
Complex numbers for Java

Michael Philippsen and Edwin G�unthner

University of Karlsruhe

JavaParty@ira.uka.de, http://wwwipd.ira.uka.de/JavaParty/

Abstract

E�cient and elegant complex numbers are one of the preconditions for the
use of Java in scienti�c computing. This paper introduces a preprocessor and
its translation rules that map a new basic type complex and its operations to
pure Java. For the mapping is insu�cient to just replace one complex-variable
with two double-variables.

Compared to code that uses Complex objects and method invocations to
express arithmetic operations the new basic type increases readability and it is
also executed faster. On average, the versions of our benchmark programs that
use the basic type outperform the class-based versions by a factor of 2 up to 21
(depending on the JVM used).

1 Introduction

In regular Java there is just one reasonable way to use complex numbers, namely to
write a class Complex containing two values of type double. Arithmetic operations
have to be expressed by method invocations as shown in the following code fragment.
The alternative, to manually use two double-variables where a complex number is
needed, is too error-prone and too cumbersome to be acceptable.

Complex a = new Complex(5,2);
Complex b = a.plus(a);

Class-based complex numbers have three disadvantages: Once written without oper-
ator overloading, arithmetic operations are hard to read and maintain. Second, since
Java does not support so-called value classes, object creation is slower and objects
need more memory than variables of a basic type. Arithmetic operations based on
classes are therefore much slower than arithmetics on built-in types. Even worse,
method-based arithmetic causes frequent creation of temporary objects to return val-
ues. To return temporary arithmetic results with basic types, no such object creation
is needed. The third disadvantage is that class-based complex numbers do not seam-
lessly blend with basic types and their relationships. For example, an assignment of
a double-value to a Complex-object will not cause an automatic type cast { although
such a cast would be expected for a genuine basic type complex. Additionally, there
is no natural way to express complex literals; instead a constructor call is needed.

The fraction of people using Java for scienti�c computing is quite small, so it is
unlikely that the Java Virtual Machine (JVM) or the Java bytecode will be extended

1

to support a basic type complex { although this might be the best solution from a
technical point of view. It is also hard to tell whether Java will ever be extended
to support operator overloading and value classes; and if so, whether there will be
e�cient implementations. But even given such features our work would remain im-
portant because, �rst, the same level of seamlessness cannot be achieved, see the
above type cast problem. And second, our work can still be used to rate the e�ciency
of implementations of the general features.

The next section discusses the related work. Section 3 gives an overview of the
preprocessor/compiler. The basic ideas of the translation are presented in Section 4.
Section 5 shows the quantitative results.

2 Related work

With support from Sun Microsystems, the Java Grande Forum [5, 9] strives to improve
the suitability of Java for scienti�c computing. The challenge is to identify and bundle
the needs of this small user group in such a way that they can be respected in the
continuing evolvement of Java although that is driven by the main stream.

The Java Grande Forum is working on a reference implementation of a class
Complex that can be used to express arithmetics on complex numbers [10, 4]. Special
attention is paid to problems of numerical stability. IBM is extending their Java-to-
native compiler to recognize the use of this class [11]. By understanding the semantics
of the Complex class, the compiler can optimize away method invocations and avoid-
able temporary objects. Hence { at least on some IBM machines { high performance
can be achieved even when using class-based complex numbers. However, the other
disadvantages mentioned above still hold, i.e. there is no operator overloading and
Complex objects lack a seamless integration into the basic type system.

There are considerations to add value classes to the o�cial Java language [3, 8].
But although there is no proper speci�cation and no implementation yet, the Borneo
project [2] is at least in a stage of planning. Since there are already object-oriented
languages that support value classes, e.g. Sather [7], the basic technical questions
of compiling value classes to native code can be regarded as solved.1 However, it
is still unclear whether and how value classes can e�ciently be added to Java by
a transformation that expresses value classes with original language elements. In
particular, it remains to be seen whether value classes will require a change of the
bytecode format.

3 Cj at a glance

In our experience, any extension of Java will only be accepted if there is a trans-
formation back to pure Java. But in general better e�ciency can be achieved by
using optimization techniques during bytecode generation. Our compiler cj, which is
an extension of gj [1], therefore supports two di�erent output formats, namely Java
bytecode and Java source code. In this paper, we focus on the latter and mention
optimizations only brie
y.

