
An Annotation-aware JVM Implementation

Ana Azevedo�, Alex Nicolau Joe Hummel

University of California, Irvine University of Illinois, Chicago

aazevedo, nicolau@ics.uci.edu jhummel@eecs.uic.edu

July 1999.
To Submit to ACM CPandE 1999

Abstract

The Java Bytecode language lacks expressiveness for traditional compiler optimizations, making this

portable, secure software distribution format ine�cient as a program representation for high performance.

This ine�ciency results from the underlying stack model, as well as the fact that many bytecode oper-

ations intrinsically include sub-operations (e.g., iaload includes the address computation, array bounds

checks and the actual load of the array element). The stack model, with no operand registers and limiting

access to the top of the stack, prevents the reuse of values and bytecode reordering. In addition, the

bytecodes have no mechanism to indicate which sub-operations in the bytecode stream are redundant or

subsumed by previous ones. As a consequence, the Java Bytecode language inhibits the expression of

important compiler optimizations, including common sub-expression elimination, register allocation and

instruction scheduling.

The bytecode stream generated by the Java front-end is a signi�cantly under-optimized program

representation. The most common solution to overcome this aspect of the language is the use of a Just-

in-Time (JIT) compiler to not only generate native code, but perform optimization as well. However, the

latter is a time consuming operation in an already time-constrained translation process. In this paper

we present an alternative to an optimizing JIT compiler that makes use of code annotations generated

by the Java front-end. These annotations carry information concerning compiler optimization. During

the translation process, an annotation-aware JVM system then uses this information to produce high-

performance native code without performing much of the necessary analyses or transformations. We

describe the implementation of our �rst prototype of an annotation-aware JVM system consisting of a

JIT compilation system. We also discuss basic ideas on how to verify annotated class �les. We conclude

the paper showing performance results comparing our system with other Java Virtual Machines (JVMs)

running on SPARC architecture.

�This work supported in part by CAPES.

1

1 Introduction

The Java Bytecodes are emerging as a software distribution language for both its portability and safety

features. The portability property of the language is ensured by the platform-independent stack machine

model targeted by Java compilers. On the target machine, this intermediate code representation is either

interpreted [18], or compiled into native code using traditional ahead-of-time [15] or just-in-time compilers [1,

2, 4, 17, 19, 20, 27]. The safety features of the language are based on the security violation checks performed

at load and run-time [12]. Such checks include enforcement of methods and variables access modi�ers, strict

type-checking and array bounds checking. Many of these checks are implicit in the bytecodes, forcing the

JVM to perform them unless it can prove at load-time (via analysis) that the checks are unnecessary.

In the design of the Java Bytecode language, a great deal of e�ort was spent to make it secure and

portable. However, in order to be widely accepted, it must also yield e�cient execution on a wide range

of machine architectures. Unfortunately this is the weakest aspect of the language and is currently the

focus of much research. The ine�cient execution of Java Bytecode programs lies with the de�nition of

the bytecodes themselves. The language is poor for conveying the result of many common and important

compiler optimizations that are traditionally expressed in the native code generated by optimizing compilers.

The direct translation of a bytecode stream generated by a Java front-end into target machine code results

in low-quality code.

The �rst limitation in expressing compiler optimization is the stack model of the Java Bytecodes. This

model provides no registers and restricts access to only the top element of the stack. Restricting access

to the top of the stack prevents the reordering of bytecodes, a necessary transformation during instruction

scheduling. And without registers to hold values, the stack model sequentializes computation and prevents

the reuse of values (since again, only the top is accessible). Obviously, the lack of registers also prevents the

expression of register allocation, a critical and potentially time-consuming optimization.

The second limitation of the Java Bytecodes as a program representation is the fact that many bytecodes

intrinsically encapsulate many machine sub-operations (e.g., iaload includes the address computation, array

bounds checks and the actual load of the array element). The Java front-end can detect when sub-operations

are redundant or subsumed by preceding sub-operations, and can try to apply traditional code-improving

transformations in order to eliminate these sub-operations. However, the compiler is still limited by the

stack-based nature of the Java Bytecodes, in which sub-operations cannot easily be separated, eliminated

or rearranged. Furthermore, there is no mechanism in the language to disable sub-operations when deemed

unnecessary. For this reason, straighforward compiler optimizations such as common sub-expression elimi-

nation, array bounds check elimination and loop-invariant code removal have limited expressiveness in Java

Bytecodes.

To demonstrate these limitations, consider the example in Figure 1. This example assumes that a RISC-

like, three address code Intermediate Representation (IR) is used in the Java front-end to bytecode compiler.

2

The leftmost column shows the unoptimized IR1 corresponding to the Java code at the top of Figure 1. The

middle column shows the result of performing some simple optimizations, such as loop invariant removal of

expression offset1 + offset2 and the array size reference. After optimizing this IR, the compiler is then

able to produce the optimized bytecode stream shown in the last column. However, additional optimizations

are possible that cannot be expressed in the �nal bytecode. For example, the sub-operations comprising

array element accesses represent common sub-expressions and thus one could be eliminated (the index is

the same for accessing the integer arrays a and b and therefore the array index computation in lines 6-7

and 12-13 in the leftmost column are redundant). Likewise, given the bounds on the loop, all array bounds

checks involving a are unnecessary (and those involving b could be reduced to a single check before the loop

starts). Clearly, the resulting bytecode has room for improvement.

Java Code
public static void foo(int a[], int b[], int offset1, int offset2){
 for (int i=0; i<a.length; i++)
 a[i] = b[i] + offset1 + offset2;
}

IR Optimized IR Optimized Bytecode

 1 : smovi 0, i
 2 : aadd a, "arraySizeOffset", T1
 3 : ild (T1), T2
 4 : icmpge i, T2, T3
 5 : br T3 (18)
 6 : ishl i, "ishift", T5
 7 : iadd T5, "arraySizeOffset", T6
 8 : aadd b, T6, T7
 9 : ild (T7), T4
10 : iadd T4, offset1, T8
11 : iadd T8, offset2, T9
12 : ishl i, "ishift", T10
13 : iadd T10, "arraySizeOffset", T11
14 : aadd a, T11, T12
15 : ist T9, (T12)
16 : iadd i, 1 , i
17 : jmp (2)
18 : return

 1 : iadd offset1, offset2, T1
 2 : smovi 0 , i
 3 : aadd a, "arraySizeOffset", T2
 4 : ild (T2), T3
 5 : icmpge i, T3, T4
 6 : br T4 (16)
 7 : ishl i, "ishift", T6
 8 : iadd T6, "arraySizeOffset", T7
 9 : aadd b, T7, T8
10 : ild (T8), T5
11 : iadd T5, T1, T9
12 : aadd a, T7, T10
13 : ist T9, (T10)
14 : iadd i, 1 , i
15 : jmp (5)
16 : return

 0 iload_2
 1 iload_3
 2 iadd
 3 istore 5
 5 aload_0
 6 arraylength
 7 istore 6
 9 iconst_0
 10 istore 4
 12 goto 29
 15 aload_0
 16 iload 4
 18 aload_1
 19 iload 4
 21 iaload
 22 iload 5
 24 iadd
 25 iastore
 26 iinc 4 1
 29 iload 4
 31 iload 6
 33 if_icmplt 15
 36 return

Figure 1: Java Bytecodes as a language for program representation

The implication is that even though the Java front-end can compile a program into a clean and optimized

sequence of bytecodes, a JIT compiler will still need to perform signi�cant optimization in order to generate

high-quality native code. This in turn implies that a JIT compiler will have to perform bytecode analysis

to extract information about the program for the purposes of optimization. This introduces a potentially

signi�cant overhead in an already time-constrained JIT system. In this paper we present an alternative

to the traditional optimizing JIT compiler based on bytecode annotations. In our annotation-aware JIT

(AJIT) compilation system, the translation of bytecodes into high-performance native code is accomplished

with the help of extra analysis information carried along with the bytecodes in the form of annotations. Our

idea of Java Bytecode annotations was �rst introduced in [16]; in this paper we present the details of the

1Array bound checks have been omitted.

3

implementation of our annotation-aware JIT system. In particular, we show how annotations are e�ective

in carrying information concerning register allocation, common sub-expressions and value propagation. We

also discuss the basic security checks that are necessary to validate untrusted annotated Java class �les.

We �nalize the paper presenting some initial results on the performance of the code generated by our

AJIT system, demonstrating that our approach outperforms other JVM implementations on the SPARC

architecture.

The format of this paper is as follows. In the next section we present the structure of our annotation

generating Java front-end and discuss the types and formats of the annotations implemented in our �rst pro-

totype. We also provide details concerning our compile-time register allocator that produces the annotations

in support of dynamic register allocation. In Section 3 we discuss our annotation-aware JIT (AJIT) system

and show how it uses annotations to implement run-time register allocation and produce native code. In

Section 4 we talk about the VRA annotations veri�cation process. In in Section 5 we discuss related work.

Finally Section 6 presents some preliminary results on the performance of our AJIT system, followed by our

conclusions and discussion of future work in Section 7.

