
Javelin++: Scalability Issues in Global Computing

Michael O. Neary Sean P. Brydon Paul Kmiec Sami Rollins Peter Cappello

Department of Computer Science

University of California, Santa Barbara

Santa Barbara, CA 93106

fneary, brydon, virus, srollins, cappellog@cs.ucsb.edu

Abstract

Javelin is a Java-based infrastructure for global computing.
This paper presents Javelin++, an extension of Javelin, in-
tended to support a much larger set of computational hosts.
First, Javelin++'s switch from Java applets to Java appli-
cations is explained. Then, two scheduling schemes are pre-
sented: probabilistic work stealing and deterministic work
stealing. The distributed deterministic work stealing is in-
tegrated with a distributed deterministic eager scheduler.
An additional fault tolerance mechanism is implemented for
replacing hosts that have failed or retreated. A Javelin++
API is sketched, then illustrated on a raytracing application.
Performance results for the two schedulers are reported, in-
dicating that Javelin++, with its broker network, scales bet-
ter than the original Javelin.

1 Introduction

Our goal is to harness the Internet's vast, growing, compu-
tational capacity for ultra-large, coarse-grained parallel ap-
plications. Some other research projects based on a similar
vision include CONDOR [21, 13], Legion [18], and GLOBUS
[14]. By providing a portable, secure programming system,
Java holds the promise of harnessing this large heteroge-
neous computer network as a single, homogeneous, multi-
user multiprocessor [6, 15, 1]. Some research projects that
work to exploit this include Charlotte [5], Atlas [3], Popcorn
[9], Javelin [12], and Bayanihan [23]. While there are many
issues related to global computing, �ve fundamental issues
that a�ect every Java-based global computing application
are:

� Performance | If there is no niche where Java-based
global computing outperforms existing multiprocessor
systems, then there is no reason to use it.

� Correctness | If the system does not produce correct
results, then there is no reason to use it.

� Scalability| In order for the system to outperform ex-
isting multiprocessor systems, it must harness a much
larger set of processors. To do so, it must scale to

a higher degree than existing multiprocessor systems,
such as networks of workstations (NOW) [2].

� Fault Tolerance | It is unreasonable to assume that
such a large set of components will have zero failures:
Fault-tolerance must attend systems of this order.

� Incentive | Full use of global computing ultimately
implies using a set of computers that is too large for
any single person or organization to own or control.
Where authority to command is lacking, incentives
must be provided [10, 25]. To date, global comput-
ing has used fame, fun, or prizes as an incentive (e.g.,
the Great Internet Mersenne Prime Search [17], code-
cracking (a money prize)1, and SETI@home2). The
Popcorn project [9] has explored computational mar-
kets.

Existing Java-based global computing projects have bottle-
necks that currently prevent them from scaling to the thou-
sands of computers that could be brought to bear. For ex-
ample, the authors of Charlotte note:

We have adopted a solution that does not scale
for settings such as the World Wide Web, but it
is an e�ective solution for our network at New
York University.

Bayanihan [24] has limited scalability now. However, its
authors note:

Currently, some ideas we are exploring include
forming server pools to handle large numbers of
clients, and using volunteer servers to form net-
works with more
exible topologies.

Work apparently stopped on Atlas [3] after it had been
tested using only a few workstations.

In this paper, we focus on scaling Javelin, comparing
two scalable versions of Javelin, called Javelin++: one that
schedules work deterministically, and another that schedules
work probabilistically. Both versions work on a simple kind
of adaptively parallel computation [11], called a piecework
computation. Such an adaptively parallel computation de-
composes into a set of sub-computations, each of which is
communicationally autonomous, apart from scheduling work
and communicating results. Piranha and Bayanihan, for ex-
ample, are well suited to piecework computations. Raytrac-
ing is a well known piecework computation, often used by

1http://www.rsa.com/rsalabs/97challenge
2http://setiathome.ssl.berkeley.edu

global computing researchers. Matrix product also can be
considered a piecework computation, since it can be decom-
posed into a set of block sub-products, whose results are
simply added to produce the matrix product. Piecework
computations are particularly attractive; they can get arbi-
trarily large, but their communication requirements are in
harmony with global computing's intrinsic constraint: In-
ternet communication latency is large.

The remainder of the paper is organized as follows: Sec-
tion 2 brie
y presents the Javelin architecture, and the archi-
tectural changes Javelin++ introduces. Section 3 discusses
scalability in the context of global computing: dynamic code
distribution, distributed task scheduling, including a dis-
tributed integrated work stealer/eager scheduler, and a basic
fault tolerance scheme for replacing hosts that have failed or
retreated. Section 4 presents the Javelin++ API, and illus-
trates its use on a raytracing application. Section 5 presents
experimental results for the deterministic and probabilis-
tic versions of Javelin++, indicating the sensitivity of their
scalability to granularity. The �nal section concludes the
paper, indicating some immediately fruitful areas of global
computing research and development.

2 Architecture

The Javelin++ system architecture is essentially the same
as its predecessor, Javelin [12]. There are still three sys-
tem entities | clients, brokers, and hosts. A client is a
process seeking computing resources; a host is a process of-
fering computing resources; a broker is a process that co-
ordinates the allocation of computing resources. We did,
however, introduce a few changes to the architecture. The
most important ones are:

� Communication is now based on Java RMI instead of
TCP sockets. The application programmer thus no
longer needs to implement a communication protocol3.
Of course, the use of RMI requires the presence of
JDK 1.1.x or later or compatible software at any host
participating in Javelin++.

� For a number of reasons, we found it desirable to base
our system on Java applications instead of applets, as
was done before. This is probably the most prominent
architectural change in the new system. The reasons
that compelled us to make this switch are outlined
below.

� Javelin++ is the �rst version that actually implements
a distributed broker network. Although the concept
was already included in the old architecture, it was
never practically achieved. Section 3.1 talks about the
broker network.

In the remainder of this section, we �rst brie
y recap the
architecture of the old Javelin system. This is followed by
a discussion of the advantages and disadvantages of using
Java applications instead of applets.

2.1 The Javelin Architecture

Figure 1 illustrates our architecture. Clients register their
tasks to be run with their local broker; hosts register their
intention to run tasks with the broker. The broker assigns
tasks to hosts that, then, run the tasks and send results

3JavaParty [22] and HORB [19] are alternatives to RMI, which
however lack RMI's widespread installed base.

back to the clients. The role of a host or a client is not
�xed. A machine may serve as a Javelin host when it is
idle (e.g., during night hours), while being a client when its
owner wants additional computing resources.

Clients

Brokers

Hosts

Figure 1: The Javelin Architecture.

One of the most important goals of Javelin is simplic-
ity, i.e., to enable everyone connected to the Internet or an
intranet to easily participate in Javelin. To this end, the
design is based on widely used components: Web browsers
and the portable language Java. By simply pointing their
browser to a known URL of a broker, users automatically
make their resources available to host parts of parallel com-
putations. This is achieved by downloading and executing
an applet that spawns a small daemon thread that waits
and \listens" for tasks from the broker. The simplicity of
this approach makes it easy for a host to participate | all
that is needed is a Java-capable Web browser and the URL
of the broker.