1C++ can emulate value class semantics by means of pass-by-value mechanisms.

2

3.1 New language elements

Cj extends the set of basic types by the type complex. A value of type complex

represents a pair of two double precision
oating point numbers. All the common
operations for basic types are de�ned for complex in a straightforward way. The
real and imaginary part of a complex can be accessed through the member �elds
real and imag. Note, that the names of these �elds are no new keywords. Since the
basic type complex is a supertype of double, a double-value will be implicitly casted
where a complex is expected. A second new keyword, I, is introduced to represent
the imaginary unit and to express constant expressions of type complex, as shown in
the following code fragment.

void foo(complex x, complex y) {
complex const = 5.0 + y.real * I;
complex sum = const + x + y;
...

3.2 Third transformation phase for gj

There are already two transformation phases in gj that map additional language
elements to pure Java. As in any current Java compiler, inner classes are translated
to Java 1.0. In addition, before the inner class transformation gj transforms generic
classes to Java 1.1.

Cj adds another transformation before processing generic classes.2 This transfor-
mation is discussed in detail in Section 4.

3.3 Name mangling for separate compilation

Program elements using complex are mapped to pure Java. A part of the transfor-
mation can be done by modifying the names used by the programmer. For example,
by appending cjreal to a variable name, the name of the resulting real part of the
corresponding complex-variable can be derived. A similar technique is used to adapt
the names of methods when their signature includes arguments of type complex.

Since the name mangling rules are also known to the bytecode loader it is possible
to compile di�erent Java programs separately, even when complex is already trans-
formed into bytecode. Hence, if the compiler �nds a mangled method de�nition in a
bytecode �le it internally generates an additional method symbol entry representing
the method with its original signature and type information.

4 Recursive transformation rules for complex

For simplicity, we call any expression that uses complex values a complex expression.
The transformation of complex expressions to expressions that only use double causes
several problems.
�Transformation locality. If a complex expression is used where only an expression

is allowed it must not be mapped to a sequence of statements.

while (u == v && x == (y = foo(z))) {...}

2It is also necessary to to extend gj's parser and attribution to be able to handle the new type
complex and to issue proper error messages.

3

For example, for transforming the complex condition of this while-loop into its real
and imaginary parts it is necessary to introduce several temporary variables whose
values have to be calculated within the body of the loop. Therefore, the loop has to
be reconstructed completely.

In general, to replace complex expressions by three-address statements, one needs
non-local transformations that reconstruct surrounding statements as well, although
local transformation rules that replace expressions by other expressions (not state-
ments) were simpler to implement in a compiler and it would be easier to reason
about their correctness.
� Semantics. To achieve platform independence, Java requires a speci�c evaluation
order for expressions (from left to right). Any transformation of complex arithmetics
must implement this evaluation order using double-arithmetic.

To preserve these semantics for complex expressions, it is not correct to fully eval-
uate the real part before evaluating the imaginary part. Instead, the transformation
has to achieve that a side e�ect is only visible on the right hand side of its occurrence,
but both for the real and imaginary part. Similarly in case of an exception, only
those side e�ects are to become visible that occur on the left side of the exception.
Additionally, by separating the real part from the imaginary part, it is also unclear
how to treat method invocations (foo(z) in the above example). Shall foo be called
two times? Is it even necessary to create two versions of foo?

4.1 Sequence methods

To avoid both types of problems we introduce what we call sequence methods as
a central idea of cj. Each complex expression is transformed into a sequence of
expressions. These new expressions are then combined as arguments of a sequence
method. The return value of a sequence method is ignored. This technique enables
us to keep the nature of an expression and allows our transformation to be local.
A sequence method has an empty body; all operations happen while evaluating the
arguments of the method invocation. The arguments are evaluated in typical Java
ordering from left to right.3 In case of nested expressions, the arguments of a sequence
method invocation are again invocations of sequence methods. By using this concept
we are able to evaluate both parts of each node of a complex expression tree at a time.
Moreover, the evaluation order (in terms of visibility of side e�ects and exceptions)
is guaranteed to be correct.

When cj is used as preprocessor and Java code is produced, the method invoca-
tions of the sequence methods { which are declared final in the surrounding class
{ are not removed. However, they may be inlined by a Just-in-time (JIT) compiler.
When cj generates bytecode, the compiler directly removes the method invocations {
only the evaluations of the arguments remain. The resulting bytecode has the same
e�ciency as if C/C++'s comma operator was available in Java.