2 Annotation-Generating Compilation System

The idea of annotating a program representation with analysis information produced by a front-end compiler

stems from the need to reduce the workload of run-time code optimizing systems. We have chosen to annotate

the Java Bytecode representation, given its commerical success and widespread availability induced by its

write-once-run-anywhere capability. However, the concept of annotations is a general one, and thus can be

applied to any program representation.

Our annotation types and formats vary with the kind of information that needs to be conveyed to the

run-time code optimizing system. For example, it may consist of high-level program information that is

not expressible in the lower-level program representation, or compile-time analysis information that is too

time consuming to produce at run-time. Figure 2 gives an overview of a general annotation-generating

compilation system with a number of di�erent annotations that we are currently working on. During the

initial Java to bytecode translation, our annotation-generating compiler behaves as a traditional compiler.

It builds a three-address code intermediate representation
exible enough to represent all the sub-operations

that form each bytecode. On this IR traditional code-improving techniques (e.g., copy propagation, common

sub expression elimination, loop invariant code removal and register allocation) are applied and an optimized

IR produced. Once this stage has been reached, each operation (or sequence of operations) is translated

into an optimized stream of Java Bytecodes. Next, an annotation generator also reads the optimized IR,

along with the data provided by various compiler analyses, and produces a set of annotations. Finally, the

compiler performs a mapping phase in which the bytecode operations are paired with their corresponding

IR operations and annotations, and then stores the annotated bytecode into the appropriate class �le.

4

For example, in the case of the Virtual Register Allocation (VRA) annotations (to be explained shortly),

each bytecode is annotated with the source and destination registers allocated to the operands of that Java

IR operation. Then, the bytecode stream is copied into the code attribute section of the class �le together

with the annotations, the latter being stored as an extra code attribute. Storing annotations in this way

guarantees backward compatibility with existing JVMs, which by de�nition must ignore unknown code

attributes [12].

Annotation-Generating Compiler
front end

Optimized Bytecodes

Annotations Generator

Source Code
(Java, C, C++...)

VRA
annotations

run-time
checks

annotations

memory
reference

tags
annotations

memory
lifetimes

annotations

Mapping
Annotations to

Bytecode
operations

alternative
VLIW-like
schedules

annotations

profiling info for
branches and loops

annotations

array range checks analysis

object lifetime analysis

dataflow analysis

control flow analysis

Parser

Java IR

Optimized
 Java IR

Code
 Optimization

constant folding,
copy propagation,
CSE,
loop invariant removal
...

Annotated
Optimized
Bytecodes

Annotations

Annotation-aware JIT
Compilation System

Bytecodes Annotations

run-time Code
Optimization

optimized
native code

register
allocation

Code Generation

instruction
selection

Garbage
Collection

run-time
IR

high level source code info

Figure 2: Annotation generating compiler and annotation aware JIT (AJIT) system

Our annotation-generating compiler was built on the freely available Java Bytecode compiler guavac

version 0.3.1 [25]. From the Java source code, this compiler generates a parse tree and produces bytecodes.

We augmented the compiler by (a) introducing functions for building and manipulating a three-address code

IR, (b) implementing compiler optimizations for common sub-expression elimination, copy propagation and

virtual register allocation, and (c) designing a Virtual Register Allocation annotation generator. This paper

focuses in particular on the VRA annotations. The remaining annotations, as presented in Figure 2, are

discussed in [16] or represent future work (see Section 7).

Virtual Register Allocation annotations represent the result of performing register allocation assuming

an in�nite number of virtual registers. The information provided by the VRA annotations can then be used

by a JVM engine, either an interpreter or a JIT compiler, to perform a fast and e�cient dynamic register

allocation and also to indicate which bytecodes (or bytecode sub-operations) are redundant 2 or subsumed

by preceding operations; such operations need not be translated into native code. In Section 3 we show in

detail how a JIT compiler interprets these annotations, does register allocation, and produces native code. In

the remainder of this current section we discuss the format of VRA annotations and how the Java front-end

compiler produces them.

Each instruction de�ned in the Java Bytecode language is mapped into operations in our Java IR. Anno-

2As discussed earlier, redundant bytecodes appear in the optimized bytecode stream due to the stack machine model.

5

tations for virtual register allocation basically hold information on the operands of the Java IR operations.

The VRA annotations represent source operands, destination operands, and any intermediate values implic-

itly calculated by the bytecode sub-operations (e.g., array index calculation in an array load operation). For

each bytecode operation type there is a distinct VRA annotation format. A format may have variations

at di�erent program points indicating how a particular bytecode sub-operation should be translated: where

to read its input operands, where to write the result, and perhaps whether or not this operation should be

skipped entirely (e.g. when a previous operation has already computed the needed value).

Figure 3 shows an example of correspondence between bytecodes, Java IR and VRA annotations for-

mats. Each SRC, EXTRA and DEST �elds hold virtual register numbers representing the operands for the

sub-operations. In Case 1 of Figure 3, the Java IR code sequence for the computation performed by the

bytecode iaload is illustrated. The most general format of an iaload operation includes 2 SRC �elds, 2

EXTRA �elds and one DEST �eld with SRC-SRC-EXTRA-EXTRA-DEST as annotation header format. The �rst SRC

�eld represents the virtual register that holds the array object reference; the second SRC �eld represents the

virtual register that holds the index; the �rst EXTRA �eld represents the result of the array index calculation;

the last EXTRA �eld represents the result of the array address calculation; and the DEST �eld represents the

virtual register holding the array element read from memory. If the address computation has already been

computed, as in Figure 3 Case 2, the header SRC-DEST indicates that the SRC �eld holds the array element

address and DEST �eld is the suggested virtual register to hold the value read from memory, meaning that

the translation process can skip the sub-operations for array index and address calculation and the bytecode

iaload can be translated into a single load operation.

Bytecode Java IR

iaload

V0 holds array address
V1 holds index

1 : ishl V1, "ishift", V2
2 : iadd V2, "arraySizeOffset", V2
3 : aadd V0, V2, V3
4 : ild (V3), V4

Annotated Bytecode
opcode SRC SRC EXTRA EXTRA DEST
iaload V0 V1 V2 V3 V4

Case 1: Array element address calculation and array load

Bytecode Java IR

iaload V0 holds array element address

4 : ild (V0), V1

Annotated Bytecode
opcode SRC DEST
iaload V0 V1

Case 2: Array load

Figure 3: Example of VRA annotations for iaload operation

In Figure 4, we show how local variables and class member variables are represented in our Java IR.

Local variables are directly mapped to virtual registers. Local variable accesses (e.g, iload and istore) are

represented in our Java IR as nop operations or move operations, annotated as SRC-DEST, CONST-DEST, or

6

Bytecode Java IR

iload

VRA Annotation Formats

nop SRC

imov CONST, V1
imov V1, V2 SRC DEST

CONST DESTistore

nop SRC

Figure 4: Example of Java IR and VRA annotations for local variables accesses

SRC, depending on the result of optimizing the Java IR via copy propagation. When the JVM interprets the

annotation format SRC it has the information that the local variable is in a virtual register indicated by the

byte following the format header but no machine code is generated for the bytecode. Class member variables

are kept as variables in memory in our front-end compiler and accessed via load and store operations, as

shown in Figure 5 for bytecodes getstatic, putstatic, getfield and putfield. As a consequence, these

variables are also kept in memory in our AJIT system. To enable some optimization on accesses to class

member variables, we devised annotations that make explicit the variable address calculation, just like those

in array references. For example, bytecode getfield has the di�erent annotation formats SRC-DEST and

SRC-EXTRA-EXTRA-DEST which state whether or not the variable's address has already been computed.

A complete listing of all Java Bytecode operation types, the corresponding Java IR operations and VRA

annotations formats can be found in the Appendix (Section 8).

The choice of which virtual register to hold an operation's operands is crucial to the register allocation

done at run-time. In order to enable a fast and e�cient dynamic register allocation, the VRA annotations

must convey the order in which variables should be allocated to physical registers (and thus which should be

spilled if necessary). This is accomplished by assigning, at compile-time, the lowest virtual register numbers

to the most important variables in the code. Then, at run-time, the register allocator should assign the

lowest virtual register numbers to the physical machine registers. The details of our compile-time register

allocation algorithm are presented in Section 2.1.

When designing the VRA annotations we opted for a format that was easy for the run-time system to

decode so that processing the annotations would incur minimal overhead. The general VRA annotation

formats include a byte-long header followed by a variable number of bytes representing the virtual register

numbers. The header indicates how the subsequent annotation bytes should be interpreted. In our �rst

prototype, we did not try to optimize the space consumed by the annotations, and thus we found that our

annotations can double the size of the bytecode stream [16]. Another, potentially more signi�cant problem

is that of veri�cation: to maintain security, a scheme is needed to verify the safety of the annotations in the

class �le, as malicious or incorrect annotations can lead to unsafe native code. A discussion on verifying

annotated class �le is carried out in Section 4.

