
Object Serialization for Marshalling Data in a

Java Interface to MPI

Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko and Sang Lim

NPAC at Syracuse University

Syracuse, NY 13244

fdbc,gcf,shko,slimg@npac.syr.edu

August 2, 1999

Abstract

Several Java bindings to Message Passing Interface (MPI) software
have been developed recently. Message bu�ers have usually been restricted
to arrays with elements of primitive type. We discuss adoption of the Java
object serialization model for marshalling general communication data in
MPI-like APIs. This approach is compared with a Java transcription of
the standard MPI derived datatype mechanism. We describe an imple-
mentation of the mpiJava interface to MPI that incorporates automatic
object serialization. Benchmark results con�rm that current JDK im-
plementations of serialization are not fast enough for high performance
messaging applications. Means of solving this problem are discussed, and
benchmarks for greatly improved schemes are presented.

1 Introduction

The Message Passing Interface standard, MPI [14], de�nes an interface for par-
allel programming that is portable across a wide range of supercomputers and
workstation clusters. The MPI Forum de�ned bindings for Fortran, C and
C++. Since those bindings were de�ned, Java has emerged as a major lan-
guage for distributed programming, and there are reasons to believe that Java
may rapidly become an important language for scienti�c and parallel computing
[7, 8, 9]. Over the past two years several groups have independently developed
Java bindings to MPI and Java implementations of MPI subsets. With support
of several groups working in the area, the Java Grande Forum drafted an initial
proposal for a common MPI-like API for Java [4].

A characteristic feature of MPI is its
exible method for describing message
bu�ers containing mixed primitive �elds scattered, possibly non-contiguously,
over the local memory of a processor. These bu�ers are described through spe-
cial objects called derived datatypes|run-time analogues of the user-de�ned

types supported by modern procedural languages. The standard MPI ap-
proach does not map very naturally into Java. In [2, 3, 1] we suggested a
Java-compatible restriction of the general MPI derived datatype mechanism,
in which all primitive elements of a message bu�er have the same type, and
they are selected from the elements of a one-dimensional Java array passed as
the bu�er argument. This approach preserves some of the functionality of the
original MPI mechanism|for example the ability to describe strided sections
of a one dimensional bu�er argument, and to represent a subset of elements
selected from the bu�er argument by an indirection vector. But it does not
allow description of bu�ers containing elements of mixed primitive types.

This version of the MPI derived datatype mechanism was retained in the ini-
tial draft of [4], but its value is not yet certain. A more promising approach may
be the addition a new basic datatype to MPI representing a serializable object.
The bu�er array passed to communication functions is still a one-dimensional
array, but as well as allowing arrays with elements of primitive type, the el-
ement type is allowed to be Object. The serialization paradigm of Java can
be adopted to transparently serialize bu�er elements at source and unserialize
them at destination. An immediate application is to multidimensional arrays.
A Java multidimensional array is an array of arrays, and an array is an object.
Therefore a multidimensional array is a one-dimensional array of objects and it
can be passed directly as a bu�er array. The options for representing sections
of such an array are limited, but at least one can communicate whole multidi-
mensional arrays without explicitly copying them (though there may be copying
inside the implementation).

1.1 Overview of this article.

This article discusses our current work on use of object serialization to marshal
arguments of MPI communication operations. It builds on earlier work on the
mpiJava interface to MPI [1], which is implemented as a set of JNI wrappers to
native C MPI packages for various platforms. The original implementation of
mpiJava supported MPI derived datatypes, but not object types.

Section 2 reviews the parts of the API of [4] relating to derived datatypes
and object serialization. Section 3 describes an implementation of automatic ob-
ject serialiation in mpiJava. In section 4 we discuss benchmarks for this initial
implementation. The results con�rm that naive use of existing Java serializa-
tion technology does not provide the performance needed for high performance
message passing environments. Section 5 illustrates how various overheads of
serialization can be eliminated by customizing the object serialization stream
classes. The �nal section relates these results to other work, and draws some
conclusion.