4.2 An example of Sequence methods

Let us �rst consider the right hand side of the complex assignment z = x + y. To
avoid any illegal side e�ects we use temporary variables to store all operands. The

3Exceptions are not thrown within a sequence method but within the invocation context. Hence,
it is unnecessary to declare any exceptions in the signature of sequence methods.

4

following code fragment shows the (yet unoptimized) result of the transformation of
the right hand side.

seq(seq(tmp1_real = x_real, tmp1_imag = x_imag),
seq(tmp2_real = y_real, tmp2_imag = y_imag),
tmp3_real = tmp1_real+tmp2_real, tmp3_imag = tmp1_imag+tmp2_imag)

In this example, 6 double-variables would have to be declared in the surrounding
block (not shown in the code). When evaluating this new expression, Java will start
with the inner calls of sequence methods (from left to right). Thus, both parts of x and
y are stored in temporary variables. The subsequent call of the enclosing sequence
method performs the addition (in the third and fourth argument). A subsequent
basic block optimization detects the copy propagation and eliminates passive code.
So we only need a minimal number of temporary variables and copy operations. In
the example, just two temporary variables and one sequence method remain.

seq(tmp3_real = x_real+y_real, tmp3_imag = x_imag+y_imag)

Now look at the assignment to z and the two required elementary assignments.

seq(seq(tmp3_real = x_real+y_real, tmp3_imag = x_imag+y_imag),
z_real = tmp3_real, z_imag = tmp3_imag)

In this case the basic block optimization also reduces the number of temporary vari-
ables and prevents the declaration of a sequence method. Thus, the resulting Java
code does not need any temporary variables; only a single sequence method needs to
be declared in the enclosing class.4

seq(z_real = x_real + y_real, z_imag = x_imag + y_imag)

When we directly construct bytecode, there is no need for the sequence method.
Instead, only the arguments are evaluated. The resulting bytecode is identical to
the one that would result from a manual replacement of complex expressions with
three-address statements.

4.3 Basic transformation rules in detail

In the next sections we consider an expression E that consists of subexpressions e1
through en. The rewriting rule eval[E] describes (on the right hand side of the
7!-symbol) the recursive transformation into pure Java that applies eval[ei] to each
subexpression. In most cases complex expressions are mapped to calls of sequence
methods whose results are ignored. Sometimes it is necessary to access the real or
imaginary part of a complex expression. For this purpose there are evalR and evalI .
Both cause the same e�ect as eval but are mapped to special sequence methods
(seqREAL or seqIMAG) that return the real or the imaginary part of the complex

expression. If evalR or evalI are applied to an array of complex-values the corre-
sponding sequence methods will return an array of double-values. See the discussion
of constructor methods in Section 4.5. Expressions that are not complex remain
unchanged when treated by eval, evalR, or evalI . The =-symbol refers to Java's

4Since user de�ned types may appear in the signature of sequence methods it is impossible to
prede�ne a collection of sequence methods in a helper class.

5

assignment operator. In contrast, we use � to de�ne an identi�er (left hand side of
�) that has to be expanded textually by the expression on the right hand side.

To process the left hand side of assignments we use another rewriting rule: access[E]
does not return a value but instead returns the shortest access path to a subexpression,
requiring at most one pointer dereferencing.

From the above example, it is obvious that a lot of temporary variables are added
to the block that encloses the translated expressions. Most of these temporary vari-
ables are removed later by optimizations.5 The following transformation rules do
not show the declaration of temporary variables explicitly. However, they can easily
be identi�ed by means of the naming convention: if e is a complex expression, the
identi�ers ereal and eimag denote the two corresponding temporary variables of type
double. The use of any other temporary variables is explained in the text. Arrays of
complex are discussed in Section 4.4; method invocations are described in Section 4.5.
The rules for unary operations, constant values, and literals are trivial and will be
skipped. Details can be obtained from [6].
� Plain identi�er: The transformation rule for E � c is:

eval[c] 7! seq(Ereal = creal; Eimag = cimag)

Both components of the complex variable c are stored to temporary variables that
represent the result of the expression E. If c is used as left hand side of an assignment,
it is su�cient to use the mangeled names.
� Selection: The transformation rule for E � F:e is:

eval[F:e] = seq(tmp = eval[F]; Ereal = tmp:ereal; Eimag = tmp:eimag)