Tasks are represented as applets embedded in HTML
pages. This design decision implies certain limitations due
to Java applet security: E.g., all communication must be
routed through the broker and every �le access involves net-
work communication. Therefore, in general, coarse-grained
applications with a high computation to communication ra-
tio are well suited to Javelin. For more information on the
original Javelin prototype, see [12].

2.2 Java Applets vs Applications

As the underlying distributed object technology, Java RMI
(Remote Method Invocation) is used. In the original Jav-
elin prototype, all applications run as Java applets, which
has the advantage of extreme ease of use from the point
of view of a participating host | the user only needs to
point a Java-capable browser to a broker's web page to get
started. Another advantage of using applets is the strict
security model: the applet is e�ectively sandboxed by the
browser. A user can trust the established security policy
of his or her favorite browser when running untrusted code.
However, the use of applets in this context has some serious
drawbacks:

� No local �le I/O | applet security generally does not
permit access to the local hard drive, making it hard
if not impossible for some applications to run. For
instance, in the case of seismic data processing, local
�le I/O is necessary to read large amounts of data in
parallel.

� No direct point-to-point communication | since ap-
plets may not accept any connections, and may only
initiate connections back to the server from where they
were downloaded, point-to-point communication can

be achieved only by providing special routing servers
that relay all messages sent by Javelin hosts. This
is a serious performance drawback, and the task of
implementing the network routing service is tedious,
especially with respect to fault tolerance.

� No native code interface | applets are not allowed to
interface with native code on the host machine, and
uploading native libraries through the browser is not
possible. That means that any kind of commercial o�-
the-shelf (COTS) application cannot be made to run
on the infrastructure, although there are such applica-
tions that would bene�t greatly from global computing
(e.g., the Bryce image rendering software was recently
implemented as a standalone global computing appli-
cation including a simple trading space [8]). There is
also an immense body of legacy code in scienti�c ap-
plications written in Fortran or C4 which could bene�t
from our infrastructure.

� No standard platform | increasing browser hetero-
geneity makes it hard to program to all platforms,
defeating the original idea of Java's platform indepen-
dence. Since the arrival of JDK 1.1, browser devel-
opers have been sluggish in implementing the com-
plete API, leading to various subsets of the JDK being
supported by di�erent platforms. A prominent exam-
ple is Microsoft's outright denial of support for Java
RMI in Internet Explorer, making it impossible to use
the most convenient and natural object technology for
Java in conjunction with their browser. As of today,
JDK 1.0.2 remains the only agreed upon standard.

We consider these disadvantages so severe that they threaten
the general usefulness of Javelin++, since they disallow the
implementation of many interesting applications on our plat-
form. Therefore we decided to switch to Java applications
running on Sun's JDK 1.1 (or later) as the main platform
for Javelin++ applications. This switch enables us to over-
come all the above disadvantages. However, such a switch
has its own disadvantages.

First, the user must have JDK 1.1 installed on any ma-
chine that is to become a Javelin++ host. Since JDK is
widely distributed at present, we do not consider this a se-
rious drawback. The main disadvantage of applications is,
of course, the lack of a security model that is prede�ned,
agreed upon, and therefore comfortable for the user, raising
the question of trust in the Javelin++ system. This can be
overcome in two ways:

1. A Javelin++ security model can be provided by im-
plementing a SecurityManager class that ensures that
applications communicate only with other Javelin++
applications, and have limited access privileges to local
resources like the �le system.

2. On certain operating systems, e.g., Solaris and Linux,
it is possible to sandbox a process externally through
the so-called \/proc" interface. This has been success-
fully demonstrated in the Berkeley Janus project [16]
and the UCSB Consh project [20].

Both approaches can lead to an even more secure execu-
tion environment than the browser itself can provide. For
instance, the experiment of the Knitting Factory project
[4] found that when using Java RMI at least one browser,

4This type of code could be called \SOTS" | scienti�c o�-the-
shelf.

Sun's HotJava, permits direct point-to-point communica-
tion between applets once RMI handles have been exchanged
through the server!

Compared to applets, applications might appear to lack
ease of use for hosting users. However, we are pursuing the
screen saver approach that arguably is even easier for host-
ing: Users would download and install a Javelin++ screen-
saver on the host machine. This screensaver runs the JVM
and the Javelin++ daemon while the host machine is idle.
In this way, the user need not do anything to invoke the host;
it is done for him precisely when his machine is available. A
Unix daemon functioning similarly also is being developed.
Although this has the disadvantages of requiring user in-
stallation, and developer implementation for each OS, thus
losing some of the platform independence of Java, it makes
hosting essentially e�ortless.

3 Javelin++: A Scalable Architecture

In this section we present our approach of a scalable global
computing system. Other projects have tried or are cur-
rently trying to achieve greater scalability, e.g., Atlas [3]
through its tree-based approach, and Bayanihan [24] with
its volunteer server concept; but to date, no large-scale ex-
periments have shown that these concepts work in practice.
The original Javelin achieved good results up to about 60
hosts, when the single broker/router bottleneck became no-
ticeable.

Without modifying the original Javelin architecture, Jav-
elin++ introduces a number of scalability enhancements,
described below. The most prominent are:

� a distributed broker network that overcomes the sin-
gle broker bottleneck and permits much greater host
participation,

� the switch from Java applets to applications as de-
scribed in Section 2, which permits point-to-point com-
munication and thus allows arbitrary graph con�gura-
tions, and

� two di�erent schemes of work distribution, a proba-
bilistic one and a deterministic one, that both o�er
the potential to accommodate large numbers of hosts
participating in a single application.

Let us begin by clarifying what we mean by scalable: If a
global computational infrastructure is scalable, its compo-
nents have bounded power | bounded computational rate,
bounded communication rate, and bounded state5. In par-
ticular, for Javelin++ to be scalable, its clients, brokers,
and hosts have bounded power. These bounds imply that,
for example, clients, brokers, and hosts, can communicate
with only a �xed number of other components during a
�xed interval of time. Thus, at any point in time, there are
bounds on the number of connections between hosts, be-
tween brokers, between brokers and hosts, and between the
client and brokers. Bounded state similarly implies bounds
on the number of brokers that a broker can know about at
any point in time.

The Javelin prototype o�ers just a single broker/router
that becomes a bottleneck when too many hosts participate
in a computation. Clearly, a network of brokers must be
created in order to achieve scalability. Internet-wide partic-
ipation means that all hosts must be largely autonomous and

5In this context, bounded stands for bounded by some constant.

able to work in the presence of node and network failures.
Scalability implies that the architecture cannot be central-
ized. Bounded state implies that no site can, in general,
have a global system view (e.g., a table with the names of
all participating brokers). We have identi�ed two key prob-
lems in building a scalable architecture:

1. Host allocation and code distribution | How does a
client �nd hosts for its computation, and how does the
code get distributed e�ciently to a potentially very
large number of hosts?

2. Data communication at runtime | How is data ex-
changed between participating hosts after an applica-
tion has been successfully started?