1.2 Related work

Early work by the current authors on Java MPI bindings is reported in [2]. A
comparable approach to creating full Java MPI interfaces has been taken by

2

MPI datatype Java datatype
MPJ.BYTE byte

MPJ.CHAR char

MPJ.SHORT short

MPJ.BOOLEAN boolean

MPJ.INT int

MPJ.LONG long

MPJ.FLOAT float

MPJ.DOUBLE double

MPJ.OBJECT Object

Figure 1: Basic datatypes in proposed Java binding

Getov and Mintchev [16, 10]. A subset of MPI is implemented in the DOGMA
system for Java-based parallel programming [12, 13]. A pure Java implemen-
tation of MPI built on top of JPVM has been described in [6]. So far these
systems have not attempted to use object serialization for data marshalling.

For an extensive discussion of performance issues surrounding object serial-
ization see section 3 of [11] and references therein. Work of the Karlsruhe group
is also reported in [17]. The discussion there mainly relates to serialization in
the context of fast RMI implementations. As we may anticipate, the cost of
serialization is an even more critical issue in MPI, because the message-passing
paradigm usually has lower overheads.

2 Datatypes in an MPI-like API for Java

The MPI standard is explicitly object-based. The C++ binding speci�ed in
the MPI 2 standard collects these objects into suitable class hierarchies and
de�nes most of the library functions as class member functions. The Java API
proposed in [4] follows this model, and lifts its class hierarchy directly from the
C++ binding of MPI.

In our Java version a class MPJ with only static members acts as a module
containing global services, such as initialization of the message-passing layer,
and many global constants including a default communicator COMM WORLD1. The
communicator class Comm is the single most important class in MPI. All com-
munication functions are members of Comm or its subclasses. Another class that
is relevant for the discussion below is the Datatype class. This describes the
type of the elements in the message bu�ers passed to send, receive, and other
communication functions. Various basic datatypes are prede�ned in the pack-
age. These mainly correspond to the primitive types of Java, shown in �gure
1.

1It has been pointed out that if multiple MPI threads are allowed in the same Java VM,
the default communicator cannot be obtained from a static variable. The �nal version of the
API may change this convention.

3

The methods corresponding to standard send and receive operations of MPI
are members of Comm with interfaces

void send(Object buf, int offset, int count,

Datatype datatype, int dst, int tag)

Status recv(Object buf, int offset, int count,

Datatype datatype, int src, int tag)

In both cases the actual argument corresponding to buf must be a Java array
with element type compatible with the datatype argument. If the speci�ed
type corresponds to a primitive type, the bu�er must be a one-dimensional ar-
ray. Multidimensional arrays can be communicated directly if an object type
is speci�ed, because an individual array can be treated as an object. Commu-
nication of object types implies some form of serialization and unserialization.
This could be the built-in serialization provided in current Java environments,
or (as we discuss at length in section 5) it could be some specialized serialization
tuned for message-passing.

Besides object types the draft Java binding proposal retains a model of MPI
derived datatypes. In C or Fortran bindings of MPI, derived datatypes have
two roles. One is to allow messages to contain mixed types. The other is to
allow noncontiguous data to be transmitted. The �rst role involves using the
MPI TYPE STRUCT derived data constructor, which allows one to describe the
physical layout of, say, a C struct containing mixed types. This will not work
in Java, because Java does not expose the low-level layout of its objects. In
C or Fortran MPI TYPE STRUCT also allows one to incorporate displacements
computed as di�erences between absolute addresses, so that parts of a single
message can come from separately declared arrays and other variables. Again
there is no very natural way to do this in Java. (But e�ects similar to of these
uses of MPI TYPE STRUCT can be achieved by using MPJ.OBJECT as the bu�er
type, and relying on object serialization.)

We conclude that in the Java binding the �rst role of derived dataypes should
probably be abandoned|derived types can only include elements of a single
basic type. This leaves description of noncontiguous bu�ers as the remaining
role for derived data types. Every derived data type constructable in the Java
binding has a uniquely de�ned base type. This is one of the 9 basic types
enumerated above. A derived datatype is an object that speci�es two things: a
base type and a sequence of integer displacements. (In contrast to the C and
Fortran bindings the displacements can be interpreted in terms of subscripts in
the bu�er array argument, rather than as byte displacements.)

An MPI derived dataype constructor such as MPI TYPE INDEXED, which al-
lows an arbitray indirection array, has a potentially useful role in Java. It allows
to send (or receive) messages containing values scattered randomly in some one-
dimensional array. The draft proposal incorporates versions of this and other
type constructors from MPI including MPI TYPE VECTOR for strided sections.