7

Bytecode Java IR VRA Annotation Formats

EXTRA DEST

SRC DEST

SRC

SRC

SRC DEST

CONST DEST

nop

SRC

SRC

pufield

amovi �offsetOfField�, V3
aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st V1, (V4)

aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st V1, (V4)

amovi �addressOfObject, V2
amovi �offsetOfField�, V3
aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st CONST, (V4)

amovi �offsetOfField�, V3
aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st CONST, (V4)

aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st CONST, (V4)

CONST EXTRA EXTRA EXTRA

SRC SRC EXTRA EXTRA

CONST SRC EXTRA EXTRA

SRC SRC SRC EXTRA

CONST SRC SRC EXTRA

{b,c,s,i,l,d,f,a}mov V1, V2
{b,c,s,i,l,d,f,a}mov CONST, V1

amovi �addressOfClassField�, V1
{b,c,s,i,l,d,f,a}ld (V1), V2

{b,c,s,i,l,d,f,a}ld (V1), V2

nop

getstatic

amovi �addressOfClassField�, V2
{b,c,s,i,l,d,f,a}st V1, (V2)

{b,c,s,i,l,d,f,a}st V1, (V2)

putstatic amovi �addressOfClassField�, V2
{b,c,s,i,l,d,f,a}st CONST, (V2)

{b,c,s,i,l,d,f,a}st CONST, (V2)

SRC EXTRA

CONST EXTRA

SRC SRC

CONST SRC

{b,c,s,i,l,d,f,a}mov V1, V2 SRC DEST

CONST DEST

nop
{b,c,s,i,l,d,f,a}mov CONST, V2

getfield

amovi �addressOfObject, V1
amovi �offsetOfField�, V2
aadd V1, V2, V3
{b,c,s,i,l,d,f,a}ld (V3), V4

amovi �offsetOfField�, V2
aadd V1, V2, V3
{b,c,s,i,l,d,f,a}ld (V3), V4

aadd V1, V2, V3
{b,c,s,i,l,d,f,a}ld (V3), V4

EXTRA EXTRA EXTRA DEST

SRC EXTRA EXTRA DEST

SRC SRC EXTRA DEST

SRC DEST{b,c,s,i,l,d,f,a}ld (V1), V2

nop

amovi �addressOfObject, V2
amovi �offsetOfField�, V3
aadd V2, V3, V4
{b,c,s,i,l,d,f,a}st V1, (V4)

SRC EXTRA EXTRA EXTRA

{b,c,s,i,l,d,f,a}st V1, (V2)

{b,c,s,i,l,d,f,a}st CONST, (V1)

SRC SRC

CONST SRC

Figure 5: Example of Java IR and VRA annotations for class member variables accesses

8

2.1 Compile-time Register Allocation

In our annotation-generating compiler we implement a modi�ed priority-based graph-coloring algorithm.

In a traditional Chaitin-style graph coloring algorithm [5, 6], an interference graph is pruned to decide

the ordering in which live ranges are assigned to colors (and ultimately registers). A priority-based coloring

algorithm [7] uses heuristics and cost analyses to determine the ordering of live ranges and guarantees that the

most important live ranges are assigned colors �rst. In our compiler, variables (including method parameters,

method local variables, class variables and compiler generated temporaries) are prioritized by their static

reference counts, having references inside loops counting 10 times more and scaled by the nesting level.

After the generation of the Java IR, the compiler runs data-
ow analyses and performs copy propagation

and common sub-expression elimination. At this point loop structures are also identi�ed and static reference

counts are calculated. The �rst step of our register allocator is to build a priority list of variables using

this information. In case of matching static reference counts, the priority of a variable is dictated by the

order in which it was declared in the code. As we want to keep the number of virtual registers as small as

possible, we assign the same virtual register number to variables with non-con
icting live ranges. This is

accomplished by building the interference graph which gives us information on con
icting live ranges. Using

the information provided by the interference graph, the register (color) assignment algorithm picks variables

from the priority list and assigns virtual register numbers (colors) to them, reusing lowest virtual register

numbers or creating a new virtual register number in the case of con
icts.

In our register allocation algorithm, when assigning virtual register numbers we associate each virtual

register number with the Java type of the variable it is allocated to, and we do not allow, for example, a virtual

register holding an integer to later be re-used to hold a
oating-point value. This restriction, although it has

the counter e�ect of increasing the number of virtual registers, serves two main purposes. It guarantees that

the mapping of a virtual register to a physical register is �xed in the run-time compilation system. Otherwise,

the frequent re-mapping of virtual registers to physical registers to comply with variable types and machine

register assignment restrictions will con
ict with the virtual register priorities, potentially leading to an

increase in spills and lower performance. Associating virtual registers to Java types also facilitates the

annotations veri�cation process. The run-time data-
ow analysis to check Java type properties for normal

bytecode veri�cation may be enough to identify wrongly annotated class �les.

3 Annotation-Aware JIT (AJIT) Compilation System

The rightmost portion of Figure 2 depicits our annotation aware JIT (AJIT) system. We modi�ed the public

domain JIT compiler system Ka�e [27] (version 0.9.2) to implement our annotation scheme. The changes

concentrated on a few number of �les and consisted on the design of a new register allocator, modi�cations

to the generation of Ka�e's internal intermediate representation, and changes to its SPARC code generator.

9

Both the original and new functionality coexist in the system, allowing the processing of annotated methods

and non-annotated methods within the same class �le.

As VRA annotations are derived from translating bytecodes into a RISC-like three address code, one

wonders whether they are general,
exible and helpful enough to produce optimized code for di�erent target

architectures. We experimented with the Intel architecture in [16], and now with the SPARC architecture in

this paper | two distinct architectures (CISC and RISC respectively). Our annotation scheme has proven

to su�ce the needs for generating code for these two platforms. As we experiment with other architectures

our annotation types and formats will be re�ned accordingly.

In our AJIT system, when a class method is �rst called, the bytecode stream is read into a table bu�er.

If there is an annotation code attribute, the annotations are also read into an annotations table. Then

the JIT compiler invokes the corresponding translation routine. The process of producing native code from

annotated Java bytecodes is done in a single pass over the bytecode stream. As each bytecode and its

annotations bytes are read, the corresponding Ka�e IR operation(s) is (are) generated. The generated Ka�e

IR operation (or sequence of operations) depends on the information provided by the annotations. This

information may suggest that the bytecode translation be entirely skipped, or that some sub-operations be

eliminated or simpli�ed. Figure 6 shows a code example of how an iaload bytecode operation is translated

using annotation information. The translated Ka�e IR operation operands are speci�ed by virtual register

numbers, extracted from the annotations bytes. Once the entire bytecode stream has been processed, SPARC

native code is produced from the Ka�e IR. At this point, as each Ka�e IR operation is translated into native

code, the register allocator is invoked to replace virtual register numbers with machine registers.

Our VRA annotation scheme does not need any form of run-time intermediate representation in order

to produce register allocation. In our implementation we could have skipped building the Ka�e IR. This

intermediate representation does not capture any control or data
ow information. Its basic functionality

is to separate the low level details of all target machines Ka�e can produce machine code for from the

interpreter and JIT compiler translation code. Keeping the IR enabled us to write code that can be shared

in the compilation and interpretation of annotated bytecodes to any target machine supported by Ka�e,

which was very convenient at the moment of validating our ideas on annotations.

The run-time register allocator is a fast and e�ective algorithm that essentially maps each virtual register

to a machine register, prioritizing the assignment of lower virtual register numbers. This guarantees that

high priority values (program variables represented by lower virtual register numbers) have preference in the

register assignment. When the number of physical registers is exhausted, virtual registers are mapped to

temporaries on the stack. In the case of the SPARC architecture, the register allocator reserves four registers

of each type (four of the global integer registers g4-g7 and four of the
oating point registers f28-f31) for

evaluating expressions that involve variables that are not mapped into machine registers. It uses local

registers l0-l7 , global registers g1-g3, any unused input register i0-i5 and
oating point registers f0-f27

during allocation. Registers o0-o7 are not available for the allocator and are reserved for passing parameters

10

define_insn(IALOAD)
{
/*
* ..., array ref, index -> ..., value
*/

 a = meth->annotations_table->entry[i];
 i++;

 if (a.header == SRC_SRC_EXTRA_EXTRA_DEST){
 index = *(a.VRAData); objref = *(a.VRAData+1);
 tmp1 = *(a.VRAData+2); tmp2 = *(a.VRAData+3); dest = *(a.VRAData+4);

 annotated_lshl_int_const(vrslots[tmp1].slots, vrslots[index].slots, SHIFT_jint);
 if (object_array_offset !=0)
 annotated_add_int_const(vrslots[tmp1].slots, vrslots[tmp1].slots, object_array_offset);
 annotated_add_ref(vrslots[tmp2].slots, vrslots[objref].slots, vrslots[tmp1].slots);
 annotated_load_int(vrslots[dest].slots, vrslots[tmp2].slots);

 }else if (a.header == CONST_SRC_EXTRA_EXTRA_DEST){
 cindex = *(a.VRAConst); objref = *(a.VRAData);
 tmp1 = *(a.VRAData+1);tmp2 = *(a.VRAData+2); dest = *(a.VRAData+3);

 annotated_move_int_const(vrslots[tmp1].slots, (cindex<<SHIFT_jint), NULL);
 if (object_array_offset !=0)
 annotated_add_int_const(vrslots[tmp1].slots, vrslots[tmp1].slots, object_array_offset);
 annotated_add_ref(vrslots[tmp2].slots, vrslots[objref].slots, vrslots[tmp1].slots);
 annotated_load_int(vrslots[dest].slots, vrslots[tmp2].slots);

 }else if (a.header == SRC_SRC_EXTRA_DEST){
 objref = *(a.VRAData); tmp1 = *(a.VRAData+1); tmp2 = *(a.VRAData+2); dest = *(a.VRAData+3);

 annotated_add_ref(vrslots[tmp2].slots, vrslots[objref].slots, vrslots[tmp1].slots);
 annotated_load_int(vrslots[dest].slots, vrslots[tmp2].slots);

 }else if (a.header == SRC_DEST){
 tmp1 = *(a.VRAData); dest = *(a.VRAData+1);
 annotated_load_int(vrslots[dest].slots, vrslots[tmp1].slots);
 }else if (a.header == SRC){
 // no action
 } else error=1;
}

Figure 6: AJIT translation process for an iaload bytecode operation

to method calls. Our register allocation algorithm uses a mapping table as an auxiliary data structure.