In the following we describe our approach to solve these
problems. The section is structured according to the di�er-
ent states a Javelin++ host can be in during its lifetime.
The complete state transition diagram is shown in Figure 2.
There are four states: NoHost, Standby, Ready, and Run-
ning. If a host has not joined Javelin++ it is in state No-
Host. The transition to Standby is made by downloading
and starting the Javelin++ daemon and then registering
with a broker. In the next section we describe how brokers
are managed, hosts are allocated, and code is shipped so
that an application is ready to start, causing a state tran-
sition from Standby to Ready. In Section 3.2.2 we present
two di�erent data exchange mechanisms that allow the host
to run the application and therefore transition to Running.
The �rst is a probabilistic approach based on a distributed,
double ended queue and address hashing; the second is a de-
terministic, tree-based approach. The performance of these
two approaches is compared in Section 5.

The diagram has two more sets of transitions, a \natural"
way back from each state to the previous state when a phase
has terminated, and a set of \interrupt" transitions (shown
in dashed lines) that lead back to the NoHost state when a
user withdraws the host from the system.

RunningReadyStandbyNoHost

Figure 2: State Transition Diagram for Javelin++ Hosts.

3.1 Scalable Code Distribution via a Broker Network

3.1.1 Network Topology and Broker Management

The topology of the broker network is an unrestricted graph
of bounded degree. Thus, at any time a broker can only
communicate with a constant number of other brokers. This
constant may vary among brokers according to their compu-
tational power. Similarly, a broker can only handle a con-
stant number of hosts. If that limit is exceeded adequate
steps must be taken to redirect hosts to other brokers, as
described below. The bounds on both types of connection
give the broker network the potential to scale to arbitrary
numbers of participants. At the same time, the degree of
connectivity is higher than in a tree-based topology like the
one used in the ATLAS project [3]. Figure 3 shows the con-
nection setup of a broker.

Hosts BrokersBroker... ...

Figure 3: Broker Connections.

In principal, a broker is just another Javelin++ appli-
cation. That means that it runs on top of the Javelin++
daemon thread. However, since brokers are expected to be
a lot more stable and reliable than other hosts, certain con-
ditions have to be met: A broker must run on a host with
a \permanent" connection to the Internet, i.e., slow modem
connections are not acceptable, and the user donating a bro-
ker host must be prepared to run the broker for a \long"
duration and give the system \ample warning" before with-
drawing the host, so that connected hosts can be moved to
other brokers.

We distinguish between two types of broker: primary
brokers and secondary brokers. Technically, there is not
much di�erence, except for the way the broker starts up.
A primary broker is a broker that starts up without logging
in to another broker as a host �rst. This is to guarantee
that there is a minimal broker network at system startup.
Primary brokers can start up from shell commands and link
to other primary brokers by reading in a con�guration �le.
In contrast, secondary brokers start up as normal Javelin++
hosts by linking to their local broker. At registration time
the host indicates whether or not it is prepared to run a
broker according to the above rules.

A secondary broker comes to life when the broker it is
connected to exceeds its individual limit for host connec-
tions. In order to accommodate the host that causes this
over
ow, the broker chooses one of its hosts that is pre-
pared to be a broker and preempts the application running
on that host. Then it sends the broker code to the new
broker host and moves some of its hosts to the new broker.
Also, the new broker gets connected to other brokers by us-
ing the same (or part of the same) con�guration �le of the
primary broker which is also sent to it by the old broker. All
this can be achieved through the Javelin++ daemon. Next,
the daemons of the hosts that were moved are noti�ed of
their new broker. This should be entirely transparent to the
users who donated the hosts. In the same way, the system
can collapse again if the number of hosts connected to the
secondary broker drops below a certain threshold, say e.g.
25% of its host capacity.

3.1.2 Code Distribution

A client and its local broker do not actively look for hosts
to join a computation. Hosts can join at any time, either
by contacting the same broker as the client or indirectly
through some other broker.

If every host that participates in a computation had to
go to the client to download the code this would soon lead
to a bottleneck for large numbers of hosts. Therefore, �rst
the local broker and then every other broker that joins in
a computation will act as a cache on behalf of the client.

The loading and caching mechanism is implemented as a
modi�cation to the standard Java ClassLoader | whenever
a loadClass() command fails at a host it is translated to an
RMI call to the local broker, which in turn will either deliver
the requested class from its cache or make a recursive RMI
call to the broker it retrieved the application from. If all calls
in this chain fail to deliver the requested class, the client will
�nally be contacted and deliver the original class �le, which
will then be cached at all intermediate brokers in the chain.
Subsequent requests by other hosts will not reach the client
again, thus eliminating another bottleneck in the system.

In the following we describe the sequence of steps from
the moment a client application is willing to execute until
the moment when a host has received the code to participate
in the computation.

1. The client registers with its local broker.

2. If the broker is willing to accept jobs, the client then
sends a description of the application to the broker6.
Depending on the type of application, the client may
now start up and execute on its own.

3. A host joins the system by downloading the Javelin++
daemon class and starting a JVM that executes the
daemon.

4. The host daemon contacts the local broker asking for
code to execute.

5. If the local broker has work, it returns the name of the
application class and client ID. If not, it contacts its
neighboring brokers and asks for code until it either
�nds an application or all neighbors have denied the
request. If this search is successful, the broker also
returns the application information to the host.

6. The host daemon executes the above mentioned recur-
sive class loading mechanism to load the application.
A new thread is created and the application starts to
execute on this host.

3.2 Scalable Computation

After distributing the code successfully, we can now tackle
the next problem of managing a scalable computation. In
Javelin++ we follow two distinct approaches to solve this
problem, a probabilistic and a deterministic model. Whereas
the probabilistic approach is somewhat \chaotic" in the sense
that communication between hosts is completely unstruc-
tured, the deterministic approach structures the participat-
ing hosts into a tree in which some hosts become \managers"
for other hosts. Both approaches o�er high potential for
scalability, and a performance comparison is attempted in
Section 5. We now give a brief description of our strategies.

3.2.1 Work Stealing

The fundamental concept underlying both our approaches is
work stealing, a distributed scheduling scheme made popu-
lar by the Cilk project [7]. Work stealing is entirely demand
driven | when a host runs out of work it sends a work re-
quest to some other host it knows. How exactly that host
is selected depends on whether the probabilistic or deter-
ministic strategy is used, see below. One advantage of work
stealing is its natural way of balancing the computational

6currently consisting of the name of the application class and the
ID of the client

load, as long as the number of tasks remains high in rela-
tion to the number of hosts; a property that makes it well
suited for adaptively parallel systems.

For our work stealing schedulers we use two main data
structures that are local to each host: a table of host ad-
dresses (technically, Java RMI handles), and a distributed,
double-ended task queue containing \chunks of work". For
the reader who knows our previous Javelin prototype [12]
the deque will sound familiar. Indeed we have only further
re�ned this approach since it promised good scalability from
the beginning.

The working principle of the deque is as follows: the lo-
cal host picks work o� one end of the queue, whereas remote
requests get served at the other end. Jobs get split until a
certain minimum granularity | determined by the applica-
tion | is reached, then they are processed. When a host
runs out of local jobs, it picks one of its neighbors from its
address table and issues a work request to that host.

