
This paper is submitted to Concurrency: Practice and Experience for publication.

PFPC: An Infrastructure for Research

on Parallelizing Compilers

Chao-Tung Yang, Shian-Shyong Tseng

Yun-Woei Fann, Ting-Ku Tsai

Ming-Huei Hsieh, Cheng-Tien Wu

ROCSAT Ground Section

National Space Program O�ce

8F, No. 9 Prosperity 1st Road

Science-Based Industrial Park

Hsinchu, Taiwan 300, ROC

Email: ctyang@nspo.gov.tw

Phone: +886-3-5784208 ext.1563

Fax: +886-3-5779058

TR-PC-99-16 July 30, 1999

PFPC: An Infrastructure for Research on

Parallelizing Compilers�

Chao-Tung Yangy Shian-Shyong Tsengz

Yun-Woei Fann, Ting-Ku Tsai
Ming-Huei Hsieh, and Cheng-Tien Wu

ROCSAT Ground Section Dept. Computer & Information Science
National Space Program O�ce National Chiao Tung University
Hsinchu, Taiwan 300, ROC Hsinchu, Taiwan 300, ROC

ctyang@nspo.gov.tw sstseng@cis.nctu.edu.tw

November 18, 1999

Abstract

Parallelizing compilers analyze sequential programs, in particular their loops, to detect hidden
parallelism and automatically restructure sequential programs into parallel subtasks executed on mul-
tiprocessor. This paper describes the design and implementation of an e�cient and precise parallelizing
compiler to parallelize loops and achieve high speedup rates on multiprocessor systems. As we know,
the execution e�ciency of a loop can be enhanced if the loop is executed in parallel or partially parallel,
like a DOALL or DOACROSS loop. This paper also reports on a practical parallel loop detector (PPD)
that is implemented in PFPC on �nding the parallelism in loops. The PPD can extract the potential
DOALL and DOACROSS loops in a program by verifying array subscripts. In addition, a new model
by using knowledge-based approach is proposed to exploit more loop parallelisms in this paper. The
knowledge-based approach integrates existing loop transformations and loop scheduling algorithms to
make good use of their ability to extract loop parallelisms. Two rule-based systems, called the KPLT
and IPLS, are then developed using repertory grid analysis and attribute ordering tables respectively,
to construct the knowledge bases. Finally, a runtime technique based on inspector/executor scheme
is proposed in this paper for �nding available parallelism on loops. Our inspector can determine the
wavefronts of a loop with any complex indirected array indexing pattern by building a DEF-USE table.
The inspector is fully parallel without any synchronization. Experimental results show that the new
method can handle any complex data dependence pattern that cannot be handled by the previous
research. As an ultimate goal, a high-performance and portable FORTRAN parallelizing compiler on
shared-memory multiprocessors will be constructed. We believe that our research may provide more
insight into the development of a high-performance parallelizing compiler.

Keywords: Parallelizing Compiler; Multiprocessor Systems; Loop Parallelization; Multithreaded OS;
Program Restructuring;

�This work was supported in part by National Science Council of Republic of China under Grants No. NSC86-2213-E009-
081 and NSC87-2213-E009-023.

yCorresponding author. He is an Associate Researcher at ROCSAT Ground Section, National Space Program O�ce,
Hsinchu, Taiwan 300, ROC. Phone: +886-3-5784208 ext. 1563, Fax: +886-3-5779058. E-mail: ctyang@nspo.gov.tw.

zHe is an Professor at Department of Computer and Information Science, National Chiao-Tung University, Hsinchu, Taiwan
300, ROC. Phone: +886-3-5715900, Fax: +886-3-5721490. E-mail: sstseng@cis.nctu.edu.tw.

1

1 Introduction

The last decade has seen the coming of age of parallel computing. Many di�erent classes of multiprocessor

systems have been designed and implemented in industry and academia, for example, IBM RP3, Cray

T3D, NEC SX-3, CONVEX C4, CONVEX SPP, and IBM SP2. To achieve high speedup of such systems,

it requires decomposition of tasks into several sub-tasks which can be executed on di�erent processors in

parallel. Unfortunately, it possesses several di�culties for the users to write explicitly parallel programs.