4

3 Adding serialization to the API

In this section we will discuss the other option for representing complex data
bu�ers in the Java API of [4]|introduction of an MPJ.OBJECT datatype.

It is natural to assume that the elements of bu�ers passed to send and
other output operations are objects whose classes implement the Serializable
interface. There are at least two ways one may consider communicating object
types in the MPI interface

1. Use the standard ObjectOutputStream to convert the object bu�ers to
byte vectors, and communicate these byte vectors using the same method
as for primitive byte bu�ers (for example, this might involve a native
method call to C MPI functions). At the destination, use the standard
ObjectInputStream to rebuild the objects.

2. Replace naive use of serialization streams with more specialized code that
uses platform-speci�c knowledge to communicate data �elds e�ciently.
For example, one might modify the standard writeObject in such a way
that a native method creates an MPI derived datatype structure describing
the layout of data in the object, the this bu�er descriptor could be passed
to a native MPI Send function.

In the second case our implementation is responsible for prepending a suitable
type descriptor to the message, so that objects can be reconstructed at the
receiving end before data is copied to them.

Evidently the �rst implementation scheme is more straightforward, and this
approach will be considered in the remainder of this section. We discuss an im-
plementation based on the mpiJava wrappers, combining standard JDK object
serialization methods with a JNI interface to native MPI. Benchmark results
presented in the next suggest that something like the second approach (or some
suitable combination of the two) deserves serious consideration, hence section 5
describes one realization of this scheme.

The original version of mpiJava was a direct Java wrapper for standard MPI.
Apart from adopting an object-oriented framework, it added only a modest
amount of code to the underlying C implementation of MPI. Derived datatype
constructors, for example, simply called the datatype constructors of the under-
lying implementation and returned a Java object containing a representation of
the C handle. A send operation or a wait operation, say, dispatched a single
C MPI call. Even exploiting standard JDK object serialization and a native
MPI package, uniform support for the MPJ.OBECT basic type complicates the
wrapper code signi�cantly.

In the new version of the wrapper, every send, receive, or collective commu-
nication operation tests if the base type of the datatype argument describing
a bu�er is OBJECT. If not|if the bu�er element type is a primitive type|the
native MPI operation is called directly, as in the old version. If the bu�er is an
array of objects, special actions must be taken in the wrapper. If the bu�er is a
send bu�er, the objects must be serialized. To support MPI derived datatypes

5

as described in the previous section, we must also take account of the possibil-
ity that the message is actually some subset of the of array of objects passed in
the bu�er argument, selected according to the displacement sequence of the de-
rived datatype. Making the Java wrapper responsible for handling derived data
types when the base type is OBJECT requires additional state in the Java-side
Datatype class. In particular the Java object may have to explicitly maintain
the displacement sequence as an array of integers.

A further set of changes to the implementation arises because the size of the
serialized data is not known in advance, and cannot be computed at the receiv-
ing end from type information available there. Before the serialized data is sent,
the size of the data must be communicated to the receiver, so that a byte receive
bu�er can be allocated. We send two physical messages|a header containing
size information, followed by the data. This, in turn, complicates the implemen-
tation of the various wait and testmethods on communication request objects,
and the start methods on persistent communication requests, and ends up re-
quiring extra state to the Java Request class. Comparable changes are needed
in the collective communication wrappers. A gather operation, for example,
involving object types is implemented as an MPI GATHER operation to collect all
message lengths, followed by an MPI GATHERV to collect possibly di�erent-sized
data vectors.

These changes were made throughout the mpiJava API, and will be included
in the next release of the software.

4 Benchmark results for multidimensional ar-

rays

For the sake of concrete discussion we will make an assumption that, in the
kind of Grande applications where MPI is likely to be used, some of the most
pressing performance issues concern arrays and multidimensional arrays of small
objects|especially arrays of primitive elements such as ints and floats. For
benchmarks we therefore concentrated on the overheads introduced by object
serialization when the objects contain many arrays of primitive elements. Specif-
ically we concentrated on communication of two-dimensional arrays with prim-
itive elements.2.