3.2.2 The Probabilistic Approach

In the probabilistic model, the host selects the target of its
work request at random from the list of hosts it currently
knows. In doing so the host piggybacks its own address
information onto the request so that address information
can propagate through the set of participants. Regardless
of whether the request is successful, the callee returns a
constant number of his own addresses for the same purpose.
The caller will then merge its address table with the set
of returned addresses. Thus, its knowledge of participants
will increase until its table �lls up and \older" addresses
must be evicted, which can be taken care of by a standard
replacement policy like, e.g., LRU. All this will result in a
working set of connections for each host.

Since the list of known hosts can grow relatively large for
big applications, a hash table is used to store the addresses.
From the point of view of scalability, using a hash table al-
lows for fast retrieval in the average case and scales to very
large numbers. In addition, there is no centralized site in
this setup, and host autonomy is guaranteed since su�cient
information is kept locally to remain functional in the pres-
ence of failures. It is important to observe that the address
table is bounded in size | the hash table is preallocated to
some �xed size that remains manageable.

3.2.3 The Deterministic Approach

Our second approach implements a deterministic scheme.
Here, we use a balanced tree | similar to a heap | as the
underlying structure of our deterministic model. Again, the
fundamental concept employed is work stealing. The main
di�erence is that the selection of the host to steal work from
follows a deterministic algorithm based on the tree structure.

Initially, each host retrieves a piece of work from its par-
ent and will perform computation on the work one piece at
a time. When a host is done with all the work in its deque,
it will attempt to steal work, �rst from its children and, if
that fails, from its parent. We chose this strategy to ensure
that all the work assigned to a subtree gets done before a
node requests new work from its parent. To facilitate this
scheme, each host keeps a counter of the total work assigned
to its subtree, plus a counter for each of its children. It is
important to observe that the counters are not likely to re-

ect the exact state of the tree, but rather serve as upper
bounds on the amount of work left in a subtree. This way, a
host can make an \educated guess" as to which of its chil-
dren is most likely to have more work, and direct its request

to that child �rst. The counters are updated on each reply
to a work request.

Work stealing within a balanced tree of hosts ensures
that each host gets amount of work commensurate with its
capabilities. The client is always located at the root of the
tree and manages the tree, i.e., it maintains a heap data
structure for that purpose. When a new host joins, it is
assigned a leaf position in the tree by the tree manager. The
tree fanout can be chosen individually for each application
at startup.

Figures 4 through 6 illustrate the deterministic work
stealing process. In Figure 4, three hosts have joined in the
computation of a simple raytracing scene. At �rst, only Host
0 | the client | started work on the whole image. Then,
Host 1 joined and stole the left half of the image from Host
0. Next, Host 2 joined and stole the upper right quarter of
the image from the client. The �gure depicts the situation
when all hosts have already completed some atomic pieces of
their work. Consequently, the work counters at Host 1 and
Host 2 show the exact number of atomic pieces remaining
in the deques of these hosts, 6 and 3, respectively.

The client only has an upper bound on these counters,
indicating the initial amount of work given to each of its
children | 8 and 4, respectively. However, it does know
that the client itself has completed 3 units of work, so it can
adjust the upper bound on the total work | its own work
counter | to a value of 13.

0
13

1 6

8

2 3

4

Figure 4: Work Stealing: 3 hosts working on a raytracing
scene.

In Figure 5, the computation has progressed to the point
where �rst the client was able to steal the upper left quarter
of the image back from Host 1, and then Host 1 in turn stole
the upper left eighth of the image back from the client. Host
2 still has work remaining from its initial share of the image.
Through this exchange the client has gained information on
the amount of work Host 1 has completed, and therefore it
knows that there can be at most 7 pieces left to compute,
with at most 2 pieces for Host 1 and, since it has not heard
from Host 2 yet, at most 4 pieces for that host. Of course,
Hosts 1 and 2 know the exact workloads in their deques, just
as before.

Finally, Figure 6 shows the end of the computation with
all counters down to 0.

3.3 Fault Tolerance

For fault tolerance purposes, the current version of Jave-
lin++ employs distributed eager scheduling, where pieces of
work can be reassigned to idle hosts in case results are still
outstanding. Eager scheduling was made popular by the

0
7

1 2

2

2 1

4

Figure 5: Work Stealing: Client and Host 1 have stolen work
from each other.

0
0

1 0

0

2 0

0

Figure 6: Work Stealing: Image complete.

Charlotte project [5] and has also been used successfully in
Bayanihan [24]. It is a low overhead way of ensuring progress
towards the overall solution in the presence of failures or
varying processor speeds.

We �rst explain our distributed eager scheduling strat-
egy, then we give a brief description of an additional fault
tolerance feature of Javelin++ | detecting and correcting
host failures in the deterministic tree.

3.3.1 Distributed Eager Scheduling

The Javelin++ eager scheduling logic is located on the client.
Although this may seem like a bottleneck with respect to
scalability, it is not, as we shall explain below. The mech-
anism employed is lightweight, introducing little overhead,
as our experiments in Section 5 demonstrate.

The basic data structure required is a heap-like problem
tree, which the client maintains to keep track of the compu-
tation status. The tree has a node for every piece of work
the problem can possibly generate, and is structured as fol-
lows: at its root is the complete, undivided problem itself;
its children are the subproblems resulting from a single split
of the root problem; and so on, until the atomic pieces of
the problem appear at the leaves of the tree. Each node
can be in one of three states: done, meaning the result for
the subproblem has been received by the client; partly done,
meaning that results have been received by the client for
some but not all descendants of this subproblem (i.e., some
but not all subproblems of this subproblem); and undone,
meaning that no results whatsoever have been received by
the client for this subproblem. Initially, all nodes are in the

undone state. The processing itself consists of two distinct
routines:

1. Result Processing | this is the \normal" mode of op-
eration, in which the client records all incoming re-
sults. Speci�cally, the client marks the subproblem
corresponding to the incoming result as done, and then
recurses up the tree marking ancestors of the subprob-
lem either done or partly done depending on their cur-
rent status.

2. Eager Scheduling Selection | this routine is invoked
only when regular work stealing fails for the client, i.e.,
the client cannot get work from its children in the host
tree. In this case, the client selects the next piece of
work marked undone for rescheduling. Since the tree
is organized as a circular array with piece sizes mono-
tonically decreasing, this piece is guaranteed to be the
largest available undone piece. The next time selection
is invoked, it will proceed from the current point to se-
lect the next largest undone piece, and so on. At the
end of the array, the selection process simply wraps
around to the beginning and enters another round.

It is important to note that the scheme employed is actually
distributed: by selecting the largest available piece of work
and reissuing it for processing, the distributed work stealing
ensures that this work will be split up and distributed among
the participating hosts just as the pieces were initially. The
eager scheduling strategy thus is integrated very naturally
into the distributed work stealing.