First, they had to rewrite their existing sequential programs into parallel programs. Second, most of the

resulting explicitly parallel programs were not portable. Third, writing e�cient parallel programs often

required optimizations that need intimate knowledge of the machine's architecture and the program's access

patterns, e.g., data distribution, prefecting, or blocking.

To address these di�culties, parallelizing compilers were developed to transform sequential programs

into parallel ones [14, 1, 7]. Parallelizing compilers can be broken into two components: a component

that identi�es parallelism in a program, and a component that exploits this parallelism. The component

that identi�es parallelism attempts to determine what parts of a program can be run in parallel. The

component that exploits parallelism determines which of these parallel parts should be run in parallel, as

well as how to generate e�cient codes for them. Therefore, design of e�cient parallelizing compiler is an

important part of achieving maximum parallelism on multiprocessors. However, the generation processes

of parallel object codes by parallelizing compilers are very di�cult and complicated. Most investigations of

parallelizing compiler still focus on source-to-source transformation, for example, Parafrase-2 and Polaris

developed at UIUC [1, 8], ParaScope developed at Rice University [3], and SUIF developed at Stanford

University [6].

In addition to the advance in computer architecture, some operating systems also support parallelism.

Multithreading support seems to be the most obvious approach for helping programmers to take the

advantage of parallelism by operating system. For example, Mach, OSF/1, Solaris, Microsoft Windows

NT are operating systems that support multithreading. These operating systems usually have packages

for handling multithreads [2], e.g., the C Threads package in Mach and P Threads package in OSF/1.

Although a multithreading operating system for a multiprocessor system can be powerful, it still needs

good parallelizing compilers to help programmers exploit parallelism and gain performance bene�t. So,

we wanted to design and implement a portable parallelizing compiler for multithreading operating system.

Our compiler can generate parallel object codes for running on multiprocessor systems rather than being

just a source-to-source restructurer [10, 12].

This paper describes the design and implementation of an e�cient parallelizing compiler to parallelize

loops and achieve high acceleration rates on multiprocessor systems. In this paper we introduce how to

design and implement a portable FORTRAN parallelizing compiler (PFPC) on a shared-memory multi-

processor machine running multithreading operating system OSF/1. Our compiler is highly modularized

so that porting to other platforms will be very easy. Furthermore, the compiler can partition parallel loops

into multithreaded codes based on several DOALL loop-partitioning algorithms.

Then, this paper reports on the practical parallelism detector (PPD) that is implemented in PFPC at

2

NCTU to concentrate on �nding available the parallelism on loops [13]. The PPD is used on extracting

the potential DOALL and DOACROSS loops in a program. Moveover, if DOACROSS loops are available,

an optimization of synchronization statements were made.

To exploit more parallelism, a new model by using knowledge-based techniques is proposed in this paper

[9]. The knowledge-based approach integrates existing loop transformations and loop scheduling algorithms

to make good use of their ability to extract loop parallelisms. Two rule-based systems, called the KPLT

and IPLS, are then developed using repertory grid analysis and attribute ordering tables respectively, to

construct the knowledge bases. For instance, IPLS can choose an appropriate algorithm and then apply

the resulting algorithm to assigning parallel loops on multiprocessor systems to achieve high speedup

rates [4]. Finally, a runtime technique based on inspector/executor scheme is proposed in this paper

for �nding available parallelism on loops. Our inspector can determine the wavefronts of a loop with any

complex indirected array indexing pattern by building a DEF-USE table [11]. The inspector is fully parallel

without any synchronization. Experimental results show that the speedup delivered by our compiler is high.

Furthermore, for system maintenance and extensibility, our approach is obviously superior to others. As

an ultimate goal, a high-performance and portable FORTRAN parallelizing compiler on shared-memory

multiprocessors will be constructed.