The mapping table stores information on a virtual register number, a pointer to the corresponding physical

register table entry, and the stack o�set value it should use in case of spilling. There are some details on

the initialization of the mapping table to correctly handle the SPARC register windows convention; these

details are taken care of in the method's prologue and on the translation of bytecodes for accessing method

local variables. Method local variables that are parameters are passed in special integer registers (i0-i5),

forcing the mapping of virtual registers associated with these parameters.

In our experiments we observed that machine calling conventions can complicate the simple mapping-

based register allocation, as it forces virtual register assignments to speci�c machine registers. This may

break virtual register priorities, and the register allocator �xes it by spilling lower priority physical registers

in case a higher priority virtual register needs a physical register and none are available. We are currently

studying the e�ect of di�erent calling conventions in our mapping-based dynamic register allocator.

Our current register allocation scheme does not try to minimize the cost of subroutine calls. At method

call boundaries, move operations are generated to guarantee values are in the correct registers required by

the calling convention and spilling of all active registers is done. Our annotation scheme could be used to

carry information on which values produced in the program are later passed to methods as parameters and

also which registers should be saved across procedure calls. Having the �rst kind of information would guide

the register allocator in the virtual to physical register mapping and would avoid some copies. The second

kind of information would decrease the overhead of subroutine calls by spilling only the registers that are

later referenced in the program. We are currently investigating how our virtual register allocator in our

11

annotation-generating front-end can be extended to lower the cost of method calls.

To prove that our AJIT system is an acceptable engineering solution we need to quantify the overhead

of processing the annotated bytecode stream and the overhead of our mapping-based register allocation

in the process of generating optimized native code. If we generate better native code more e�ciently than

traditional optimizing JIT compilers, we have shown that our framework is a good solution for improving the

overall execution speed of Java programs. Annotation overhead results frommany factors: (1) the larger class

�le size (which increases download time), (2) the interpretation of the information conveyed in the annotation

bytes (see the extra processing required to build the Ka�e JIT IR in Figure 6), (3) additional work done by

the run-time register allocator, and (4) the demand for extra resources (memory for storing annotations).

Network applications are sensitive to the download time overhead, but other types of applications that do

not depend on annotated class �les being downloaded are not a�ected. In our AJIT system, the Ka�e run-

time IR is simple to build and manipulate. Other optimizing JIT systems will need a more complex IR to

enable more advanced compiler transformations. We believe that the overhead of processing the annotations,

storing them and building a simple run-time IR will ultimately be less than the overhead of building, storing

and manipulating a complex IR in those systems. Finally, our run-time register allocation algorithm is an

algorithm that obeys a de�ned mapping rule and only manipulates mapping tables. As a result, our register

allocator is simple and fast. No time is spent on con
ict graph construction, coloring nor data
ow analysis

| tasks routinely performed by traditional register allocators.

4 VRA Annotations Veri�cation Scheme

Validation of VRA annotations can be done by the Java class �le veri�er module in the JVM [22]. This

module adds an extra security level to Java Bytecodes execution by verifying whether the class �le satis�es

certain de�ned static constraints for legal Java class �les, avoiding problems such as Java operand stack

over
ow and under
ow, invalid use of local variables, invalid types of arguments and class �le version errors.

The class �le veri�cation process is performed during both class loading and linking and is broken into

four phases. One of such phases is called bytecode veri�cation in which the JVM veri�er checks the code

array of the code attribute for each method of the class �le. The main task performed at this point is type

checking to test compliance with Java properties (e.g., Gosling property [22]). For each instruction in the

code the veri�er records information about (1) the operand stack size and the type of each value on it; (2)

the type contents of local variables. This information is collected by running a data-
ow analyzer loop on a

simple linear list of bytecode operations basic blocks. This algorithm performs an abstract interpretation of

the program. At control
ow change points the algorithm merges type information collected along di�erent

paths. As a result, new type information may be generated and more loop iterations are needed until the

point where the collected type information becomes stable and is available at each instruction. Any type

violation detected during the process makes the veri�er report failure and no attempt is made to translate

12

the method code.

As our VRA annotations are information generated per bytecode operation we can verify such information

by extending the abstract interpretation in the bytecode veri�er. Besides recording type information, the

annotated bytecode veri�er also records the contents of the operand stack and the local variables in terms

of VR numbers assigned to them. At this same time type information for the virtual registers is also

collected. The fact that in our AJBC we do not allow variables of di�erent types share the same virtual

register number makes VRA annotations easier to be checked. Any reuse of a virtual register in distinct

instructions requiring di�erent operand types characterizes an invalid annotation information. These pieces

of information are necessary to validate annotations, but are not su�cient. An abstract interpretation only

models the e�ect of the di�erent types of operations on the operand stack and local variables array, giving

information on types and information on which virtual registers are used and produced by operations. Other

rules for legal annotated class �les have to be incorporated, for example, to evaluate if a certain re-use

of a virtual register number to represent a local variable, an operand stack value or an implicit bytecode

sub-operation operand is valid.

We classify untrusted annotations as potentially valid or invalid. Figure 7 helps us to understand this

classi�cation. The top side of the �gure shows the method code for the subtraction of two numbers. Figure

7(b) shows the annotated bytecode stream as it would be generated by an AJBC. An abstract interpretation

of this method code up to the isub operation yields type and VR information as recorded in the same �gure.

The veri�cation process for the isub operation VRA annotations compares the given annotations to the

expected VRs numbers for operand stack positions and local variables and their types, all derived from the

abstract interpretation. If there is no source operand or type violation, the annotations are considered as valid

up to this point. The lower portion of the �gure shows possible malicious changes in the bytecode stream.

Figure 7(c) shows a situation in which annotations have been maliciously changed but still characterize valid

annotations. Changing virtual registers does not always cause the veri�cation process to fail and native code

generated from such annotations will be correct. In cases like this, variables priorities dictated by the virual

registers numbers may change and the only side e�ect is a less e�cient native code (not noticed in this piece

of code though). The situation described above is similar to malicious change in the bytecode stream that

does not result in illegal class �les, as for example, in Figure 7(c). In this �gure we see that exchanging the

iload operations in the second given bytecode stream makes the method compute b-a and not a-b. The

bytecode stream is still legal though.

Figure 7(d) shows another situation of untrusted annotated code. In this case the annotations are

consistent with the operand stack and local variables contents and seem valid. However, the reuse of VR1

for both load of variables a and b shows a clear violation, as if these two variables are live at the same point

in the bytecode stream they cannot have been assigned to the same virtual register. This extra rule that

checks for registers reuse helps identifying invalid annotated bytecode streams.

The examples in Figure 7 are very simple and were used to illustrate the basic idea of our VRA annotations

13

Java Code

public void subtraction(int a, int b)
{

return (a - b);
}

 Method int subtraction(int, int)
 0 iload_1 V1
 1 iload_2 V2
 2 isub V1 V2 V1
 3 ireturn V1

Trusted Annotated Bytecode Stream Abstract Interpretation

Local VariableOperand Stack
Type info:

LV[0] object
LV[1] int
LV[2] int

VR info:
LV[0]
LV[1] V1
LV[2] V2

Type info:
SP[0] int
SP[1] int

VR info:
SP[0] V1
SP[1] V2

Virtual Registers

Type info:
V1 int
V2 int

Abstract Interpretation

Local VariableOperand Stack
Type info:

LV[0] object
LV[1] int
LV[2] int

VR info:
LV[0]
LV[1] V2
LV[2] V1

Type info:
SP[0] int
SP[1] int

VR info:
SP[0] V2
SP[1] V1

Virtual Registers

Type info:
V1 int
V2 int

 Method int subtraction(int, int)
 0 iload_1 V2
 1 iload_2 V1
 2 isub V2 V1 V2
 3 ireturn V2

Untrusted Annotated Bytecode Stream

 Method int subtraction(int, int)
 0 iload_2 V2
 1 iload_1 V1
 2 isub V2 V1 V2
 3 ireturn V2

Untrusted Annotated Bytecode Stream

(a)

(b)

(b)

 Method int subtraction(int, int)
 0 iload_1 V1
 1 iload_2 V1
 2 isub V1 V1 V1
 3 ireturn V1

Trusted Annotated Bytecode Stream Abstract Interpretation

Local VariableOperand Stack
Type info:

LV[0] object
LV[1] int
LV[2] int

VR info:
LV[0]
LV[1] V1
LV[2] V1

Type info:
SP[0] int
SP[1] int

VR info:
SP[0] V1
SP[1] V1

Virtual Registers

Type info:
V1 int
V2 int

(d)

Figure 7: Valid and invalid annotated Java Bytecode streams

14

veri�cation scheme. The veri�cation process is complicated by the di�erent annotations formats for each

bytecode operation type and the formats variations.