Figures 7 through 9 give an example of Javelin++ eager
scheduling. In Figure 7 we see how the result of the atomic
piece with ID 4 arrives at the client. The client subsequently
marks all its ancestors including the root as partly done. In

0

1 2

3 4 5 6

undone

partly done

done

Figure 7: Eager Scheduling: Result 4 arrives.

Figure 8 another result arrives for the atomic piece with
ID 3. Now the client can also mark the parent of this piece,
node 1, as done. Finally, in Figure 9 we show how, assuming
no further results arrive at the client and work stealing has
failed, the client selects piece number 2 as the largest undone
piece of work. This piece will now be reissued for host work.
It subsequently may be split, and parts of it stolen by other
hosts.

Our variation of eager scheduling principally works with
both scheduling approaches. In the deterministic case, eager
scheduling proceeds in rounds. Work is reissued, starting
a new round, only when all work in the current round has
been split into atomic pieces and all atomic pieces have been
assigned to some host. In the probabilistic case, however,
it is di�cult to detect when all work in the current round
has been split into atomic pieces and all atomic pieces have

0

1 2

3 4 5 6

undone

partly done

done

Figure 8: Eager Scheduling: Result 3 arrives.

0

1 2

3 4 5 6

undone

partly done

done

Figure 9: Eager Scheduling: Piece 2 selected.

been assigned to some host. Rather, work is reissued in the
probabilistic case when the client is out of work and fails
to �nd work after k attempts to steal work from randomly
selected hosts (for some k, a parameter of the probabilistic
eager scheduling strategy).

3.3.2 Fixing the Deterministic Tree

If a host fails (or retreats from the system) in the probabilis-
tic scheme, it does not a�ect other hosts very much, since
communication is unstructured and the failed host, when de-
tected, will just be taken o� the detecting host's address list.
In the deterministic setting, however, a host failure has more
consequences. Depending on its position in the host tree, a
failed host blocks communication among its children, and
a portion of the undone computation residing at the failed
host may never be assigned to any host in its subtree. Eager
scheduling guarantees that the work will be done eventually
by the hosts that remain accessible to the client, but it still
would be desirable to �x a broken tree structure as fast as
possible, especially if the failed host is the root of a large
subtree of hosts.

Javelin++ provides a feature that automatically �xes a
tree as soon as a host failure is detected. As a precondition
we make the assumption that the client is a stable partici-
pant. This is reasonable because the client is the initiator of
the whole computation.

The tree repair scheme works as follows: When a host
is assigned a position in the tree, it is given a list of all of
its ancestors, with the client being the �rst element of the
list. If a host detects that its parent is dead, it immediately
noti�es the client of this condition. If the empty position has
already been reported and �lled, the tree manager traverses
the tree representation, and returns a new ancestor list to

1

0 Host

6543

2

Figure 10: Host 1 fails, Host 3 detects failure.

the host. However, if the host is the �rst to report the
failure, the tree manager reheaps the tree. First, it noti�es
the last node in the tree, which is to be moved to �x the
gap. Figures 10 through 12 illustrate the situation where
node 1 has failed and is replaced by node 6.

1

0 Host

6543

2

Figure 11: Client preempts Host 6.

Node 6 is assigned a new list of ancestors, and is moved
to its new position. Then, the tree manager traverses the
tree representation to �nd the new ancestor chain of the
orphaned node, and returns that chain.

6

0 Host

543

2

Figure 12: Host 6 takes over for Host 1.

Currently, the tree is managed by a single entity and
therefore presents a potential bottleneck if the host fail-
ure rate is high. However, it would be possible to modify
the existing implementation to distribute tree management
throughout the broker network. In this case, the host failure
rate which the system could recover from would increase as
the number of brokers increased.

At present, the tree repair scheme can only cope with
host failures, i.e., all hosts that detect a failure must agree
on that observation. A single host is not able to distinguish
between host and link (communication) failures; the result
is the same from the point of view of the host. In case of
a link failure between a host and only one of its children,
the present scheme reports a failure to the client even when
sibling hosts can still communicate with the \failed" parent
host. Clearly, what is needed is a form of quorum consensus
algorithm. Therefore, our basic scheme needs to respond in
a more sophisticated way to link failures. This is a current
topic of research in Javelin++.

4 The Javelin++ API

In this section we illustrate our system from an application
programmer's point of view. We �rst present the classes
needed by the programmer to create a Javelin++ applica-
tion. We then give an example that shows how the API is
actually used and how easy it is to create Javelin++ appli-
cations.

A Javelin++ application consists of one client and many
hosts. The client is responsible for initiating the compu-
tation, managing the problem, and collecting the results.
It may or may not do part of the actual computation. The
hosts help the client manage and compute the problem. The
client code executes on a single machine, while the host code
is distributed throughout the Javelin++ network and exe-
cuted on many di�erent machines.

All of the Javelin++ classes are contained in two pack-
ages: JavelinPlus and JavelinPlus.util. The �rst pack-
age contains all of the core Javelin++ classes and the second
one contains data managers and other helper classes. We fol-
low the convention that all classes and interfaces beginning
with the letter \J" are implemented in Javelin++ and can
be directly used by the application, whereas interfaces not
beginning with \J" must be implemented by the application
in order to work with the system.

The application programmer must provide code for both
the client and the host, which may actually be joined to-
gether in a single source �le as our example below shows,
plus the implementation of three interfaces needed by the
system.

4.1 The JavelinPlus Package

This package contains all the core classes needed by clients,
hosts, and brokers, including the Javelin++ daemon men-
tioned in Section 3. The programmer writing an applica-
tion for Javelin++ only needs to get acquainted with the
JavelinClient class.

public class JavelinClient {
public JavelinClient(String client,

String className,
String broker);

public void begin();
public void terminate();

}

Javelin++ clients must instantiate the JavelinClient class.
The only constructor of JavelinClient takes the local host
name, the top-level class name used to load the host classes,
and a broker's host name. Once the client is ready to start
the computation, the client invokes the begin() method.
This causes the client to register with a broker, which in
turn allows for the broker network to assign hosts to the

client's computation. The terminate() method unregisters
the client allowing the broker network to clean up and stop
assigning hosts to that client. It is typically called after the
computation is done and before the client exits.

4.2 The JavelinPlus.util Package

To manage the computation, clients and hosts must instanti-
ate one of the data managers in this package. Data managers
dictate how the computation is divided, how hosts obtain
work, and how results return to the client. As discussed
in Section 3, data managers can either be probabilistic or
deterministic, and they are responsible for providing scal-
ability and fault tolerance. Currently, Javelin++ provides
two data managers: the deterministic JavelinDDeque and
the probabilistic JavelinRDeque. Both of these implement
the JDataManager interface shown below.

public interface JDataManager {
public void addWork(Splittable work);
public Splittable getWork();
public void returnResult(Object result);
public void setResultListener(ResultListener rl);
public void setDoneListener(DoneListener dl);

}

The three main methods are addWork(), getWork() and
returnResult(). In our model, a host uses the �rst method
to pass new work to the data manager. In the piecework
scenario this method is typically only executed once by the
client to initialize the computation. The getWork() method
is used by a host to obtain a piece of the computation. In
case the computation produces a usable result, the host
passes that result to the client using the returnResult()
method. However, the exact way that the result propagates
to the client depends on the underlying data manager. For
instance, atomic results can be sent directly to the client
or they can be collected, composed, and sent as composite
results.