2 The Model of Parallelizing Compilers

2.1 An Overview of PFPC

Multithreading support may be the most obvious approach to help programmers take the advantage of

parallelism by operating systems. Therefore, we propose a new model of parallelizing compiler for exploiting

potential power of multiprocessors and gaining performance bene�t on multithreaded operating systems

OSF/1 [2]. The portable FORTRAN parallelizing compiler (PFPC) intended to produce parallel object

codes rather than just acting as a source-to-source restructurer is shown in Figure 1 [10, 12].

First, a practical parallelism detector (PPD) is used to test the data dependences of array references

and then restructure a sequential FORTRAN source program into a parallel form at compile-time [13],

i.e., if a loop can be parallelized or partially parallelized, then PPD marks that loop with DOALL loop or

DOACROSS loop by comments. If the access patterns of some arrays cannot be determined at compile-

time or have non-constant dependence vector, then PPD marks that loops with DOCONSIDER loop

by comments. The ow of loops parallelization is shown in Figure 2. The PPD (practical parallelism

detector) will analyze the loop's array access patterns to �nd the data dependences of array references.

As we know, if the information of data dependence is not available until the program is running, i.e., defy

the static analysis, then PPD will mark it as a DOCONSIDER loop. If there is no dependence between

statements in a loop, or these dependences are loop-independent dependences, di�erent iterations can be

executed in parallel on separate processors as DOALL loops. If dependence is occurring across di�erent

iterations, i.e., is a loop-carried dependence, it is called a DOACROSS loop. The iterations are executed

either sequentially, or partially in parallel by means of enforced synchronization instructions within the

bodies of the concurrent loops, and incur some run-time overhead will be incurred. Otherwise, if the loop

3

3!iqiVW

_�B��s8

_�s�${sj
_s�sjj�j$R8
*���{�B�
w__*D

3!iqiVWT
�BT]

]Bt%�����
wP1{D

7$t�j�T�BT
�Zj�$}j�
qY��sIR

q�stRjs�B�
wR18D

pW=
]]B8}$j��

w�{{D

e-�{Z�sAj�
]BI�R

_ qY��sIR
iZt�$8�
N$A�s�$�R

<�sI��
3$j�R

] et%$�Bt8�t�3!iqiVW et%$�Bt8�t�

�Tq�R�
�_N7 �_Nq

iZt�$8�
_s�sjj�j$9s�$Bt

Figure 1: The PFPC model running on OSF/1.

dependency patterns are too complex to analyze by current algorithms , for example, with non-linear array

index expressions or with non-constant dependence distance, then we also can mark it as a DOCONSIDER

loop.

Second, because OSF/1 has no FORTRAN compiler and because multithreading only supports C

programming, a FORTRAN-to-C (f2c) converter is used to convert the FORTRAN program output by PPD

into its C equivalent. Third, the single-to-multiple threads translator (s2m) takes the program obtained

from f2c as input, and then generates the output in which the parallel loops (DOALL or DOACROSS) are

translated into sub-tasks by replacing them with multithreaded codes. For run-time parallelization, the

s2m will generate the inspector and executor codes for DOCONDISER loops at compile-time.

Finally, The resulting multithreaded program is then compiled and linked with the P Threads or C

Threads run-time libraries by using the native C compiler, e.g., GNU C compiler. Then, the generated

parallel object codes can be scheduled and executed in parallel on the multiprocessors to achieve high

performance. Based upon this model, we implemented a FORTRAN parallelizing compiler to help pro-

grammers take advantage of multithreaded parallelism on AcerAltos 10000 multiprocessor system, running

OSF/1.