In section 2 we discussed that VRA annotations contain virtual registers specifying the source and

destination registers for the bytecode operations but also include extra registers for intermediate values

calculated by some bytecode sub-operations. For example: annotations for an array element load would

make explicit a register for holding the array element address computation; annotations for constants load

would make explicit a register for the address of the constant. The bene�t of having complex annotations

formats like this is that information on redundant bytecode implicit sub-operations are exposed and the

run-time code generator does not have to perform redundant computation elimination optimizations. The

drawback is that VRA annotations veri�cation gets more complicated as these sub-operations are not explicit

in the abstract interpretation of bytecodes. We can solve this di�culty by creating new bytecode operations

that represent the sub-operations made explicit in the annotation scheme and including their e�ect during the

abstract interpretation (by remembering the basic block and instruction number where they are generated).

These sub-operations will have no e�ect on the Java operand stack nor on the local variables array. Their

operands are intermediate values that do not belong to any of these structures. As a solution, we decided

to create an auxiliary local variable array that keeps track of such values.

These extra rules we included in our veri�er help anwering the question whether the annotated bytecode

stream is invalid. If an error is detected while performing the basic block checks as described above, the

annotated class �le can be reported as invalid. If after such checks no error was detected, it is still not safe

to proceed with the translation of the annotated bytecode. Further checks are needed to completely validate

the annotations. These checks have to do with checking use-de�nition chains (UD-chains) and de�nition-use

chains (DU-chains) for local variables and sub-operations intermediate values. In our AJBC compiler a local

variable may be assigned to di�erent virtual registers in its di�erent lifetime intervals. To validate VRA

annotations it is not enough to to have a local variable to virtual register mapping table. Local variable to

virtual register mapping is a type of information that may change from program point to program point.

The complexity of checking UD-chains and DU-chains is comparable to computing the chains. A control

ow graph needs to be constructed, UD-chains and DU-chains formed. For each de�nition of a variable, the

corresponding virtual register annotation must be checked against the virtual register annotation in the use

of the variable and they have to match. Furthermore, di�erent de�nitions of a same variable that have a use

in common must also have matching virtual register annotations, as in the virtual register allocation we use

the concept of webs of variables. Other de�nitions of the same variable that have no use in common with

a particular de�nition do not have to abide to this rule. These tests check whether a particular variable's

VRA annotations are correctly used throughout the code. However, variables which are not live at the same

time can reuse the same virtual register assignment. This implies that we need to check liveness of variables

in each basic block to be able to detect wrong virtual register reuse. This information can be collected

while in the abstract interpretation loop. Then, for each variable (including local variables and auxiliary

15

local variables) we check its VRA annotations with all other variables alive in the same basic blocks. The

information collected above is also enough to check VRA annotations for skipping bytecode sub-operations.

In this section we discussed the basic checks we believe necessary to validate VRA annotations. We have

not implemented an annotated bytecode veri�er yet. A better algorithmical description of the veri�cation

process detailing the steps and order of checks needs to be de�ned as well as an evaluation of is run-time

complexity. We plan to keep working on this subject to present a more elaborated scheme for the next

version of this paper.

5 Related Work

Various approaches are being proposed to overcome the ine�ciency of translating the Java Bytecodes to

native code, and thus increase the execution speed of Java programs. When compilation time is not a

constraint, the most common approach is to translate the bytecodes into some higher-level intermediate

form [8, 15] or language [24], and then back to native code (perhaps using an existing compiler, as in [24]).

When speed of compilation is an issue, optimizing JIT compilers [1, 2, 17, 19, 27] try to improve the quality

of the native code generated on the
y by adapting traditional optimization techniques to run-time code

generation. Optimizations can also be applied during load-time, i.e. after bytecode generation yet before

run-time translation to native code; [9] is an example of such a bytecode optimizer. Our annotation scheme

is a hybrid approach in that most work is done at compile-time to retain important high-level program and

optimization information, while at run-time lightweight code-improving transformations accomplish the task

of generating high-quality native code.

Research in the area of developing fast run-time algorithms for traditional compiler optimizations is very

active [2, 4, 20]. In the following paragraphs we overview commercial and academic systems, some of which

make use of annotation schemes to aid code optimization. We also discuss how they implement run-time

code optimizations such as common sub-expression elimination, register allocation and elimination of array

bounds checking, and how these implementations compare to the run-time algorithms our annotation scheme

requires. In all optimizing JIT compilers there is an attempt to develop compiler optimizations with linear

time algorithms with respect to some parameter (e.g., the number of bytecode instructions, or the number

of local or stack variables). Our annotation-based approach has also been designed with this in mind; our

VRA annotation scheme allows run-time register allocation in linear time.

Several researchers exploit the idea of code annotations and relate to our approach. Though not designed

to speci�cally overcome the Java Bytecode language ine�ciency, these approaches could potentially be

applied to this problem. In the context of dynamic code generation, code annotations in the form of

programmer hints [13] or high-level language constructs extensions [23] serve as guide to where (and on

what) dynamic compilation should take place. These code annotations help to build optimizing just-in-

time compilers by extending to run-time the applicability of traditional compiler optimizations. Using these

16

schemes researchers have built di�erent algorithms for copy propagation, dead code elimination, register

allocation and even advanced cross-module optimizations. Di�erent strategies are applied to balance the

tradeo� between dynamic compilation speed and the quality of the generated code.

Most directly related to our VRA annotation scheme is the work of Wall [26] on cross-module link-time

register allocation. In his approach, link-time register allocation is treated as a form of relocation. The

compiler generates code that can be directly linked and executed, but it annotates some of the instructions

with register actions that describe what needs to be done to the instruction if the variables it manipulates

are assigned to a register at link time. Compared to our mapping-based register allocation, Wall's approach

has the overhead of building the call graph and carrying out local data
ow analysis at link-time, and it

depends on good usage estimates (pro�ling information). However, it performs global register allocation

while our current implementation only works intraprocedurally.

The Intel VTune JIT compiler described in [2] implements register allocation of local variables, stack slots

and temporaries in separate phases. Local variables are pre-allocated using a priority-based algorithm while

the others are locally allocated. A technique of lazy code generation with mimic stack to keep track of the

Java operand stack optimizes the code by avoiding copy operations and allowing a limited form of CSE. Our

mapping-based register allocation is also a priority-based scheme and allows global register allocation of both

method local variables and compiler temporaries representing values generated by bytecodes sub-operations.

It is faster to implement at run-time as it dispenses with any form of code analysis. In addition, our VRA

scheme can be expanded along the ideas presented in [26] to allocate class variables, while the Intel JIT

compiler would need interprocedural data-
ow analysis to accomplish the same, implying in an expensive

run-time algorithm. In our scheme traditional copy propagation and CSE algorithms can be implemented

at compile-time as annotations convey the information on how to translate a bytecode or when to skip its

translation, having the further advantage in revealing redundancies implicit in the bytecode operations. A

very simple array bounds check elimination algorithm was implemented in the Intel JIT compiler, handling

only constant indexes. As described in [16], our run-time check annotations allow powerful subscript analysis

to be performed at compile-time and easily convey this analysis information to the run-time system.

Another e�cient JIT compilation system is CACAO [1]. CACAO implements pre-coloring of local vari-

ables relying on the e�cient coloring of local variables done by the Java front-end (i.e., assigning the same

local variable number to variables which are not active at the same time). Like Intel's JIT compiler, CA-

CAO implements lazy code generation with operand stack simulation but carries out further analysis in the

intermediate code that helps reducing copy operations and keeping temporaries in registers rather than in

spill locations. Compared to our scheme, the stack analysis information that has to be computed by their

algorithm is provided for free by our VRA annotations. On the other hand, their run-time register allocator

takes into account the cost of subroutine calls by e�ciently using the calling convention registers. This is

lacking in our current scheme. Other optimizations such as instruction scheduling, method inlining and array

bounds check removal are planned for CACAO, but the run-time cost of these optimizations has not been

17

reported yet.

Ka�e [27] is a freely available JVM that runs on several platforms; it serves as the basis for our imple-

mentation work. Ka�e's native code translation process identi�es basic blocks and builds a simple RISC-like

IR as it loops through the bytecode stream. Register allocation is combined with machine code generation.

The register allocator is based on a simple algorithm that maps Java operand stack slots and local variable

slots from memory positions to machine registers as these values are referenced in the code. When it runs

out of registers, the least recently used register is spilled and freed for allocation. There is no special treat-

ment to reduce subroutine calling costs, or to exploit machine calling conventions, as CACAO does. Upon

a call, copy operations are introduced to guarantee values are in the correct register and all modi�ed slots

are spilled. No other compiler optimizations are implemented. In Section 6 we demonstrate that our AJIT

system outperforms Ka�e in terms of the quality of the generated native code.