The programmer must also tell the data manager how
to notify his application whenever a new result arrives and
when all the work is complete. This is done by the methods
setResultListener() and setDoneListener(). The two
methods are mainly needed on the client which needs to
process results and is interested in knowing when the com-
putation is complete. For this purpose, the programmer
must implement the two interfaces below so that the respec-
tive methods can be called by the system.

public interface ResultListener {
public void handleResult(Object result);

}

public interface DoneListener {
public void workDone();

}

We now mention how the client conveys its work to a data
manager. For this, the programmer de�nes a class, repre-
senting the type of work to be done, that implements the
Splittable interface, shown below. The data manager uses
the Splittable methods to divide and distribute the work to
hosts.

public interface Splittable {
public boolean canSplit();
public Splittable[] split();
public int getObjectSize();

}

The split() method should split the work represented by
a particular object into two relatively equal parts. The two
parts are returned in an array of length two7. For example,
assume we have a class that implements the Splittable in-
terface and represents an image. If we were to invoke the
split() method on an instance representing an n by n im-
age, the returned array should contain two new instances
each representing an n

2
by n image. The canSplit() method

determines if a split is possible and is always invoked prior to
split() method. If canSplit() returns false, the split()
method will not be called. Finally, the getObjectSize()
method returns the integer size of the piece of work: the
number of atomic pieces into which this piece decomposes.
This is needed by the deterministic deque which keeps in-
teger counters of all work assigned to a tree node and its
children. The method is ignored by the random deque.

4.3 Examples

The main design goal is to separate the computation en-
gine from the data delivery. The data delivery interacts
with Javelin++ to obtain and format the work for the com-
putation engine. This design produces two very desirable
properties. First, we can reduce application writing to us-
ing an o�-the-shelf program/library (computation engine)
and only writing a small data delivery part. Second, having
done one such application, it is very easy to change to a
di�erent computation engine.

The client must pass the name of the host class into the
JavelinClient constructor. This class has to implement the
Runnable interface, since the Javelin++ daemon is going to
execute the host application as a thread. Therefore, the
programmer must implement the run() method, which is
the �rst method that is going to be invoked.

Prior to the computation, the host is only required to
instantiate the same data manager as the client. Then, the
host starts the computational loop: ask data manager for
work, compute work, and return results. Once the data
manager returns null, indicating that there is no more work,
the host can terminate by simply returning from the run()
method.

The skeletons for the client and the host are presented
below. To save space and increase readability much of the
error handling code has been omitted.

public class GenericClient
implements ResultListener, DoneListener {
JavelinClient jClient = null;
JDataManager dm = null;
Splittable work = null;

public GenericClient(String broker) {
jClient = new JavelinClient(localHost,

"GenericHost",
broker);

// Create a work object of the class
// that implements Splittable.
work = new ...;

// Create a data manager.
// Here, a deterministic deque
// is instantiated.
dm = new JavelinDDeque();

7although other ways of splitting are conceivable with this
interface!

// Pass the work to the data manager.
dm.addWork(work);
dm.setResultListener(this);
dm.setDoneListener(this);

jClient.begin(); // Begin execution phase.
}

public void handleResult(Object result) {
... // ResultListener Implementation.

}

public void workDone() {
// DoneListener Implementation.
jClient.terminate();

}

public static void main(String[] argv) {
GenericClient genClient

= new GenericClient(argv[0]);
}

}

public class GenericHost implements Runnable {
JDataManager dm = null;

public GenericHost() { ... }

public void init() {
// Instantiate the same data manager
// as in the client.

}

public void run() {
init();

// Computational loop.
while ((Object work = dm.getWork()) != null) {

Object result = doWork(work);
dm.returnResult(result);

}
}

}

Next, we give some code extracts from our raytracing appli-
cation. The raytracer is still the same application that was
used in the original Javelin system [12]. We �rst show how
this application implements the Splittable interface to tell
Javelin++ how objects can be split. Here, the RectEntry
class shown below simply extends the java.awt.Rectangle
class to de�ne the area that needs to be rendered.

public class RectEntry extends java.awt.Rectangle
implements Splittable {
// minimum size for split
public static final int limit = 32;
private int jsize = 0;

public RectEntry(int x, int y, int ww, int hh) {
super(x, y, ww, hh);
jsize = (ww/limit) * (hh/limit);

}

boolean canSplit() {
return (width > limit || height > limit);

}

Splittable[] split() {
Splittable[] result = new Splittable[2];

if (width > height) {
result[0] = new RectEntry(x, y,

width/2, height);
result[1] = new RectEntry(x + width/2, y,

width/2, height);
}
else {
result[0] = new RectEntry(x, y,

width, height/2);
result[1] = new RectEntry(x, y + height/2,

width, height/2);
}
return result;

}

public int getObjectSize(){
return jsize;

}
}

Finally, the computational loop for the raytracer is shown
below. First, we ask the data manager for an area to render.
Our rendering engine is simple and is totally contained in
the RayTrace class. To render an area, the data delivery
simply invokes the raytrace() method. At the end of the
loop the result for this area is returned.

while ((area = (RectEntry)dm.getWork()) != null) {
int [] pixels

= tracer.raytrace(area.x, area.y,
area.width, area.height);

dm.returnResult(new RectResult(area, pixels));
}

5 Experimental Results

Tests were run in campus student computer labs under a
typical workload for the network and computers. This envi-
ronment consists of

� 12 Pentium II, 350 MHz processors with 128 MB RAM,

� 41 Pentium-S, 166 MHz processors with 64 MB RAM,
and

� 10 Sun UltraSparc with 64 MB RAM and processor
speeds varying from 143 to 400 MHz.

All machines run under Solaris 2.5.1 and 2.6. The machines
are connected by a 100 Mbit network. We used JDK 1.2
with active JIT for our experiments, although our code is
designed to run with JDK 1.1.x as well.

To test the performance of the probabilistic and the de-
terministic deque, we ran experiments on the raytracing ap-
plication described in Section 4. The performance was mea-
sured by recording the time to render the image. The size of
the image used for testing is 1024 x 1024 pixels, consisting
of a plane and 993 spheres arranged as a cone. This image
is complex enough to justify parallel computing, but small
enough to enable us to run tests in a reasonable amount
of time. The image is recursively decomposed by the split-
ting process described in Section 3 into a set of atomic sub-
images. The size of such an atomic piece can be chosen freely
by the application, e.g., 128 x 128 pixels. Each sub-image

constitutes an independent task for a host to compute. The
computational complexity of a task thus depends on the size
of the sub-image and its complexity (i.e., the number of ob-
jects in the scene to be raytraced).

The test image took approximately 6 hours to render on
one machine. Since the image being tested was an actual
scene, the computational complexity of an individual task
varies, depending on which part of the scene it represents.
We manually joined hosts to the computation soon after the
client started. In the future, we plan to have hosts in place,
waiting for a client to start.