The \ping-pong" method was used to time point-to-point communication
of an N by N array of primitive elements treated as a one dimensional array
of objects, and compare it with communication of an N

2 array without using
serialization. As an intermediate case we also timed communication of a 1 by
N

2 array treated as a one-dimensional (size 1) array of objects. This allows
us to extract an estimate of the overhead to \serialize" an individual primitive
element. The code for sending and receiving the various array shapes is given
schematically in Figure 2.

2We note that there some debate about whether the Java model of multidimensional arrays
is the most appropriate one for high performance computing. There are various proposals for

6

N
2
oat vector

float [] buf = new float [N * N] ;

MPI.COMM WORLD.send(buf, 0, N * N,

MPI.FLOAT,

dst, tag) ;

float [] buf = new float [N * N] ;

MPI.COMM WORLD.recv(buf, 0, N * N,

MPI.FLOAT,

src, tag) ;

N � N
oat array

float [] [] buf = new float [N] [N] ;

MPI.COMM WORLD.send(buf, 0, N,

MPI.OBJECT,

dst, tag) ;

float [] [] buf = new float [N] [] ;

MPI.COMM WORLD.recv(buf, 0, N,

MPI.OBJECT,

src, tag) ;

1�N
2
oat array

float [] [] buf = new float [1] [N * N] ;

MPI.COMM WORLD.send(buf, 0, 1,

MPI.OBJECT,

dst, tag) ;

float [] [] buf = new float [1] [] ;

MPI.COMM WORLD.recv(buf, 0, 1,

MPI.OBJECT,

src, tag) ;

Figure 2: Send and receive operations for various array shapes.

As a crude timing model for these benchmarks, one can assume that there
is a cost tTser to serialize each primitive element of type T, an additional cost tvecser

to serialize each subarray, similar constants tTunser and t
vec
unser for unserialization,

and a cost tTcom to physically tranfser each element of data. Then the total time
for benchmarked communications should be

t
T[N2] = c+ t

T
comN

2 (1)

t
T[1][N2] = c

0 + (tTser + t
T
com + t

T
unser)N

2 (2)

t
T[N][N] = c

00 + (tvecser + t
vec
unser)N +

(tTser + t
T
com + t

T
unser)N

2 (3)

These formulae do not attempt to explain the constant initial overhead, don't
take into account the extra bytes for type description that serialization in-
troduces into the stream, and ignore possible non-linear costs associated with
analysing object graphs, etc. Empirically these e�ects are small for the range
of N we consider.

All measurements were performed on a cluster of 2-processor, 200 Mhz Ultra-
Sparc nodes connected through a SunATM-155/MMF network. The underlying
MPI implementation was Sun MPI 3.0 (part of the Sun HPC package). The
JDK was jdk1.2beta4. Shared memory results quoted are obtained by running
two processes on the processors of a single node. Non-shared-memory results
are obtained by running peer processes in di�erent nodes.

for optimized HPC array class libraries [15]. See section 6 for some further discussion.

7

t
byte
ser = 0.043 t

oat
ser = 2.1 t

vec
ser = 100

t
byte
unser = 0.027 t

oat
unser = 1.4 t

vec
unser = 53

t
byte
com = 0:062y t

oat
com = 0:25y

t
byte
com = 0:008x t

oat
com = 0:038x

Table 1: Estimated parameters in serialization and communication timing
model. The t

T
com values are respectively for non-shared memory (y) and shared

memory (x) implementations of the underlying communication. All timings are
in microseconds.

In a series of measurements, element serialization and unserialization timing
parameters were estimated by independent benchmarks of the serialization code.
The parameters tvecser and t

vec
unser were estimated by plotting the di�erence between

serialization and unserialization times for T[1][N2] and T[N][N]3. The raw

communication speed was estimated from ping-pong results for t
T[N2]. Table

1 contains the resulting estimates of the various parameters for byte and float

elements.
Figure 3 plots actual measured times from ping-pong benchmarks for the

mpiJava sends and receives of arrays with byte and float elements. In the
plots the array extent, N , ranges between 128 and 1024. The measured times for

t
T[N2], tT[1][N

2] and t
T[N][N] are compared with the formulae given above

(setting the c constants to zero). The agreement is good, so our parametrization
is assumed to be realistic in the regime considered.