An interesting optimizing run-time compilation system is the Slim Binary project [11, 21]. This approach

proposes an architecture-neutral intermediate representation for software distribution, called slim binaries,

that can be seen as an alternative to Java Bytecodes. The dynamic compiler for slim binaries implements

code optimizations as background processes. Just like the dynamic compilation systems discussed in [13, 23],

this system tries to utilize run-time information (e.g., values of variables and run-time pro�ling information)

to perform customized optimizations. Slim binaries incorporate a more complex tree-based intermediate

representation, conveying control
ow information but also incurring some run-time overhead to manipulate

it. Much like our annotation scheme extends the Java Bytecodes with extra information that is collected

during traditional compilation, the Slim Binary representation could bene�t from our annotations scheme

to decrease run-time optimization costs, such as carrying extra information to aid in register allocation.

6 Results

Our results revolve around four benchmarks: Neighbor, which performs a nearest-neighbor averaging across

all elements of a two-dimensional array; EM3D, a code that creates a graph and then performs a 3D elec-

tromagnetic simulation [10]; Huffman, a character string compression and decompression application; and

Bitonic Sort, which builds a binary tree and then performs bitonic sorting (recursively) [3]. To measure

the impact of our AJIT system, we collected results using JVMs available on the SPARC platform: Sun's

JDK version 1.1.1 [18] and Ka�e JVM version 0.9.2 [27]. The execution time results are shown in Table

1. Note that the timings do not include translation nor compile time, and thus represent the quality of the

generated code. All codes were compiled using our annotation-generating Java Bytecode compiler and then

executed using Sun's interpreter, the Ka�e JIT compiler, and our AJIT system.

The results presented in Table 1 re
ect the sole e�ect of our VRA annotations scheme. From the two

speedup columns of Table 2 we see that our annotation based approach o�ers speedups varying from 1.38 to

4.83 over direct interpretation, and is 17% to 100% faster than Ka�e's JIT technology. Also notice that the

18

Benchmarks SUN Interpreter ka�e JIT AJIT

(in secs) (in secs) (in secs)

Neighbor

256X256 array 553.03 162.73 115.31

Iterations = 1500

EM3D

1250 tree nodes 359.84 149.86 74.51

Iterations = 200

Bitonic Sort

1024 tree nodes 167.05 141.23 120.96

Iterations = 512

Huffman

30000 array nodes 4690.00 1856.00 1487.00

Iterations = 288

Table 1: Benchmarks execution times (in seconds)

Benchmarks SpeedUp SpeedUp

AJIT/SUN AJIT/Ka�e

Neighbor 4.80 1.41

EM3D 4.83 2.01

Bitonic Sort 1.38 1.17

Huffman 3.15 1.25

Table 2: Benchmarks speedups

19

best speedups were achieved for codes consisting of basic loops iterating over array-based or pointer-based

data (Neighbor, EM3D and Huffman). For such codes, the VRA annotations helped to identify common

subexpressions and eliminate them, along with the propagation of values and elimination of move opera-

tions. These transformations correspond to optimizations that could not be expressed in the Java Bytecodes

directly. The annotations also ensured that the most important variables, such as loop index variables,

were permanently assigned to machine registers throughout method execution. The smallest performance

gain was observed for the code with the highest number of subroutine calls | Bitonic Sort, a recursive

algorithm. This result is explained by the way our AJIT system, and Ka�e as well, handle subroutine calls

during dynamic register allocation. In short, both JIT compilers do not take advantage of SPARC register

windows. All active registers are saved across method calls, introducing signi�cant overhead. Thus, it is

important to note that this overhead is not an intrinsic limitation of the algorithms, but an artifact of the

current implementations.

The encouraging observation we have obtained from these preliminary results is that despite many limi-

tations of the �rst implementation, our AJIT system is capable of producing machine code that executes up

to twice as fast as current JIT technology. By extending our VRA annotations scheme with extra informa-

tion, such as registers to be saved across subroutine calls, and improving the implementation of the dynamic

register allocator itself, we believe the impact of our VRA annotations will be even more signi�cant.

We are conscious that a real validation of our annotation scheme would involve comparisons with other

JIT compilers besides Ka�e. For this current version of the paper we thought the only fair comparison

we could make was with the original ka�e code, as all other features of the JVM are maintained the same

across AJIT and Ka�e, the only di�erence being in the code generator. To be able to compare our AJIT

implementation with other JIT compilers (e.g., SUN's) we would need to isolate the e�ect of other JVM

features implemented in the last that can interfere in the quality of the generated code and on the compilation

time of the run-time register allocation algorithm. For the �nal version of this paper we want to de�ne a

better evaluation method for our annotation scheme. The possibilities we have been poundering are (1)

to include a comparison with SUN's JIT compiler using machine code example to compare code quality in

terms of register allocation; (2) implement a graph coloring like register allocation in the original ka�e code

and show compilation cost compared to AJIT implementation. Any suggestion from the reviewer for yet

another scheme to evaluate AJVM is welcome.

7 Conclusions and Future Work

Most approaches for speeding up Java execution resort to dynamic compilation (and even dynamic code

re-optimization [14]). In this scenario, run-time costs must be minimized and thus it is desirable that the

bulk of the compilation process be done statically at compile time. Having a rich program representation

conveying, for example, dependence information to allow instruction scheduling and support for dynamic

20

register allocation, will decrease the time spent on run-time code generation by cutting down the time spent

on program analysis and transformation. In this paper we discussed how the Java Bytecode language is a

poor choice for a high-performance program representation, since it demands a more time consuming code

generation process (at run-time!) in order to produce high-quality native code. We presented an approach

based on code annotations that helps overcome this problem, and discussed the implementation details of

our resulting annotation-aware JIT system.

Our �rst prototype implements the VRA annotation scheme that conveys information for dynamic register

allocation. It also enables some basic code scheduling by identifying and eliminating redundant computation

and allowing propagation of values. Preliminary results show that we outperform JIT technology, producing

code that runs up to twice as fast. We plan to extend our VRA annotation scheme by incorporating

information that helps minimize the cost of subroutine calls (e.g., values to be saved across procedure calls

and values passed as subroutine parameters) and allows cross-module register allocation. We started with the

implementation of the VRA annotations scheme because register allocation is the most important compiler

optimization on today's architectures. We initially selected scienti�c benchmarks to test our approach

given their higher sensitivity to such optimization. We will be also re�ning our VRA annotations veri�cation

process presented in section 4. Figure 2 mentions a number of annotation possibilities that we plan to explore

in the future. These annotations support more sophisticated compiler optimizations, such as instruction

scheduling and lifetime analysis for reducing garbage collection. To help evaluate these annotations we will

study non-numeric Java benchmarks as well.

8 Appendix

This section lists out the Java Bytecode operation types, their corresponding Java IR sub-operations and

VRA annotations formats.

8.1 Scalar Load and Store Instructions

Table 3 summarizes how scalar load and store instructions are represented. Local variable loads are repre-

sented as nop operations in our Java IR and the variable is directly allocated to a virtual register. Local

variable stores can be represented as move operations or nop operations depending whether the store op-

eration de�nes a new live range for the local variable or not. Loading of constants can be represented as

loading a constant from a memory location where it is de�ned or as a nop operation, depending on the

primitive type of the constant. Bytecode operations that have constants as their operands are annotated

with such constant value, for integer type constants, or are annotated with the virtual register that contains

the constant value, for all other types of constants. The option for further constant folding is left for the

JVM if the target architecture supports operations with immediate values.

21

Bytecode Java IR VRA Annotations Format

[i,l,f,d]load nop SRC

[i,l,f,d]load <n>

[i,l,f,d]store [i,l,f,d]mov V1, V2 SRC-DEST

[i,l,f,d]store <n>

[i,l,f,d]mov CONST, V1 CONST-DEST

nop SRC

bipush nop NONE

sipush

iconst <n>

iconst m1

aconst null amovi address-of-const, V1 EXTRA-DEST

ldc, ldc w, ldc2 w [a,l,f,d]ld (V1), V2

[l,f,d]const <n>

[a,l,f,d]ld (V1), V2 SRC-DEST

nop SRC

Table 3: Java IR and VRA annotations formats for scalar loads and stores

8.2 Arithmetic Instructions and Type Conversion Instructions

Table 4 summarizes how arithmetic, type conversion and local variable increment instructions are represented.

Bynary and unary operations are represented as add, subtract, multiply, divide, remainder, negate, shift,

bitwise OR, bitwise AND and bitwise exclusive OR operations de�ned in our Java IR. They are annotated

with constant values or up to three virtual registers, representing an operation operands and result. Local

variable increments are represented as add operations in the Java IR and are annotated with the virtual

register allocated to the local variable. Type conversion instructions are represented in the same way as

unary operations.