In the �rst experiment, we varied the number of hosts
on the image decomposed into 1024 sub-images of 32 x 32
pixels. In our second experiment, we �xed the total work
(image) and number of hosts, and varied the task size, thus
varying the number of tasks to be distributed. In a pro-
duction environment, we would set the deterministic tree's
branching factor, or fanout, to maximize e�ciency. For test
purposes, the tree's branching factor was set to 4, much less
than its maximum e�ciency, to force the tree to have some
depth. Our third experiment compares the performance of
the deterministic deque with eager scheduling against its
performance without eager scheduling, thus measuring the
overhead of the result processing in the absence of failures.

5.1 Measurements

Before we discuss our results, it is necessary to clarify what
we mean by the term \speedup" in our setting. Tradition-
ally, speedup is measured on a dedicated parallel multipro-
cessor, where all processors are homogeneous both in hard-
ware and in software con�guration, and varying workloads
between processors do not exist. Obviously, in such a set-
ting speedup is well de�ned as T1=Tp, where T1 is the time a
program takes on one processor and Tp is the time the same
program takes on p processors.

Therefore, strictly speaking, in a heterogeneous environ-
ment like ours the term speedup cannot be used anymore.
Even though we tried to run our tests in as much a homoge-
neous setup as possible | we ran all experiments involving
up to 32 hosts only on our slowest but most numerous ma-
chines, the Pentium 166 processors | the varying workloads
on both the OS and the network amounted to big di�erences
in the individual computational powers of hosts.

However, from a practical point of view, a user running a
client application on Javelin++ that is joined by a large set
of hosts will de�nitely see \speedup"; the application will
simply run faster than on a single machine. This speedup
can very well be quanti�ed in the same way as before, only
that it is now relative to the speci�c client machine, i.e., a
user sitting at a fast machine will experience smaller speedup
than someone using a less powerful computer. Also, this
type of speedup is not a constant, since on another run,
even with the same set of hosts, the running time is bound
to be di�erent. From our experiments we can say that the
running times we measured were relatively consistent for ev-
ery given con�guration | an experiment involving 16 hosts,
for instance, would yield almost the same performance if re-
peated with the same parameters, with results varying by
at most 20%.

Having considered all this, we believe that we can still
speak of speedup in this context. We would like to suggest
the term practical speedup in this new setting as a means of
distinguishing between the two scenarios. In the following,
we may omit the word \practical" when the meaning is clear
from the context.

In Figure 13, our base machine is a slow Pentium 166.
In this case, a user can experience considerable speedup.
Our results show that, for both the deterministic and the
probabilistic deque, the speedup degrades only slightly from
linear for the higher host numbers.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Processors

S
pe

ed
up rnd

det

ideal

Figure 13: Practical Speedup for Random and Deterministic
Deques compared against a slow client.

The slight degradation, we believe, is associated with
transient phenomena: starting up the large number of pro-
cessors and winding down the computation, where necessar-
ily a large number of processors eventually must run out of
work. Also, the varying workloads of participating hosts re-
duce the potential speedup, as results from slow processors
come in late. Work stealing can alleviate this problem, but
overall a loss in performance cannot be overcome.

One phenomenon has to be explained in this context:
both curves �rst show a degradation up to 32 hosts, then a
sudden increase in speedup for the largest experiments. This
is because only for our largest experiments (more than 41
processors), we ran out of slower processors and added the
fewer but faster processors, which managed to steal more
work from slower processors and thus improved speedup.
For the random deque, our best result was a speedup of 52
for 60 processors. The deterministic deque achieved a com-
parable speedup of 46 for 52 processors. Thus, our com-
parison has no clear winner | both approaches performed
equally well in our limited setting.

Figure 14 shows the same experiment for the determin-
istic deque, only that our base machine is now one of the
faster Pentium II processors. Again, by adding the slow
hosts �rst the curve shows the typical improvement towards
the largest experiment with 57 hosts. Obviously, this curve
looks much less favorable, with a maximum speedup of only
about 16 for 57 hosts. The bottom line, however, is that,
even if a user has a powerful machine, our system can still
speed up such an application by a considerable factor using
large numbers of slower processors.

By varying the number of tasks, our second experiment
shows that speedup improves when the hosts are better uti-
lized. From the bar chart in Figure 15, we see that by select-
ing an adequate task size, and thus varying the number of
atomic pieces, we signi�cantly improve the speedup. With a
task size of 32 x 32 pixels, yielding 1024 tasks, the speedup
reached 23.7 for 32 hosts of type Pentium 166. Further re-
ductions in task size did not result in improved speedup, only
in increased communication. Speedup degraded to 14.98 for
a task size of 16 x 16 pixels (4096 tasks). Increasing the size
to 64 x 64 pixels (256 tasks) resulted in slightly slower per-

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Processors

S
pe

e
du

p

det

ideal

Figure 14: Practical Speedup for Deterministic Deque com-
pared against a fast client.

formance than for size 32, although the di�erence between
these two settings is hardly noticeable. In fact, on several
runs the size 64 outperformed the size 32 (the chart re
ects
only our best results for each granularity). Finally, moving
to 128 x 128 pixels (64 tasks) again resulted in degraded
performance, this time due to load imbalances: since there
are on average only 2 tasks per host, some hosts end up do-
ing 3 tasks and slowing down the whole computation. The
experiment clearly shows that the number of tasks should
be relatively high with respect to the number of hosts, so
that an even load can be achieved, but not unduly high so
that communication is not excessive. This conforms well to
what should happen in theory, and underlines that an ap-
plication programmer should take the time to �ne-tune the
application before running it.

0

5

10

15

20

25

16 32 64 128

Gr an u lar ity

Sp
ee

du
p

Figure 15: Di�erent Granularities for the Deque.

Our �nal experiment compares the performance of the
deterministic deque with and without the extra overhead of
eager scheduling. These tests only re
ect what happens in
the absence of failures, not with actual host failures occur-
ring. Since the only host slowed down by eager schedul-
ing is the client that does the result processing, and result
processing itself is very e�cient, the overhead is generally
insigni�cant, as can be seen in Figure 16. In light of the
huge bene�t of being able to make progress in the presence
of failures, which are highly likely in the Internet setting,
the small cost of the extra processing must be regarded as
negligible.

To sum up, an image that took over 5 hours to ren-

0
100
200
300
400
500
600
700

42 objects,
512x512 pixels,

256 atomic
chunks, 7 hosts

42 objects,
1024x1024 pixels,

1024 atomic
chunks, 7 hosts

994 objects,
1024x1024 pixels,

1024 atomic
chunks, 16 hosts

Raytracing scenes

T
im

e
 (

se
c)

eager on

eager off

Figure 16: Eager Scheduling Overhead.

der on a single computer took less than 7 minutes on 60
machines that were servicing undergrad and grad students,
who unknowingly stole cycles from the image rendering as
they surfed the web, emailed their friends, and occasionally
compiled code.