According to table 1 the overhead of Java serialization nearly always domi-
nates other communiation costs. In the worst case|
oating point numbers|it
takes around 2 microseconds to serialize each number and a smaller but compa-
rable time to unserialize. But it only takes a few hundredths of a microsecond to
communicate the word through shared memory. Serialization slows communica-
tion by nearly two orders of magnitude. When the underlying communication is
over a fast network rather than through shared memory the raw communication
time is still only a fraction of a microsecond, and serialization still dominates
that time by about one order of magnitude. For byte elements serialization costs
are smaller, but still larger than the communication costs in the fast network
and still much larger than the communication cost through shared memory.
Serialization costs for int elements are intermediate.

The constant overheads for serializing each subarray, characterized by the
parameters t

vec
ser and t

vec
unser are also quite large, although, for the array sizes

considered here they only make a dominant contribution for the byte arrays,
where individual element serialization is relatively fast.

3Our timing model assumed the values of these parameters is independent of the element
type. This is only approximately true, and the values quoted in the table and used in the
plotted curves are averages. Separately measured values for byte arrays were smaller than
these averages, and for int and float arrays they were larger.

8

0 128 256 384 512 640 768 896 1024
N

0

50

100

150

200

250

300

m
ill

is
ec

s
NON−SHARED MEMORY

BYTE

 byte [N][N], MPI.OBJECT
 byte [1][NxN], MPI.OBJECT
 byte [NxN], MPI.BYTE

0 128 256 384 512 640 768 896 1024
N

0

50

100

150

200

250

300

m
ill

is
ec

s

SHARED MEMORY
BYTE

 byte [N][N], MPI.OBJECT
 byte [1][NxN], MPI.OBJECT
 byte [NxN], MPI.BYTE

0 128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
ill

is
ec

s

NON−SHARED MEMORY
FLOAT

 float [N][N], MPI.OBJECT
 float [1][NxN], MPI.OBJECT
 float [NxN], MPI.FLOAT

0 128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500
m

ill
is

ec
s

SHARED MEMORY
FLOAT

 float [N][N], MPI.OBJECT
 float [1][NxN], MPI.OBJECT
 float [NxN], MPI.FLOAT

Figure 3: Communication times from Pingpong benchmark in non-shared-
memory and shared-memory cases, compared with model de�ned by Equations
1 to 3 and Table 1.

5 Reducing serialization overheads for arrays

The work of [17] and others has established that there is considerable scope to
optimize the JDK serialization software. Here we pursue an alternative that
is interesting from the point of view of ultimate e�ciency in messaging APIs,
namely to replace calls to the writeObject, readObject methods with special-
ized, MPI-speci�c, functions. A call to standard writeObject, for example,
might be replaced with a native method that creates a native MPI derived
datatype structure describing the layout of data in the object. This would
provide the conceptually straightforward object serialization model at the user
level, while retaining the option of fast (\zero-copy") communication strategies
inside the implementation.

Implementing this general scheme for every kind of Java object is di�cult

9

data Vector

send buffer

Array-

Stream
Output-

receive buffer

Sender

MPI_RECV

MPI_TYPE_STRUCT

MPI_SEND

write array elements

reconstruct objects

"data-less" byte stream

element data

MPI_TYPE_STRUCT

data Vector

Receiver

Stream
Input-
Array-

Figure 4: Improved protocol for handling arrays.

or impractical because the JVM hides the internal representation of most ob-
jects. Less ambitiously, we can attempt to eliminate the serialization and copy
overheads for arrays of primitive elements embedded in the serialization stream.
The general idea is to produce specialized versions of ObjectOutputStream and
ObjectInputStream that yield byte streams identical to the standard version
except that array data is omitted from those streams. The \data-less" byte
stream is sent as a header. This allows the objects to be reconstructed at the
receiving end. The array data is then sent separately using, say, suitable native
MPI TYPE STRUCT types to send all the array data in one logical communication.
In this way the serialization overhead parameters measured in the benchmarks of
the previous section can drastically reduced or eliminated. An implementation
of this protocol is illustrated in Figure 4.