Bytecode Java IR VRA Annotations Format

[i,l,f,d]binaryOp [i,l,f,d]binaryOp CONST, V1, V2 CONST-SRC-DEST

[i,l,f,d]unaryOp

[i,l,f,d]binaryOp V1, CONST, V2 SRC-CONST-DEST

[i,l,f,d]binaryOp V1, V2, V3 SRC-SRC-DEST

[i,l,f,d]unaryOp CONST, V1 CONST-DEST

[i,l,f,d]unaryOp V1, V2 SRC-DEST

iinc add V1, CONST, V1 SRC

Table 4: Java IR and VRA annotations formats for arithmetic operations, type conversion operations and
local variable increment operation

22

8.3 Object Creation and Manipulation

Bytecode instructions that manipulate class instances are represented as shown in Table 5. Fields of a class

are variables kept in memory and explicit load and store operations are used in our Java IR for accessing

such variables. The address computation for �eld accesses is made explicit via Java IR operations and in

the VRA annotations formats. When interprocedural virtual register allocation is implemented, class �eld

accesses, for some safe program points (e.g., not a program point where an exception may be thrown or a

method call for which the e�ect on the class instance is not known) can be represented the same way we do

for local variables accesses (i.e., move operations or nop operations).

How to map array elements load and stores into our Java IR and the corresponding VRA annotations

formats are shown in Table 7. For these bytecode operations me made explicit the array index calculation

and the array address computation besides the actual array load or store instructions. Virtual registers

representing the base array address, the array index and the element to be stored are passed as parameters

to the sub-operations. The result value and intermediate values are also represented using virtual registers

and correspond to the sub-operations operands. In case a load or store operation may be omitted, either

because the element load has been computed before or a store back to memory is not necessary, the array

access is represented as a nop operation and the VRA annotations bytes contain the virtual register where

the array element can be found.

Creating a new instance of a class is represented as a method call in our Java IR, as shown in Table

6. There is one virtual register for representing the address of the method for creating the class instance

and another for representing the newly created class object. The call to the class instance initialization

method that follows an object creation is handled by another Java IR method call instruction representing

the method invocation bytecode. Instructions for checking properties of class instances or array objects such

as checkcast and instanceOf are also represented as Java IR method calls, as shown in Table 6.

The operation to get the length of an array is represented as a load operation in our Java IR, as shown

in Table 7. One virtual register is used for the array base address, and another for the result.

Operations for creating a new array object are represented as method calls in our Java IR. These call

operations take as parameters a virtual register containing the address of the method, the array dimensions

represented as constants or values in virtual registers and the place where to store the newly created array

reference, as summarized in Table 7.

8.4 Control Transfer Instructions

Conditional jump bytecodes are translated as a Java IR comparison operation followed by a conditional

jump operation, as shown in Table 8. These sub-operations take one or two virtual register arguments as

input and produce a condition value as result.

Conditional jumps that manipulate long,
oat and double values are represented as special Java IR

23

Bytecode Java IR VRA Annotations Format

getstatic amovi addressOfClassField, V1 EXTRA-DEST

[b,c,s,i,l,d,f,a]ld (V1), V2

[b,c,s,i,l,d,f,a]ld (V1), V2 SRC-DEST

nop SRC

putstatic amovi addressOfClassField, V1 CONST-EXTRA

[b,c,s,i,l,d,f,a]st CONST, (V1)

amovi addressOfClassField, V2 SRC-EXTRA

[b,c,s,i,l,d,f,a]st V1, (V2)

[b,c,s,i,l,d,f,a]st CONST, (V1) CONST-SRC

[b,c,s,i,l,d,f,a]st V1, (V2) SRC-SRC

[b,c,s,i,l,d,f,a]mov V1, V2 SRC-DEST

[b,c,s,i,l,d,f,a]mov CONST, V1 CONST-DEST

nop SRC

getfield amovi offsetOfField, V2 SRC-EXTRA-EXTRA-DEST

aadd V1, V2, V3

[b,c,s,i,l,d,f,a]ld (V3), V4

aadd V1, V2, V3 SRC-SRC-EXTRA-DEST

[b,c,s,i,l,d,f,a]ld (V3), V4

[b,c,s,i,l,d,f,a]ld (V1), V2 SRC-DEST

nop SRC

putfield amovi offsetOfField, V3 SRC-SRC-EXTRA-EXTRA

aadd V2, V3, V4

[b,c,s,i,l,d,f,a]st V1, (V4)

amovi offsetOfField, V2 CONST-SRC-EXTRA-EXTRA

aadd V1, V2, V3

[b,c,s,i,l,d,f,a]st CONST, (V3)

aadd V2, V3, V4 SRC-SRC-SRC-EXTRA

[b,c,s,i,l,d,f,a]st V1, (V4)

aadd V1, V2, V3 CONST-SRC-SRC-EXTRA

[b,c,s,i,l,d,f,a]st CONST, (V3)

[b,c,s,i,l,d,f,a]st V1, (V2) SRC-SRC

[b,c,s,i,l,d,f,a]st CONST, (V1) CONST-SRC

[b,c,s,i,l,d,f,a]mov V1, V2 SRC-DEST

[b,c,s,i,l,d,f,a]mov CONST, V1 CONST-DEST

nop SRC

Table 5: Java IR and VRA annotations format for accessing class �elds

24

Bytecode Java IR VRA Annotations Format

new amovi addressOfNew, V1 EXTRA-DEST

acall V2, classType, V1, V3

acall V2, classType, V1, V3 SRC-DEST

checkcast amovi addressOfCheckCast, V2 EXTRA

call V2, classType, V1

call V2, classType, V1 SRC

instanceof amovi addressOfInstanceOf, V2 EXTRA-DEST

call V2, classType, V1, V3

call V2, classType, V1 SRC-DEST

Table 6: Java IR and VRA annotations format for manipulating object instances

comparison operations, also shown in table 8. In this case, the virtual register annotations include the two

input arguments and also the condition value result. These bytecodes could have been broken into the

simple compare and branch Java IR operations however we did not �nd any advantage in making explicit

the compare operations implicit in these bytecodes.

The unconditional branch bytecodes as goto, goto w and return have counterpart Java IR operations.

The unconditional branch bytecodes associated with the finally keyword implementation are represented

by Java IR operations for method call and unconditional indirect jump. The method call speci�es the address

of the finally block and has as argument the address of the instruction following the jsr bytecode. The

ret bytecode is represented as a goto operation which indirect label is speci�ed by a virtual register. All

these bytecodes are shown in Table 8.

Compound conditional branch bytecodes as tableswitch and lookupswitch are broken into Java IR

conditional jump operations. When annotating these bytecodes, the virtual register corresponds to the key

argument been tested. These bytecodes are also shown in Table 8.

8.5 Method Invocation and Return Instructions

Method return bytecodes are represented by counterpart Java IR return operations and are annotated with

the virtual register containing the value to be returned. Method invocation bytecodes are mapped into Java

IRmethod call instructions. These method calls take as argument as many virtual registers or constant values

as the number of method parameters. We include other sub-operations that make explicit the computation

of the address of the method. In case method calls occur refering to the same object and the same virtual

registers, annotations bytes can suggest the omission of the method address computation. The method

invocation bytecodes are further annotated with a virtual register containing the calculated method address

and when necessary, also virtual registers for the object whose method is being invoked and the return

25

Bytecode Java IR VRA Annotations Format

[b,c,s,i,l,d,f,a]aload ishl V2, [b,c,s,i,l,d,f,a]shiftValue, V3 SRC-SRC-EXTRA-EXTRA-DEST

iadd V3, arraySizeOffset, V3

aadd V1, V3, V4

[b,c,s,i,l,d,f,a]ld (V4), V5

ishl CONST, [b,c,s,i,l,d,f,a]shiftValue, V3 CONST-SRC-EXTRA-EXTRA-DEST

iadd V3, arraySizeOffset, V3

aadd V1, V3, V4

[b,c,s,i,l,d,f,a]ld (V4), V5

aadd V1, V2, V3 SRC-SRC-EXTRA-DEST

[b,c,s,i,l,d,f,a]ld (V3), V4

[b,c,s,i,l,d,f,a]ld (V1), V2 SRC-DEST

nop SRC

[b,c,s,i,l,d,f,a]astore ishl V2, [b,c,s,i,l,d,f,a]shiftValue, V4 SRC-SRC-SRC-EXTRA-EXTRA

iadd V4, arraySizeOffset, V4

aadd V1, V4, V5

[b,c,s,i,l,d,f,a]st V3, (V5)

ishl V2, [b,c,s,i,l,d,f,a]shiftValue, V3 CONST-SRC-SRC-EXTRA-EXTRA

iadd V3, arraySizeOffset, V3

aadd V1, V3, V4

[b,c,s,i,l,d,f,a]st CONST, (V4)

aadd V1, V2, V4 SRC-SRC-SRC-EXTRA

[b,c,s,i,l,d,f,a]st V3, (V4)

aadd V1, V2, V3 CONST-SRC-SRC-EXTRA

[b,c,s,i,l,d,f,a]st CONST, (V3)