F is evaluated once and stored in a temporary variable tmp and then tmp is used to
access the two components. If F:e is used as the left hand side of an assignment, F is
evaluated to a temporary variable that can then be used for further transformations
of the right hand side:

access[F:e] 7! tmp = eval[F]
^ E

#

real � tmp:ereal; E
#
imag � tmp:eimag

It is important to note that the transformation rule for assignments (see below) de-
mands that the code on the right hand side of the 7!-symbol is inserted at the position
where access[F:e] is evaluated. Secondly, the identi�ers E#

real and E#
imag have to be

replaced textually with the code following the �-symbol. (The #-notation and the
textual replacement are supposed to help understanding by clearly separating the
issues of the access path evaluation from the core assignment.)
� Assignment: The transformation rule for E � e1 = e2 is:

eval[e1=e2] 7!seq(access[e1];eval[e2];Ereal=e
#

1real=e2real;Eimag=e
#
1imag=e2imag)

First the access to e1 is processed. Then the right hand side of the assignment is
evaluated. The last two steps perform the assignment of both parts of the complex

expression. Since the assignment itself is an expression it is necessary to initialize
additional temporary variables that belong to E. Occurrences of e# are inserted
textually according to access.

Therefore, the transformation creates the following code for X.Y.z = x (after
removing temporary variables and redundant calls of sequence methods):

seq(tmp = X.Y, tmp.z_real = x_real, tmp.z_imag = x_imag)

5In case of static code or the initialization of instance variables the remaining temporary variables
are neither static nor instance variables: they can be converted to local variables by enclosing them
with static or dynamic blocks.

6

The temporary variable tmp is only necessary if X.Y. may cause side e�ects.
� Combination of assignment and operation: The transformation rule for E �
e1�= e2, where � 2 f+;�; �; =g, is:

eval[e1�= e2] = seq(access[e1]; e#
1
= eval[e#

1
� e2])

The address of the left hand side of the assignment is evaluated; every occurrence of
e#
1
is replaced textually with the code determined by access. The address is used as

left operand of the operation. Finally, the result of the operation is written to the
calculated address. This strategy is essential to avoid repetition of side e�ects while
evaluating e1.
� Comparison: The transformation rule for E � e1 == e2 is:

eval[e1 == e2] 7! seqvalue(eval[e1]; eval[e2]; e1real == e2real && e1imag == e2imag)

In contrast to the sequence methods used before, this one is not returning a dummy
value. Instead seqvalue returns the value of its last argument. The result of the whole
expression is a logical AND of the two comparisons. Inequality tests can be expressed
in the same way, we just have to use != and jj instead of == and &&. This special
kind of sequence method can also be removed while generating bytecode.
� Addition and subtraction: The transformation rule for E � e1 � e2, where
� 2 f+;�g, is:

eval[e1 � e2] 7! seq(eval[e1]; eval[e2]; Ereal = e1real � e2real; Eimag = e1imag � e2imag)

� Multiplication: The transformation rule for E � e1 � e2 is:
eval[e1 � e2] 7! seq(eval[e1]; eval[e2]; Ereal = e1real � e2real + e1imag � e2imag ;

Eimag = e1real � e2imag � e1imag � e2real)
�Division: The rule for division is structurally identical to the rule for multiplication
but the expressions are considerably more complicated. cj o�ers two versions to divide
complex expressions: a standard implementation and a slower but numerically more
stable version. The second alternative is based on the reference implementation [10].
For brevity, none of the versions is shown.
� Type cast: Because complex is de�ned as a supertype of double, implicit type
casts are inserted where necessary. Furthermore, it is appropriate to remove explicit
type casts to complex if the expression to be casted is already of type complex. The
only remaining case (E � (complex) e) can be handled with the following rule:

eval[(complex) e] 7! seq(eval[e]; Ereal = e; Eimag = 0)

� String concatenation: Since string concatenation is not considered as time-critical
cj creates an object of type Complex and invokes the corresponding method toString.
An additional bene�t is that the output format can be changed without modifying
the compiler. The transformation rule is:

eval[str + e] 7! str+ (new Complex(evalR[e]; eimag):toString())

EvalR[e] evaluates e and returns its real part. Furthermore evalR declares a tempo-
rary variable eimag and initializes it with the imaginary part of e. This asymmetry
is necessary to ensure that e is evaluated exactly once. For brevity, we skip similar
rules for e+ str and the + =-operation.