A customized version of ObjectOutputStream called ArrayOutputStream

behaves in exactly the same way as the original stream except when it encoun-
ters an array. When an array is encountered a small object of type ArrayProxy
is placed in the stream. This encodes the type and size of the array. The array
reference itself is placed in a separate container called the \data vector". When
serialization is complete, the data-less byte stream is sent to the receiver. A piece
of native code unravels the data vector and sets up a native derived type, then
the array data is sent. At the receiving end a customized ArrayInputStream

behaves exactly like an ObjectInputStream, except that when it encounters an
ArrayProxy it allocates an array of the appropriate type and length and places
a handle to this array in the reconstructed object graph and in a data vector
container. When this phase is completed we have an object graph containing
uninitialized array elements and a data vector, created as a side e�ect of unseri-
alization. A native derived data type is constructed from the data vector in the

10

class ArrayOutputStream extends ObjectOutputStream f
Vector dataVector ;

public Object replaceObject(Object obj) f
if(obj instanceof int []) f

dataVector.addElement(obj)

return new ArrayIntProxy(((int []) obj).length) ;

g
... deal with other primitive array types ...

else

return obj

g
g

class ArrayInputStream extends ObjectInputStream f
Vector dataVector ;

public Object resolveObject(Object obj) f
if(obj instanceof ArrayIntProxy) f

int dat = new int [((ArrayIntProxy) obj).length] ;

dataVector.addElement(dat)

return dat ;

g
... deal with other array proxy types ...

else

return obj

g
g

Figure 5: Pseudocode for ArrayOutputStream and ArrayInputStream

same way as at the sending end, and the data is received into the reconstructed
object in a single MPI operation.

Our implementation of ArrayOutputStream and ArrayInputStream is strai-
ghtforward. The standard ObjectOutputStream provides a method, replace-
Object, which can be overridden in subclasses. ObjectInputStream provides
a corresponding resolveObject method. Implementation of the customized
streams is sketched in Figure 5.

Figure 3 shows the e�ect this change of protocol has on the original timings.
As expected, eliminating the overheads of element serialization dramatically
speeds communication of
oat arrays (for example) treated as objects, bringing
bandwidth close to the raw performance available with MPJ.FLOAT.

The fairly simple-minded prototype implementation increased the overhead
of communicating each one-dimensional array (parametrized by t

vec
ser and t

vec
unser

in the previous section). This overhead typically dominates the time for com-
municating two-dimensional byte arrays (where the element serialization cost
is less extreme), so performance actually ends up being worse. A more highly
tuned implementation could probably reduce this problem. Alternatively we
can go a step further with our protocol, and have the serialization stream ob-
ject directly replace two-dimensional arrays of primitive elements4. The bene�ts

4De�ned to be arrays of objects, each element being an array of primitive type of the same

11

128 256 384 512 640 768 896 1024
N

0

100

200

300

m
ill

is
ec

s

NON−SHARED
BYTE

byte [N][N], MPI.OBJECT
byte [1][NxN], MPI.OBJECT

128 256 384 512 640 768 896 1024
N

0

100

200

300

m
ill

is
ec

s

SHARED MEMORY
BYTE

byte [N][N], MPI.OBJECT
byte [1][NxN], MPI.OBJECT

128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
ill

is
ec

s

NON−SHARED MEMORY
FLOAT

float [N][N], MPI.OBJECT
float [1][NxN], MPI.OBJECT

128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
ill

is
ec

s

SHARED MEMORY
FLOAT

float [N][N], MPI.OBJECT
float [1][NxN], MPI.OBJECT

Figure 6: Pingpong timings with primitive array data sent separately (solid
points), compared with results in Figure 3.

12

128 256 384 512 640 768 896 1024
N

0

100

200

300

m
ill

is
ec

s
NON−SHARED

BYTE

byte [N][N], MPI.OBJECT
byte [1][NxN], MPI.OBJECT

128 256 384 512 640 768 896 1024
N

0

100

200

300

400

500

m
ill

is
ec

s

SHARED MEMORY
BYTE

byte [N][N], MPI.OBJECT
byte [1][NxN], MPI.OBJECT

128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
ill

is
ec

s

NON−SHARED MEMORY
FLOAT

float [N][N], MPI.OBJECT
float [1][NxN], MPI.OBJECT

128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500
m

ill
is

ec
s

SHARED MEMORY
FLOAT

float [N][N], MPI.OBJECT
float [1][NxN], MPI.OBJECT

Figure 7: Timings allowing two-dimensional array proxies in the object stream
(solid points).