[b,c,s,i,l,d,f,a]st V1, (V2) SRC-SRC

[b,c,s,i,l,d,f,a]st CONST, (V1) CONST-SRC

nop SRC

arraylength aadd V1, arraySizeOffset, V2 SRC-DEST

ild (V2), V3

newarray amovi addressOfNewArray, V2 SRC-EXTRA-DEST

acall V2, arrayType, V1, V3

acall V2, arrayType, V1, V3 SRC-SRC-DEST

anewarray amovi addressOfANewArray, V2 SRC-EXTRA-DEST

acall V2, arrayType, V1, V3

acall V2, arrayType, V1, V3 SRC-SRC-DEST

multianewarray amovi addressOfMultiANewArray, V1 [SRC/CONST]-EXTRA-DEST

acall V1, arrayType, V2, V3..., CONST,... Vn

acall V1, arrayType, V2, V3..., CONST,... Vn [SRC/CONST]-SRC-DEST

Table 7: Java IR and VRA annotations formats for accessing array elements

26

Bytecode Java IR VRA Annotations Format

if <eq,ne,lt,le,ge,gt> icmp <eq,ne,lt,le,ge,gt> V1, 0, V2 SRC

br V2 trueLabel falseLabel

if <null,nonnull> acmp <eq,ne> V1, null, V2 SRC
br V2 trueLabel falseLabel

if icmp<eq,ne,lt,le,ge,gt> icmp <eq,ne,lt,le,ge,gt> V1, V2, V3 SRC-SRC

br V3 trueLabel falseLabel

icmp <eq,ne,lt,le,ge,gt> CONST, V1, V2 CONST-SRC

br V2 trueLabel falseLabel

icmp <eq,ne,lt,le,ge,gt> V1, CONST, V2 SRC-CONST

br V2 trueLabel falseLabel

if acmp<eq,ne> acmp <eq,ne> V1, V2, V3 SRC-SRC

br V3 trueLabel falseLabel

lcmp [l,f,d]cmp V1, V2, V3 SRC-SRC-DEST

fcmpl

fcmpg [l,f,d]cmp CONST, V1, V2 CONST-SRC-DEST

dcmpl

dcmpg [l,f,d]cmp V1, CONST, V2 SRC-CONST-DEST

goto goto label none

gotow

return return none

jsr amovi addressOfFinally, V1 EXTRA-DEST

jsr amovi addressOfNextInstruction, V2

jsr w call V1, V2

call V1, V2 SRC-DEST

ret goto V1 SRC

tableswitch icmp V1, CONST, V2 SRC

lookupswitch br V2 trueLabel falseLabel

Table 8: Java IR and VRA annotations formats for control transfer instructions

27

value. Table 9 shows the correspondence between these bytecodes, Java IR operations and VRA annotations

formats.

Bytecode Java IR VRA Annotations Format

invokevirtual aadd V1, methodTableOffset, V2 SRC-EXTRA-EXTRA-[[SRC/CONST][DEST]]

ald (V2), V2

aadd V2, methodOffset, V3

ald (V3), V3

[b,c,s,i,l,d,f,a]call V3, V1,

V4, ... CONST ... Vn

aadd V1, methodOffset, V2 SRC-EXTRA-[[SRC/CONST][DEST]]

ald (V2), V2

[b,c,s,i,l,d,f,a]call V2, V1,

V3,..CONST..Vn

[b,c,s,i,l,d,f,a]call V2, V1, SRC-SRC-[[SRC/CONST][DEST]]

V3,..CONST..Vn

invokestatic amovi methodAddress, V1 EXTRA-[[SRC/CONST][DEST]]

[b,c,s,i,l,d,f,a]call V1, V2,..CONST..Vn

[b,c,s,i,l,d,f,a]call V1, V2,..CONST..Vn SRC-[[SRC/CONST][DEST]]

invokespecial amovi methodAddress, V2 EXTRA-[[SRC/CONST][DEST]]

[b,c,s,i,l,d,f,a]call V2, V1,..CONST..Vn

[b,c,s,i,l,d,f,a]call V2, V1,..CONST..Vn SRC-[[SRC/CONST][DEST]]

invokeinterface amovi methodAddress, V2 EXTRA-[[SRC/CONST][DEST]]

[b,c,s,i,l,d,f,a]call V2, V1,..CONST..Vn

[b,c,s,i,l,d,f,a]call V2, V1,..CONST..Vn SRC-[[SRC/CONST][DEST]]

[b,c,s,i]return [b,c,s,i,l,d,f,a]return V1 SRC

[l,d,f,a]return

Table 9: Java IR and VRA annotations formats for method invocation and return instructions

8.6 Operand Stack Management Instructions

These bytecodes manipulate the Java stack and represent copy, elimination or swap of values placed on the

Java operand stack. They are basically employed as fast bytecode operations. There is no need to represent

them in Java IR operations or annotate them.

8.7 Throwing and Handling Exceptions

The athrow bytecode is annotated with a virtual register representing the reference to the object being

thrown. We map the throw keyword into a Java IR method call. Methods that can throw exceptions

have an extra return value that represents the thrown object. Catch clauses are mapped into conditional

jumps. We are modifying our current implementation of AJBC and AJIT to support exception handling as

28

summarized above. A more detailed explanation of how we deal with exceptions will be provided in the �nal

version of this paper.

8.8 Synchronization

We represent synchronization at statement level by mapping the monitorenter and monitorexit bytecodes

into a Java IR method call. This method call takes a virtual register representing the object requiring

synchronized access as argument. Our current implementation processes methods ignoring synchronization

at method level. A more detailed study on how to represent synchroniztaion and the implications on our

annotation scheme will be provided in the �nal version of this paper.

References

[1] R. Gra
 A. Krall. E�cient JavaVM Just-in-Time Compilation. In Proceedings of International Con-

ference on Parallel Architectures and Compilation Techniques, PACT'98, 1998.

[2] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. M. Parikh, and J. M. Stichnoth. Fast, E�ective Code
Generation in a Just-In-Time Java Compiler. Proceedings of ACM Programming Languages Design and

Implementation, pages 280{290, 1998.

[3] G. Bilardi and A. Nicolau. Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared Memory
Machines. Technical Report TR86-769, Cornell University, 1986.

[4] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, and Michael Hind. The Jalapeno
Dynamic Optimizing Compiler for Java. In Proceedings of the ACM Java Grande Conference, pages
129{141, June 1999.

[5] G. J. Chaitin. Register Allocation and Spilling via Graph Coloring. SIGPLAN Notices, 17(6):201{107,
June 1982.

[6] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein. Register
Allocation via Coloring. Computer Languages, 6:47{57, January 1981.

[7] F. C. Chow and J. L. Hennessy. A Priority-based Coloring Approach to Register Allocation. ACM

TOPLAS, 12(4):501{536, October 1990.

[8] M. Cierniak and W. Li. Optimizing Java Bytecodes. Concurrency: Practice and Experience, 9(11),
November 1997.

[9] L. R. Clausen. A Java Bytecode Optimizer Using Side-e�ect Analysis. Concurrency: Practice and

Experience, 9(11), November 1997.

[10] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel Programming in Split-C. In Proceedings of Supercomputing 1993, pages 262{273, November
1993.

[11] M. Franz and T. Kistler. Slim Binaries. Communications of the ACM, 40(12):87{94, December 1997.

[12] J. Gosling, Bill Joy, and G. Steele. The Java Language Speci�cation. Addison-Wesley, 1996.

[13] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. Annotation-Directed Run-Time
Specialization in C. In Proc. of PEPM, June 1997.

29

[14] David Griswold. The Java HotSpot Virtual Machine Architecture, March 1998. See whitepaper at
http://www.javasoft.com/products/hotspot/.

[15] C. Hsieh, J. Gyllenhaal, and W. Hwu. Java Bytecode to Native Code Translation: The Ca�eine
Prototype and Preliminary Results. Proceedings of the 29th Annual Workshop on Microprogramming,
December 1996.

[16] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau. Annotating the Java Bytecodes in Support of
Optimization. Concurrency: Practice and Experience, 9(11):1003{1016, November 1997.

[17] Microsoft Inc. The Microsoft Virtual Machine for Java.
See http://www.microsoft.com/java/sdk/.

[18] SUN Inc. Sun interpreter.
See http://www.javasoft.com.

[19] Symantec Inc. Just in Time Compiler for Windows 95/NT. See http://www.symantec.com.

[20] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma, T. Onodera, H. Ko-
matsu, and T. Nakatani. Design, Implementation and Evaluation of Optimizations in a Just-In-Time
Compiler. In Proceedings of the ACM Java Grande Conference, pages 119{128, June 1999.

[21] T. Kistler and M. Franz. Dynamic Runtime Optimization. In Proceedings of the Joint Modular Lan-

guages Conference, JMLC'97, pages 53{66, March 1997.

[22] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. Addison-Wesley, 1997.

[23] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A System for Fast, Flexible and High-Level Dynamic
Code Generation. Proceedings of ACM Programming Languages Design and Implementation, 1997.

[24] T. Proebsting, J. Hartman, G. Townsend, P. Bridges, T. Newsham, and S. Watterson. Toba: A Java-
to-C translator.
See http://www.cs.arizona.edu/sumatra/toba.

[25] E�ective Edge Technologies. guavac.
See summit.stanford.edu:/pub/guavac/.

[26] D. W. Wall. Global Register Allocation at Link-Time. In Proc. ACM SIGPLAN'86 Symp. on Compiler

Construction, pages 264{275, June 1986.

[27] Tim Wilkinson. Ka�e: A Free JIT virtual machine to run Java code.
See http://www.transvirtual.com.

30