2.2 Using Knowledge-based Techniques for Loop Parallelization

Knowledge system is a system that depends on a vast base of knowledge to perform di�cult tasks. The

knowledge is saved in a knowledge base separately from the inference component. This makes it convenient

to append now knowledge or update existing knowledge easily. The rule-based approach is one of the

commonly used form in many knowledge-based systems. The primary di�culty in building a knowledge

base is how to acquire the desired knowledge. To ease acquisition of knowledge, one primary technique

among them is Repertory Grid Analysis (RGA). RGA is easy to use, but it su�ers from the problem of

missing embedded meanings. For example, when a doctor expresses the features of catching a cold are

4

]B8}$j�Tq$8� _s��jj�j$9s�$Bt PB�

*!VNN

7BZ�{� NBB}

I�}�tI�t{� stsjkR$R Ak __*

*B�R jBB} I�Pk R�s�${ stsjkR$R2

yR �Y��� stk

jBB}T{s��$�I I�}�tI�t{�2

yR I�}�tI�t{�

I$R�st{� Zt$PB�82

]B8}$j�Tq$8� _s��jj�j$9s�$Bt PB�

*!V]i!77

iZtTq$8� _s��jj�j$9s�$Bt PB�

*!]!W7y*ei

NBB} _s�sjj�j$9s�$Bt

O�R

O�R

WB

WB

O�R

WB

Figure 2: The ow of loop parallelization.

headache, cough and sneeze, he may have those features. However, in RGA, a person is not considered to

catch a cold except that he gets all of the features. To overcome the problem, the concept of Attribute

Ordering Table (AOT) is employed to elicit embedded meanings by recording the importance of each

A knowledge-based system is composed of two parts: the development environment and the runtime

environment. The former is used to build the knowledge base, while the latter is used to solve the problem.

In this paper, the development environment is not discussed here. The runtime environment contains �ve

components, which are briey described as follows:

The runtime environment which using knowledge-based techniques for loop parallelization contains

three components as shown in Figure 3, which are briey described as follows.

� Knowledge Base: This component contains knowledge required for solving the problem of deter-

mining an appropriate test, scheduling, or transformation to be applied. The knowledge can be

organized in many di�erent schemes, and can be encoded into many di�erent forms. Therefore, there

exist many choices of building the knowledge base. In our implementation, the knowledge base is

constructed as a rule base, i.e., the knowledge is expressed in the form of production rules. These

rules can be coded by hand or generated by a translator. In our system, the latter method is used.

5

A translator, GRD2CLP, translates the repertory grid and attribute ordering table to CLIPS's pro-

duction rules. This approach has great exibility as we can add new scheduling algorithms to the

repertory grid and attribute ordering table, and then use GRD2CLP to convert the tables into CLIPS

rules. The process of generating a knowledge base is shown in Figure 4.

� Inference Engine - The inference engine is the interpreter of the knowledge stored in the knowledge

base. It examines the contents of the knowledge base and the data including the system characteristics

and the loop attributes provided by machine architecture and programmers to derive a conclusion,

an appropriate parallel loop-scheduling algorithm. The inference engine attempts to �nd connections

between the input attributes stated in section three and the selected loop-scheduling algorithm ac-

cording to RGA and AOT. An example of applying RGA/AOT is shown in Table 1. 'X' means that

the attribute has no relation with the scheduling algorithm. 'D' means that the attribute dominates

the scheduling algorithm, i.e., if the attribute is not equal to the entry value, it is impossible for the

scheduling algorithm to be implied. For those entries that are not labeled 'X' or 'D', integer numbers

are used represented the relative degree of importance for attribute does not dominate the object

but is of some degree of importance relative to other attributes. Larger integer number implies the

attribute being more important to the object. According to the table, four rules can be generated.

As we observe, [A1, S1]=1,5,6, [A2, S1]=YES, [A3, S1]=X; hence the resulting rule will be generated.

