that
allows for a block of statements where Java expects an
expression.

Again, the optimizer generates the necessary
lookup tables. The details of the transformation can
be found in [7].

6 Results and Future Work

As part of the JavaParty project, we have implented
the type inference algorithm, a ByteCode disassembler
that allows for the analysis of existing Java code, the

transformation extending the type inference algorithm
to handle threads and to deliver locality information.
Finally, the “cloned” methods and “classes” are trans-
formed back into regular Java that can compiled by
javac.

The optimizer works fine for some JavaParty pro-
grams and performs badly for others. For a synthetic
benchmark program with 7 classes and a total of 15
methods the type inference created 17 clones of classes
and 41 clones of methods. On three JVMs the pro-
gram performance was improved by more than a factor
of 2.

For some JavaParty programs, however, the ap-
proach did not improve the runtimes. We have identi-
fied two reasons for it. First, the analysis can handle
separate creations of thread objects in the code. How-
ever, if threads are created in a loop (and stored in
an array), there is no way to clone the corresponding
thread classes and to introduce enough polymorphism
so that the type inference can be used to derive useful
placement decisions. On the contrary, without further
processing, all these threads fall into the same activity
class and are instantiated on exactly the same JVM.
The second reason for weak performance showed up
in other JavaParty programs where the programmer
used the design pattern “workpile”. Objects that de-
scribe/contain work to be done are stored into an in-
ternal data structure of the workpile that often is a
list or an array. In either case, the type inference al-
gorithm cannot handle the imprecision. Again, the
problem is that all work objects are combined into
one single equivalence class. Hence there is no way to
distribute certain work objects to certain activities.

In the future, we will attack these two problems by
using additional runtime information to further split
equivalence classes determined by the type inference
algorithm.

7 Conclusion

We have shown that standard type inference techiques
for object-oriented languages can be applied to guide
object and thread creation in a distibuted environment
towards improved locality. The necessary extensions
of the type inference mechanisms have been discussed
in general.

The optimizer has been implemented as part of the
JavaParty project. Depending on the nature of the
optimized program, the optimizer can improve perfor-
mance significantly. Cases where the optimizer fails
have been identified and will be attacked in future.

Acknowledgements

We would like to thank the JavaParty group, espe-
cially Matthias Zenger, for their support of the Java-
Party environment.

References

[1] Ole Agesen. The cartesian product algorithm, sim-
ple and precise type inference of parametric poly-
morphism. In Proc. of. ECOOP’95, European Conf.
on Object-Oriented Programming, pages 2—26, Arhus,
Danmark, 1995.

[2] Utpal Banerjee. Dependence Analysis for Supercom-
puting. Kluwer Academic Publishers, Boston, Dor-
drecht, London, 1988.

[3] Craig Chambers. The Design and Implementation of
the Self Compiler, an Optimizing Compiler for Object-
Oriented Programming Languages. PhD thesis, Stan-
ford University, Department of Computer Science,
March 1992.

[4] Craig Chambers and David Ungar. Iterative type
analysis and extended message splitting: Optimizing
dynamically-typed object-oriented programs. In Proc.
of the SIGPLAN ’90 Conf. on Programming Language
Design and Implementation, pages 150-164, White
Plains, NY, June 1990.

[6] Barbara Chapman, Piyush Mehrotra, and Hans Zima.
User defined mappings in Vienna Fortran. In Proc.
of the 1998 Workshop on Languages, Compilers,
and Run-Time Environments for Distributed Memory
Multiprocessors, pages 72-75, Boulder, CO, Septem-
ber 30 — October 2, 1992, January 1993. ACM SIG-
PLAN Notices 28(1).

[6] T. Fahringer, R. Blasko, and H. Zima. Static per-
formance prediction to support parallelization of For-
tran programs for massively parallel systems. In Int.
Conf. on Supercomputing, pages 347-356, Washing-
ton, D.C., July 1992.

[7] Bernhard Haumacher. Lokalitdtsoptimierung durch
statische Typanalyse in JavaParty. Master’s thesis,
University of Karlsruhe, Department of Informatics,
January 1998.

[8] Matthias Jacob, Michael Philippsen, and Martin Kar-
renbach. Large-scale parallel geophysical algorithms
in Java: A feasibility study. Concurrency: Practice
and Ezperience, 10(11-13):1143-1154, September—
November 1998.

[9] JavaParty. http://wwwipd.ira.uka.de/JavaParty/.

[10] Kathleen Knobe, Joan D. Lukas, and William J.
Dally. Dynamic alignment on distributed memory
systems. In 3rd Workshop on Compilers for Paral-
lel Computers, pages 394-404, Vienna, Austria, July
6-9, 1992.

[11] Charles Koelbel and Piyush Mehrotra. Supporting

shared data structures on distributed memory archi-
tectures. In Proc. of the 2nd ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming,
PPOPP, pages 177-186, March 1990.

Charles H. Koelbel, David B. Loveman, Robert S.
Schreiber, Guy L. Steele, and Mary E. Zosel. The
High Performance Fortran Handbook. MIT Press
Cambridge, Massachusetts, London, England, 1994.

Satoshi Matsuoka and Akinori Yonezawa. Analysis
of inheritance anomaly in object-oriented concurrent
programming languages. In Gul Agha, Peter Wegner,
and Akinori Yonezawa, editors, Research Directions
in Concurrent Object-Oriented Programming, pages
107-150. MIT Press Cambridge, Massachusetts, Lon-
don, England, 1993.

Jens Palsberg and Michael I. Schwartzbach. Ob-
ject oriented type inference. In Proc. of OOP-
SLA’91, Conf. on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 146-161,
Phoenix, Arizona, November 1991.

Michael Philippsen. Imperative concurrent object-
oriented languages. Technical Report TR-95-050, In-
ternational Computer Science Institute, Berkeley, Au-
gust 1995.

Michael Philippsen and Matthias Zenger. JavaParty:
Transparent remote objects in Java. Concurrency:
Practice and Ezperience, 9(11):1225-1242, November
1997.

John Plevyak. Optimization of Object-Oriented and
Concurrent Programs. PhD thesis, University of Illi-
nois at Urbana-Champaign, Urbana, IL, 1996.

Thomas J. Sheffler, Robert Schreiber, John R.
Gilbert, and Siddhartha Chatterjee. Aligning paral-
lel arrays to reduce communication. In Frontiers 95:
The 5th Symp. on the Frontiers of Massively Parallel
Computation, pages 324-331, McLean, VA, February
6-9, 1995.

David Stoutamire. Portable, Modular Ezpression of
Locality. PhD thesis, University of California at
Berkeley, Department of Computer Science, Decem-
ber 1997. Available as ICSI technical report 97-056.

Michael Wolfe. High Performance Compilers for Par-
allel Computing. Addison-Wesley, Reading, Mass.,
1996.