4.4 Transformation rules for arrays

Although it is obvious that a variable of type complex must be mapped to a pair of
two double-variables, there is no obvious solution for arrays of complex. There are
two options: an array of complex can either be replaced by two double-arrays or by
one double-array with twice the size.

7

With the double-sized array the number of objects will be created that is intended
by the programmer but every access to one of the original complex array elements
causes additional overhead because it is necessary to perform two boundary checks
(one per array). It is also unclear if the pairs of double-values should be stored in
adjacent index positions (which might improve caching) or if all real parts should be
stored en bloc before storing all the imaginary parts.

With the two arrays it would be necessary to create two objects, which is slower.
On the other hand since both arrays are of equal size, most JIT compilers should be
able/could be taught to remove the second boundary check.

Since future JIT compilers will constantly improve we use two arrays per complex
array.
� Array creation and initialization: Java o�ers di�erent language elements to
create arrays or to create and initialize arrays in one step. Let us �rst discuss the
transformation rule for pure array creation:

eval[new complex[e1] : : : [en]] 7!
seq(Ereal = new double[e01 = eval[e1]] : : : [e

0
n = eval[en]];

Eimag = new double[e01] : : : [e
0
n])

When calculating Ereal, additional temporary variables e0i are used to allow the reuse
of size expressions in the imaginary part. Array initialization is done according to the
following rule:

eval[new complex [] : : : []fe1; : : : ; eng] 7!
seq(Ereal = new double[] : : : []fevalR[e1]; : : : ; evalR[en]g;

Eimag = new double[] : : : []fe1imag ; : : : ; enimag
g)

EvalR, is able to handle inner array initialization by applying the same rule recursively
to array initializations with a smaller number of dimensions.
� Array access used as left hand side of an assignment: Such expressions may
be a�ected by side e�ects because the evaluation of index expressions could modify the
array itself. To avoid this problem it is in general necessary to store a reference to the
array in a temporary variable (more exactly: we store a reference to F [e1]:::[en�1]).
The transformation rule for the general case (n > 1) is:

access[F [e1] : : : [en]] 7! tmp = eval[F [e1] : : : [en�1]]
^ E

#

real � tmpreal[e
0
n = eval[en]]; E

#
imag � tmpimag[e

0
n])

Again we are using new temporary variables e0i to make sure that index expressions
are evaluated exactly once. The #-notation emphasizes that the given expressions are
to be textually inserted on the right hand side of the assignment. If the given array
is one-dimensional our rule can be simpli�ed to: tmp = eval[F].
� Array access: The transformation rule for E � F [e1] : : : [en] is:

eval[F [e1] : : : [en]] 7!seq(eval[F]; Ereal=Freal[e
0
1=eval[e1]] : : : [e

0
n=eval[en]];

Eimag = Fimag [e
0
1] : : : [e

0
n])

4.5 Transformation rules for method calls

We discuss complex parameters and complex return values separately. Moreover,
constructors must be treated di�erently.
� Complex return value: There are no means in the JVM instruction set to return
two values from a method. An obvious work-around would be to create and return
an object (or an array of two doubles) every time the method is called. In most
cases, this object is only necessary to pass the result out of the method and can be
disposed right afterwards. In contrast, cj creates a separate array of two doubles

for each textual method call. This array is not de�ned in the enclosing block but

8

at the beginning of the method that encloses the call. This strategy minimizes the
number of temporary objects that have to be created, e.g. for a call inside a loop

body. Instead of calling the original method foo we are calling a method cfoo with
a modi�ed signature: we pass a reference to this temporary array as an additional
argument. This temporary array is created once per call of the enclosing method and
may be reused several times. So the transformation rule for E � foo() is:

eval[foo()] 7! seq(cfoo(tmp); Ereal = tmp[0]; Eimag = tmp[1])

Two details are important to ensure the correctness of this transformation for recur-
sive calls and in multithreaded situations: First, the temporary array is local to the
enclosing method and second, every textual occurrence of a call of foo causes the
creation of a di�erent temporary variable.