of this approach are shown in Figure 7.
This process could continue almost inde�nitely|adding special cases for ar-

rays and other structures considered critical to Grande applications. Currently
we do not envisage pushing this approach any further than two-dimensional
array proxies. Of course three-dimensional arrays and higher will automati-
call bene�t from the optimization of their lower-dimensional component arrays.
Recognizing a rectangular two-dimensional arrays already adds some unwanted
complexity to the serialization process5.

type and length.
5It can also introduce some unexpected behaviour. Our version subtly alters the semantics

of serialization, because it does not detect of aliasing of rows (either with other rows of
the same two-dimensional array, or with one-dimensional primitive arrays elsewhere in the
stream). Hence the reconstructed object graph at the receiving end will not reproduce such
aliasing. Whether this is a serious problem is unclear.

13

6 Discussion

In Java, the object serialization model for data marshalling has various advan-
tages over the MPI derived type mechanism. It provides much (though not all)
of the
exibility of derived types, and is presumably simpler to use. Object
serialization provides a natural way to deal with Java multidimensional arrays.
Such arrays are likely to be common in scienti�c programming.

Our initial implementation of automatic object serialization in the context of
MPI was impaired by performance of the serialization code in the current Java
Development Kit. Bu�ers were serialized using standard technology from the
JDK. The benchmark results from section 4 showed that this implementation of
serialization introduces very large overheads relative to underlying communica-
tion speeds on fast networks and symmetric multiprocessors. Similar problems
were reported in the context of RMI implementations in [11]. In the context
of fast message-passing environments (not surprisingly) the issue is even more
critical. Overall communication performance can easily be downgraded by an
order of magnitude or more.

The standard Java serialization framework allows the programmer to pro-
vide optimized serialization and unserialization methods for particular classes,
but in scienti�c programming we are often more concerned with the speed of op-
erations on arrays, and especially arrays of primitive types. The standard Java
framework for serialization does not provide a direct way to handle arrays, but
in section 5 we customized the object streams themselves by suitably de�ning
the replaceObject, resolveObject methods.

Our optimizations are somewhat dependent on the assumption that repre-
sentation of primitive elements (their byte-order, for example) is the same in
sender and receiver. This is commonly the case in MPI applications, where clus-
ters are often homogeneous. In general an MPI-like package can always know
in advance if sender and receiver have di�erent layouts, and need only convert
to an external representation if they do not.

A di�erent approach was taken by the authors of [17]. They opted for an
extensive reimplemention of the JDK serialization code, to better support their
optimized RMI. While their ideas can certainly bene�t message-based APIs
as well, they do not immediately support the \zero-copy" strategy we strive
for here, whereby large arrays are removed from the serialization stream and
dealt with separately|potentially by platform-speci�c software. In our case the
platform-speci�c software was a native MPI binding, but in principle similar
strategies could apply to other devices (such as a binding to VIA).

Given that the e�ciency of object serialization can be improved dramatically|
although probably it will always introduce a non-zero overhead|a reasonable
question is whether a Java interface should dispense entirely with vestiges of
MPI derived datatypes. We consider this case unproven. The MPI mecha-
nism allows non-contiguous sections of a bu�er to be sent directly. In practise
implementations of MPI derived types, even in the C domain, have often had
disappointing performance. But we note that VIA provides some low-level sup-
port for communicating non-contiguous bu�ers, and that recently there has been

14

interest in producing Java bindings of VIA [5, 18]. So perhaps in the future it
will become possible to support derived types quite e�ciently in Java. We have
emphasized the use of object serialization as a way of dealing with communi-
cation of Java multidimensional arrays. Assuming the Java model of multidi-
mensional arrays (arrays of arrays), we suspect serialization is the most natural
way of communicating them. Note however, that there is an active discussion
(especially in Numerics Working Group of the Java Grande Forum) about how
Fortran-like multidimensional rectangular arrays could be best supported into
Java. Container class APIs have been proposed, and there are further propos-
als for compiler optimization by semantic inlining of accessor methods, or even
true syntax extensions. The visibility or otherwise of the internal storage in the
multidimensional container classes is subject to debate, but a reasonable guess
is that multidimensional array sections will be represented as strided sections of
some standard one-dimensional Java array. In this case the best choice for com-
municating array sections may come back to using MPI-like derived datatypes
similar to MPI TYPE VECTOR.