RULE:

If (A1 is in 1,5,6) and (A2=YES) Then Choose S1

Table 1: The repertory grid and the attribute ordering table.
S1 S2 S3 S4

A1 1,5,6/D X/X 3/D 2,4/D

A2 YES/D X/X YES/D X/X

A3 X/X NO/2 NO/D X/X

� Algorithm Library: The library collects several representative tests, transformations, and sched-

ules, either proposed by others or designed by ourselves. The question of how these tests, transforma-

tions, and schedules are chosen in the development environment , so here we assume that it has been

built. For example, we have included eight scheduling algorithms in the library for loop scheduling,

that are static scheduling, SS, CSS, GSS, Factoring, TSS, AFS (MAFS, DAFS), and LDS. This is

another advantage of using knowledge-based system; we can easily modify the rules and add any new

scheduling strategy.

6

Knowledge
base including
facts and rules

Algorithm
libraries

Inference
component

by using
CLIPS

Data
dependence

Tests

Loop
scheduling

Loop
transformation

Input data

Output data

Figure 3: Components of our new model

Æïõæó õêõíæ éæóæ

Äâïäæí½ Ãâäì Ïæùõ ¿

Repertory Gr id

At t r ibute Order ing
Table

GRD2CLP Too l CLIPS Rules

Expertise

Figure 4: The process of generating a knowledge base

3 Main Results

3.1 PPD: A Practical Parallel Loop Detector

PPD (in Figure 5) takes the traditional FORTRAN 77 source program as input and yields the corresponding

prompted parallel code. The framework of PPD is divided into two phases, analysis phase and codegen

phase. In analysis phase, a single-subscript testing algorithm, the I test, is used for checking if the linear

equation formed by array subscript has an appropriate integer solution. Instead of linearizing the subscript

of an array, we check it subscript-by-subscript since there is no certainty that either of them overrides the

other in precision. The e�ect of analysis phase is the determination of the execution modes of all loops.

The execution mode of a loop may be the one of the following three types: DOALL, DOACROSS, and

DOSEQ, where the former two ones point out that a loop can be executed in a fully or partial parallel

manner respectively, and the last one is the normal sequential style. In codegen phase, the outcome of

analysis phase is referred to produce the prompted parallel codes. The optimizations for synchronized

statements of DOACROSS loops are also taken.

7

Data
dependence

analysis

Loop
structure

Linear
system DDG Codegen

DDG

Loop
structure

Source
code

Parallel
code

(a) (b)

Figure 5: An overview of the analysis and codegen phases.

3.2 S2m: A Single-to-Mutiple Threads Translator

The component, single-to-multiple threads translator (s2m), takes the program obtained from f2c as input,

and then generates the output in which the parallel loops (DOALL or DOACROSS) are translated into sub-

tasks by replacing them with multithreaded codes. The structure of single-to-multiple threads translator

(s2m) [10] consists of �ve modules as shown in Figure 6. The kernel module is written to be portable;

it calls functions in thread-code generating module and calls functions in DOALL loop-partition module.

and calls functions in DOACROSS loop-partition module through the con�g module. The thread-code

generating module contains several functions that are used to generate di�erent thread speci�c codes;

P Threads or C Threads. The DOALL loop-partition and DOACROSS loop-partition modules contain

routines partitioning DOALL and DOACROSS loops, respectively. In this chapter we improve the power

of s2m to partition and generate corresponding multithreaded codes for a DOACROSS loop. The con�g

module is very small and contains several arrays of functions. When the s2m kernel calls a function in

thread-code generating, DOALL loop-partition modules or DOACROSS loop-partition module, there must

have an entry in the con�g module pointing to that called function so that s2m kernel can access the

function through con�g module. If users want to add their own thread-code generating routines, DOALL

loop-partition routines, or DOACROSS loop-partition routines, they can append their own functions into

these three modules, and then append entries pointing to those functions in con�g module. Therefore, a

new version of s2m can be produced by simple compilation of con�g module and user functions directly,

which can be ported to other platform easily.

We now describe how the s2m converts speci�c types of conventional sequential programs, i.e., DOALL

loops, into their parallel equivalents with the P Threads runtime library codes embedded in them. The

general form of a DOALL loop program to s2m is shown in Figure 7. In this �gure, there is one for-

loop enclosed in \/* /$DOALL$/ L???: */" and \/* /$END DOALL$/ L???: */" comments, these two

comments are used to indicate the for-loop enclosed by them is a DOALL loop. The ??? here stands for

the loop label used in the original FORTRAN program.