The return type of cfoo is not void. Instead it returns a dummy value (null) so
that it still can be used inside expressions.6

� Complex argument: We use the obvious approach by again modifying the signa-
ture of the method. Instead of passing one argument of type complex we hand over
two double-values. It is important that not only the argument list of the method but
also its name is changed. This is necessary to avoid collisions with existing methods
that have the same argument types as the newly created one. The transformation
rule can be formalized as (similar for methods expecting several arguments of type
complex):

eval[bar(e)] 7! cbar(evalR[e]; eimag)

� Constructor method: Calls of constructor methods can be treated in the same
way { except for the fact that it is not possible to modify the name of a constructor.7

Since the �rst statement in the body of a constructor needs to be a call of another
constructor the techniques described above would cause the creation of invalid pro-
grams if one of its parameters is of type complex. The solution is demonstrated by
means of the following example.

public Foo(complex x, complex z) {
super((x+x)+z);

}

In this example the transformation of (x+x)+z would insert statements to declare
temporary variables before the call of super. As pointed out, this is not legal in Java.
To allow the use of complex in constructor calls an additional constructor is created.
This new constructor expects the same argument list as the �rst one plus additional
arguments, one for each of the necessary temporary variables.

private Foo(double x_real, double x_imag, // arguments of the
double z_real, double z_imag, // first constructor
double tmp1_real, double tmp1_imag, // temp. variables
double tmp2_real, double tmp2_imag) {

super(seqREAL(seq(tmp1_real = x_real + x_real, //generated by cj
tmp1_imag = x_imag + x_imag), //when translating
tmp2_real = tmp1_real + z_real, //super((x+x)+z)
tmp2_imag = tmp1_imag + z_imag),

tmp2_imag);
}

6Before returning, the elements of the newly added array argument are initialized.
7To avoid collisions that may be caused by altering the argument list, cj adds a dummy parameter

of a helper type. This is not shown in the example.

9

The call of super has also been modi�ed to accept two double-values instead one
complex expression.

As a last step, the method call itself is transformed. Instead of calling super

the newly created constructor is called (by using this). All parameters of the sur-
rounding constructor plus an arbitrary value for each temporary variable are passed
as arguments.

public Foo(double x_real, double x_imag,
double z_real, double z_imag) {

this(x_real, x_imag, z_real, z_imag, 0, 0, 0, 0);
}

The semantic analysis of cj is able to detect pathological situations where this strat-
egy fails; cj issues suitable error messages. For example, an assignment within an
argument of a constructor call (in our above example: super(x = 0.0+x)) cannot be
handled.

5 Benchmarks

5.1 Setup

On a Pentium 100 with 64 MB of RAM and 512 KB of cache we have installed two
operating systems: Linux 2.0.36 (Suse 6.0) and Windows NT Version 4 (service pack
4). We have studied several di�erent Java virtual machines for our tests: a pre-release
of SUN's JDK 1.2 for Linux, SUN's JDK 1.2.1 for Windows, a JDK from IBM, the
JVM that is included in Microsoft's Internet Explorer 5, and the beta release of SUN's
new JIT compiler HotSpot.

Our benchmarks fall into two groups: the group of kernel benchmarks measures
array access, basic arithmetics on complex, and method invocations with complex

return values. The other group measures small applications: Microstrip calculations,
complex matrix multiplication, and complex FFT. There are at least two versions
of each program { one uses our basic type complex and the other uses a class to
represent complex numbers.

5.2 Results

On average over all benchmarks, the programs using the basic type complex outper-
form the class-based versions by a factor of 2 up to 21, depending on the JVM used.
We achieve the best factor with SUN's JDK 1.2 for Windows, which is the slowest
JVM in our study. The smaller improvement factors are achieved with better JVMs
(HotSpot and Internet Explorer) that incorporate certain optimization techniques,
e.g., removal of redundant boundary checks, fast creation and handling of objects,
and aggressive inlining of method bodies.

5.3 Results in detail

Figure 1 gives an overview over all benchmarks, labeled (a) to (f). In each of these
six sub-�gures there are �ve groups of bars, each group represents a di�erent JVM.
The most important item within a group is the black bar. This bar shows the relative
execution time of the class-based version. The factor by which this version is slower

10

than the basic type version (grey bar) is printed on top of the black bar. Some
groups have more than two bars: here we did an additional transformation by hand,
substituting each complex by two variables of type double. Those manually optimized
programs (white bar) are just slightly faster than code generated by cj.