In any case|whether or not MPI derived data types survive in Java|the
need to support object serialization in a message-passing API seems relatively
clear.

References

[1] Mark Baker, Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Xinying
Li. mpiJava: A Java interface to MPI. In First UK Workshop on Java

for High Performance Network Computing, Europar '98, September 1998.
http://www.cs.cf.ac.uk/hpjworkshop/.

[2] Bryan Carpenter, Yuh-Jye Chang, Geo�rey Fox, Donald Leskiw, and Xi-
aoming Li. Experiments with HPJava. Concurrency: Practice and Experi-

ence, 9(6):633, 1997.

[3] Bryan Carpenter, Geo�rey Fox, Guansong Zhang, and Xinying Li. A draft
Java binding for MPI., November 1997.
http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html.

[4] Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum, and Ge-
o�rey Fox. MPI for Java: Position document and draft API speci�ca-
tion. Technical Report JGF-TR-3, Java Grande Forum, November 1998.
http://www.javagrande.org/.

[5] Chi-Chao Chang and Thorsten von Eiken. Interfacing Java to the Virtual
Interface Architecture. In ACM 1999 Java Grande Conference. ACM Press,
June 1999.

[6] Kivanc Dincer. jmpi and a performance instrumentation analysis and
visualization tool for jmpi. In First UK Workshop on Java for

15

High Performance Network Computing, Europar '98, September 1998.
http://www.cs.cf.ac.uk/hpjworkshop/.

[7] Geo�rey C. Fox, editor. Java for Computational Science and Engineering|
Simulation and Modelling, volume 9(6) of Concurrency: Practice and Ex-

perience, June 1997.

[8] Geo�rey C. Fox, editor. Java for Computational Science and Engineering|
Simulation and Modelling II, volume 9(11) of Concurrency: Practice and

Experience, November 1997.

[9] Geo�rey C. Fox, editor. ACM 1998 Workshop on Java for High-

Performance Network Computing. Palo Alto, February 1998, volume 10(11-
13) of Concurrency: Practice and Experience, 1998.

[10] Vladimir Getov, Susan Flynn-Hummel, and Sava Mintchev. High-
performance parallel programming in Java: Exploiting native libraries. In
ACM 1998 Workshop on Java for High-Performance Network Computing.

Palo Alto, February 1998, volume 10(11-13) of Concurrency: Practice and
Experience, 1998.

[11] Java Grande Forum. Java Grande Forum report: Making Java work for
high-end computing. Technical Report JGF-TR-1, Java Grande Forum,
November 1998. http://www.javagrande.org/.

[12] Glenn Judd, Mark Clement, and Quinn Snell. DOGMA: Distributed object
group management architecture. In ACM 1998 Workshop on Java for

High-Performance Network Computing. Palo Alto, February 1998, volume
10(11-13) of Concurrency: Practice and Experience, 1998.

[13] Glenn Judd, Mark Clement, and Quinn Snell. Desigin issues for e�cient
implementation of MPI in Java. In ACM 1999 Java Grande Conference.
ACM Press, June 1999.

[14] Message Passing Interface Forum. MPI: A Message-Passing Inter-

face Standard. University of Tenessee, Knoxville, TN, June 1995.
http://www.mcs.anl.gov/mpi.

[15] S.P. Midki�, J.E. Moreira, and M. Snir. Optimizing array reference check-
ing in Java programs. IBM Systems Journal, 37(3):409, 1998.

[16] Sava Mintchev and Vladimir Getov. Towards portable message passing in
Java: Binding MPI. Technical Report TR-CSPE-07, University of West-
minster, School of Computer Science, Harrow Campus, July 1997.

[17] Christian Nester, Michael Philippsen, and Bernhard Haumacher. A more
e�cient RMI for Java. In ACM 1999 Java Grande Conference. ACM Press,
June 1999.

[18] Matt Welsh. Using Java to make servers scream. Invited talk at ACM 1999
Java Grande Conference, San Francisco, CA, June, 1999.

16