The output of the main program has the form shown in Figure 8 produced by s2m. There are six

rectangles in this �gure, each corresponds to a session that performs a speci�c job. The �rst session,

8

718

���t�j

8BIZj�

]BtP$�

8BIZj�

*!VNN

jBB} }s��$�$Bt$t�

�BZ�$t�R

*!]!W7y*ei

jBB} }s��$�$Bt$t�

�BZ�$t�R

qY��sIT{BI�

��t��s�$t�

�BZ�$t�R

*!V]i!77

jBB} }s��$�$Bt$t�

�BZ�$t�R

Figure 6: The structure of s2m.

main()

f

Variables declaration area

...

/* /$DOALL$/???: */

for (i=)f

...

/* L???: */

g

/* /$END DOALL$/ ???: */

...

g

Figure 7: The DOALL loop of input program to s2m.

thread-related de�nition, outputs thread-related de�nitions. Some variables for using the thread package

are de�ned in this session. The loop variable is an array of loop args, which is used to pass the begin

iteration, end iteration, and the iteration step for each pthread created later on. The ThCount variable

records the number of threads; this number is decreased by one when a thread is going to be terminated.

The second session is devoted to variables declaration. This session, is originally in the main function

of the input program (see Figure 7), s2m removes the variable declaration from the main function to make

them visible to the entire program. This eases the parameter passing problem when a thread forks since

all the necessary variables are global! Note that when this approach is applied to functions other than the

main function, the variables may need to be renamed to avoid conicts.

The third session is mutex and condition variables initialization. This session initializes a mutex

object and a condition variable with default attributes since we need these two variables when performing

synchronization. The P Threads codes for this session are shown below.

pthread mutex init(&CountLock, pthread mutexattr default);

9

Thread related definition

Variables declaration area

main()

f

Mutex & condition variable initialization

...

Iterations calculation

Fork threads

Synchronization

...

g

Figure 8: Main program of the general output produced by s2m.

pthread cond init(&ThCond, pthread condattr default);

The fourth, �fth, and sixth sessions are for DOALL loops only. The iterations calculation session,

also called the loop partitioning session, partitions the DOALL loop according to the user-assigned loop-

partitioning algorithms. The default loop partitioning algorithm is CSS/4 which divides the iterations into

four chunks of equal size, but this can be changed with a command line option when s2m is invoked. At

the end of this session, the variable ThCount will have the number of threads that need to be created later

on. Start iteration, end iteration and the iteration step for the ith thread is stored in loop[i].begin,

loop[i].end and loop[i].step, respectively. This pre-calculation of tasks for each thread eliminates the

need for synchronization of loop indices in several loop scheduling algorithms. This makes our approach

faster. The �fth session is just to fork threads. The default number of threads to be created is four; however,

this number can be changed with a command line option when s2m is invoked. Usually, this session contains

a for-loop that performs threads creation. The sixth session uses previously initialized mutex objects and

condition variables for synchronization purposes. It waits for the thread count (ThCount variable) to reach

zero (the threads created for a particular parallel loop have all been �nished) and then continues execution.

The thread count is initially the number of threads created, and is decreased by one before each thread is

terminated. This synchronization is necessary for ensuring the correctness of program execution. The P

Threads codes for this session may look like this:

pthread mutex lock(&CountLock);

while(ThCount != 0)

pthread cond wait(&ThCond, &CountLock);

pthread mutex unlock(&CountLock);

Figure 9 is the function de�nition of a DOALL loop for a thread. This function de�nition is mainly the

corresponding for-loop with minor change. First, the loop is executed from loop->begin to loop->end;

these two variables are calculated in the iteration calculation session. Second, the thread count (ThCount

variable) is decreased by one before the thread is terminated. We use mutex objects to ensure mutex

exclusion, and then decrease the thread count by one. The P Threads codes for this session are shown

10

below.

pthread mutex lock(&CountLock);

ThCount--;

pthread mutex unlock(&CountLock);

pthread cond signal(&ThCond);

void DOALL??(loop)

struct loop args *loop;

f

int i;

for (i=loop->begin; i<=loop->end; i++)f

...

g

Decrease the thread count by 1

g

Figure 9: The DOALL function de�nition for an output thread produced by s2m.