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

(a) access of arrays using complex (b) complex-based arithmetics

100%

500%

Execution time in %

1000%

5.6
4.8

12.1

2.5
1.4

4.8

14.9

7.5

4.2 3.5 3.5

1500%

5.9

1.5
2.6

2.2

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

(c) Method invokation (return value complex) (d) FFT using complex numbers

100%

500%

Execution time in %

1500%

1000%

2000%

2500%

8.5

3.6 3.9

1.1

2.9

13.6

26.6

7.9 8.3

3.0

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

JDK 1.2
(Linux) (Windows)

JDK 1.2.1 IBM
JDK

Internet
Explorer

SUN
HotSpot

(f) Microstrip-Benchmark(e) matrix multiplication using compelx

100%

500%

1000%

Execution time in %

4000%

15.1

42.1

1.1
1.9

3500%

3000%

2500%

2000%

1500%

4.9
3.5

6.7

2.2

22.9

class base type manually optimized base type (slow division)

Figure 1: Results of the benchmark programs

In sub-�gures (a) to (c) the improvement is smaller than in the other �gures.
It is also apparent that better implementations of the JVM (Internet Explorer and
HotSpot) are quite good in eliminating the overhead of object creation within the
class-based solutions. But cj still performs better by 10% to 40%.

11

Benchmarks (a) and (c) focus on array access and method invocation. In contrast,
programs (b) and (d-f) are predominantly calculating arithmetic expressions, where
(d) and (e) are also showing some amount of array accesses. For arithmetics the
techniques applied by cj (inlining of all method invocations and reducing the number
of temporary variables) perform noticeably better than the class-based solution. Even
on the better JVMs cj is 3 times faster. On slow JVMs cj achieves a factor of 8 or
more. The main reason is that cj does a better inlining and can avoid temporary
objects almost completely.

6 Conclusion

Complex numbers can be integrated seamlessly and e�ciently into Java. Because of
Java's strict evaluation order it is by far not enough to simply double the operations
for their real and imaginary parts. Sequence methods enable a formalization of the
necessary program transformations in a local context. Our technique for dealing with
complex return values is e�cient because it avoids the creation of many temporary
objects. In comparison with their class-based counterparts, the benchmark programs
that use the new primitive type perform better by a factor of 2 up to 21, on average,
depending on the JVM used.

Acknowledgements

The Java Grande Forum and Siamak Hassanzadeh from Sun Microsystems supported
us in understanding the necessity of complex numbers in Java for scienti�c computing.
Thanks to Martin Odersky for providing gj. Bernhard Haumacher and Lutz Prechelt
gave valuable advice for improving the presentation.

References

[1] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the
past: Adding genericity to the Java programming language. In Proc. of OOPSLA'98,
October 1998. http://www.cis.unisa.edu.au/�pizza/gj/.

[2] J. D. Darcy and W. Kahan. Borneo language.
http://www.cs.berkeley.edu/�darcy/Borneo.

[3] J. Gosling. The evolution of numerical computing in Java.
http://java.sun.com/people/jag/FP.html.

[4] IBM. Numerical intensive java. http://www.alphaWorks.ibm.com/tech/ninja/.

[5] Java Grande Forum. http://www.javagrande.org.

[6] JavaParty. http://wwwipd.ira.uka.de/JavaParty/.

[7] S. M. Omohundro and D. Stoutamire. The Sather 1.1 speci�cation. Technical Report
TR-96-012, ICSI, Berkeley, 1996.

[8] G. Steele. Growing a language. In Proc. of OOPSLA'98, October 1998. key note.

[9] G. K. Thiruvathukal, F. Breg, R. Boisvert, J. Darcy, G. C. Fox, D. Gannon, S. Hassan-
zadeh, J. Moreira, M. Philippsen, R. Pozo, and M. Snir (editors). Java Grande Forum
Report: Making Java work for high-end computing. In Supercomputing'98, Orlando,
Florida, November 1998. panel handout.

[10] Visual Numerics. Java grande complex reference.
http://www.vni.com/corner/garage/grande/index.html, 1999.

[11] P. Wu, S. Midki�, J. Moreira, and M. Gupta. E�cient support for complex numbers in
Java. In ACM 1999 Java Grande Conference, San Francisco, 1999. to appear.

12