In the experiments for the original Javelin, the picture
had more than 12 times as many objects, while the hosts (the
Meiko's Sparc processors) were only about a �fth as fast,
yielding tasks with a much larger computational load than
the tasks used for these experiments. The communication
speeds were about the same. We believe that, if our current
experiments had a comparable computation/communication
ratio, our speedups would be even closer to optimal. Also,
the original Javelin experiments were run on an otherwise
idle set of 64 processors (Meiko). Since the Meiko has been
retired, and a dedicated multiprocessor machine is not the
target environment for global computing, our Javelin++ ex-
periments were run on a student laboratory whose machines
were not idle, re
ecting a realistic setting.

The tree built in the deterministic scheduler was not a
bottleneck in these experiments; the time for a host to join
the computation was about 70ms. We nonetheless are ex-
ploring the option of incorporating a new host into a waiting
host tree as soon as it registers with the broker, potentially
before any client requests service.

6 Conclusion

Parallel Internet computations need at least an order of mag-
nitude more computers than conventional NOWs to justify
their use. Global computing infrastructures thus must scale
to at least an order of magnitude more computers than con-
ventional NOWs. We have investigated the problem of cre-
ating a scalable, Java-based global computing infrastructure
called Javelin++. We have presented an approach to dis-
tribute application code in a scalable manner through a net-
work of brokers, each of which acts as a code cache for the
hosts connected to it. We have also implemented two con-
ceptually di�erent approaches for managing a scalable com-
putation: one that distributes work probabilistically, and
another that distributes work deterministically. Our design
analysis indicates that these versions of Javelin++ scale bet-
ter than the original Javelin infrastructure. We believe both
approaches will scale beyond what our experiments were
able to verify. Our tests have con�rmed the scheme's sen-
sitivity to the computation/communication ratio. We thus
hypothesize that as the computation/communication ratio

increases, the speedups get closer to linear for much higher
numbers of hosts. This hypothesis is not unreasonable; to
achieve a computation/communication ratio comparable to
that of a NOW, we must increase the computational load
in the Internet setting to compensate for the increased com-
munication time (relative to these times in NOWs).

In the future, we plan to focus on fault tolerance, which
we see as a necessary precondition to achieve greater scala-
bility; generalize our computational model, in order to ac-
commodate any divide-and-conquer computation; organize
hosts as soon as possible, potentially before a client requests
service; contribute to the issues of correctness checking; and
support host incentives.

References

[1] A. Alexandrov, M. Ibel, K. E. Schauser, and
C. Scheiman. SuperWeb: Research Issues in Java-Based
Global Computing. Concurrency: Practice and Experi-
ence, 9(6):535{553, June 1997.

[2] T. E. Anderson, D. E. Culler, and D. Patterson. A case
for NOW (Networks of Workstations). IEEE Micro,
15(1), Feb. 1995.

[3] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer.
ATLAS: An Infrastructure for Global Computing. In
Proceedings of the Seventh ACM SIGOPS European
Workshop on System Support for Worldwide Applica-
tions, 1996.

[4] A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem.
An Infrastructure for Network Computing with Java
Applets. Concurrency: Practice and Experience, 1998.

[5] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko�.
Charlotte: Metacomputing on the Web. In Proceed-
ings of the 9th Conference on Parallel and Distributed
Computing Systems, 1996.

[6] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox,
G. Premchandran, and W. Furmanski. WebFlow{
A Visual Programming Paradigm for Web/Java-based
Coarse Grain Distributed Computing. Concurrency:
Practice and Experience, 9(6):555{577, June 1997.

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An E�-
cient Multithreaded Runtime System. In 5th ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming (PPOPP '95), pages 207{216, Santa
Barbara, CA, July 1995.

[8] V. Borda. Brycewarp. Master's thesis, Dep. of Com-
puter Science, University of California, Santa Barbara,
Santa Barbara, CA, 1998.

[9] N. Camiel, S. London, N. Nisan, and O. Regev. The
POPCORN Project: Distributed Computation over the
Internet in Java. In 6th International World Wide Web
Conference, Apr. 1997.

[10] P. Cappello, B. Christiansen, M. O. Neary, and K. E.
Schauser. Market-Based Massively Parallel Internet
Computing. In Third Working Conf. on Massively Par-
allel Programming Models, pages 118 { 129, nov 1997.
London.

[11] N. Carriero, D. Gelernter, D. Kaminsky, and J. West-
brook. Adaptive Parallelism with Piranha. Technical
Report YALEU/DCS/TR-954, Department of Com-
puter Science, Yale University, New Haven, Connecti-
cut, 1993.

[12] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O.
Neary, K. E. Schauser, and D. Wu. Javelin: Internet-
Based Parallel Computing Using Java. Concurrency:
Practice and Experience, 9(11):1139{1160, Nov. 1997.

[13] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers,
and J. Pruyne. A Worldwide Flock of Condors: Load
Sharing among Workstation Clusters. Journal on Fu-
ture Generations of Computer Systems, 12, 1996.

[14] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of Super-
computer Applications, 1997.

[15] G. Fox and W. Furmanski. Java for Parallel Computing
and as a General Language for Scienti�c and Engineer-
ing Simulation and Modeling. Concurrency: Practice
and Experience, 9(6):415{425, June 1997.

[16] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A Secure Environment for Untrusted Helper Applica-
tions | Con�ning the Wily Hacker. In Proceedings of
the 1996 USENIX Security Symposium, 1996.

[17] Great Internet Mersenne Prime Search. GIMPS Discov-
ers 36th Known Mersenne Prime. Press Release, Sept.
1997. http://www.mersenne.org/2976221.htm.

[18] A. S. Grimshaw, W. A. Wulf, and the Legion team.
The Legion Vision of a Worldwide Virtual Computer.
Communications of the ACM, 40(1), Jan. 1997.

[19] S. Hirano. HORB: Extended Execution of Java Pro-
grams. In First International Conference on World-
Wide Computing and its Applications (WWCA 97),
1997. http://ring.etl.go.jp/openlab/horb/.

[20] P. Kmiec. Consh: User-Level Con�ned Execution Shell.
Master's thesis, Dep. of Computer Science, University
of California, Santa Barbara, Santa Barbara, CA, Dec
1998.

[21] M. Litzkow, M. Livny, and M. W. Mutka. Condor {
A Hunter of Idle Workstations. In Proceedings of the
8th International Conference of Distributed Computing
Systems, June 1988.

[22] M. Philippsen and M. Zenger. JavaParty - Transparent
Remote Objects in Java. Concurrency: Practice and
Experience, 9(11):1225{1242, nov 1997.

[23] L. F. G. Sarmenta. Bayanihan: Web-Based Volunteer
Computing Using Java. In 2nd International Confer-
ence on World-Wide Computing and its Applications,
Mar. 1998.

[24] L. F. G. Sarmenta and S. Hirano. Bayanihan: Build-
ing and Studying Volunteer Computing Systems Using
Java. Future Generation Computer Systems Special Is-
sue on Metacomputing, 1998. To appear.

[25] D. W. Walker. Free-Market Computing and the Global
Economic Infrastructure. IEEE Parallel and Dis-
tributed Technology, 4(3):60{62, 1996.