3.3 IPLS: An Intelligent Parallel Loop Scheduling

In PFPC, we propose a system as shown in Figure 10, called intelligent parallel loop scheduling (IPLS), by

using knowledge-based techniques to select an appropriate loop-scheduling algorithm. The approach will

make good use of the advantages of the algorithms for loop parallelism. By the resulting algorithms for

assigning parallel loop on multiprocessor systems, it is believed that the applications can save execution

time and achieve high speedup.

� Pro�le Information - After the program applying the selected loop scheduling algorithm is executed,

some information about number of iterations, maximal time of iteration, minimal time of iteration,

total time of program, number of synchronization, number of remote memory accesses, and the

workload distribution of each processor will be recorded and saved in a pro�le �le. The pro�le �le

will be referred to modify the attributes by re�ning system.

� Re�ning System - When a program is embedded with some parallel loop scheduling algorithm, if we

can re�ne some attributes, such as the values of factors in the loop-scheduling algorithm by using the

pro�le information derived from the record of executing process of the program. Re�ning procedure

in order to get ideal values will modify the factors. It is obvious that this make the parallelism of

program higher and performance better.

Tables 2 and 3 show the relationships between seventeen attributes and parallel loop scheduling al-

gorithms in UMA and NUMA models respectively. Besides, each table is districted by di�erent kind of

loops, i.e., DOALL and DOACROSS loops. The features mentioned above are the attributes upon which

we constructed our attribute grid. `Machine model' is classi�ed into UMA and NUMA. `Memory access

11

3URILOH
,QIRUPDWLRQ

5HILQLQJ

6\VWHP

,QIHUHQFH

(QJLQH

.QRZOHGJH
%DVH

/RRS DQG

6\VWHP

3DUDPHWHUV
3UHSURFHVVLQJ 6FKHGXOLQJ

6HOHFWHG

,3/6

Figure 10: The system architecture of IPLS.

ratio' means the speed ratio of cache, memory and network. `CPU number' denotes the system size, which

can be classi�ed into three levels, small, medium, or large. `Loop style' includes four kinds of loop, such

as U(uniform), I(increasing), D(decreasing) and R(random). `Program size' shows the appropriate scale

that algorithms �t. `Data locality' determines if loop data behavior has a�nity or not. `Loop boundary'

determines if it must be known at compile time. `Loop level' determines if nested loop is pro�table to

algorithms. `Loop carried dependence' is classi�ed into DOALL and DOACROSS. `Easiness' describes if

the implementation of algorithm is easy. `Factor' means the variables, which can dynamically inuence the

performance due to loop information and system states. The overheads of synchronization, communication

and thread management are roughly classi�ed into four levels, none, light, normal, or heavy. `Start time'

determines whether all each processor starting time need to be equal or not.

Table 2: The attributive table for UMA models.

UMA Model
DOALL DOACROSS

Static SS CSS GSS TSS Factoring AHS SSS Enhanced CSS
UMA/NUMA UMA UMA UMA UMA UMA UMA UMA/NUMA UMA/NUMA UMA

No of Processor X X X X X X X X X
Memory Access Rate 1:10:200 1:10:200 1:10:100 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200

Loop Style U, D, I X U, R U, I, R X X X X U
Program Size X X Large X X Large X X Large
Loop Type 1-10 X 1-2, 5-7, 9-10 2-3, 7-8 1, 3-4, 7, 11 3-4, 7-8 X 1-3, 5-11 1, 6-7

Data Locality X No No No No No Yes Yes X
Loop Boundary Yes X No X X X Yes Yes X

LCD DOALL DOALL DOALL/(0,1) DOALL DOALL DOALL DOALL DOALL Doacross (>1)
Easiness X X X No X No No No No
Factor - - k - NS , NF x = 2 �; �;k K

Thread Overhead l, n h l, n h n n n, h n, h l, n
Comm. Overhead X l l l l, n l l, n 1, n l
Sync. Overhead X 1 2, 3, 4 2 3, 4 3, 4 4, 5 4, 5 3, 4, 5

Start Time Yes X Yes X X X Yes X Yes

In many parallel loop-scheduling algorithms, there are some attributes, such as factors, which inuence

the performance of executing program. For example, the adaptive hybrid scheduling algorithm has two

12

Table 3: The attributive table for NUMA models.
NUMA Model

DOALL
AFS MAFS CAFS LAFS DAFS LDS GDCS ASS

UMA/NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA
No of Processor S, M S, M S, M, L S, M, L S S, M S, M S

Memory Access Rate 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200
Loop Style X D, I, R X X X X X X

Program Size - - - X - - - -
Loop Type 2-3, 9-10 2, 4-5 1, 4, 8 1, 4, 8 2 , 5, 9, 11 1, 5, 6, 8, 10 2, 5, 9, 11 2, 4, 5, 6

Data Locality Yes Yes Yes Yes Yes Yes Yes Yes
Loop Boundary X X X X X X Yes X

Loop Level X X X X X X X X
LCD DOALL DOALL DOALL DOALL DOALL DOALL DOALL DOALL

Easiness No No No No No No No No

Factor 0:5 < � < 1 - K k - B �; � � = N

P2
Thread Overhead l, n l l, n l, n l l, n l, n l
Comm. Overhead l l l l l l, n, h l, n, h h
Sync. Overhead 3, 4 5 3, 4 3, 4 5 3, 4 4, 5 3, 4

Start Time X X X X X X X X

factor, � and , determining the fetching processor whether or not to fetch more iterations form work queue

in dynamic level after executing the iterations coming from static level. These two factors, � and , should

be adjusted by the programmers according to the properties of parallel computers. However, how to select

appropriately the value of � and on di�erent system is di�cult. If we can re�ne values of the factors in

the loop-scheduling algorithm by using the pro�le information derived from the record of executing process

of the program, it is obvious that the new factors cyclically modi�ed by re�ning procedure will make the

parallelism of program more clear and make the performance better. And we say this method stated above

has feedback-learning ability and is intelligent. In the paper, a re�ning system based upon the pro�le

information consisting of the following seven items will be included into our model.

� The number of iteration

� Maximal time of iteration

� Minimal time of iteration

� Total time of program

� The number of synchronization

� The number of remote memory access

� The workload distribution of each processor

How to re�ne attributes and not to modify rules in the knowledge base is a problem, which is solved

in our re�ning system by storing attribute data into a �le called Attri �le and using data type of structure

(record) as condition testing of antecedent of if statement in rules. When a loop is executed and pro�le

information is generated, the re�ning system will input pro�le information to modify the attributes in

Attri �le; therefore, the rules in knowledge base does not need to be changed and the inference engine does

not need to be recompiled.

There are several situations at which the re�ning system is suggested. Firstly, when IPLS is constructed

completely, maybe the attributes in knowledge base are crude that an optimal loop-scheduling algorithm to

13

transform a sequential program into an e�cient multithread program can not be selected. Secondly, when

IPLS is ported on a new environment, some attributes about system states, such as memory access rate,

need to be changed to inuence the selection of scheduling method. In addition, perhaps an appropriate

loop-scheduling algorithm is selected by inference engine, but the bad values of factors in algorithm, such

as chunk size in CSS, will result in larger execution time. The factors had better be re�ned to reduce the

wasted considerable execution time if the executable code will be executed repeatedly. It seems that the

overhead from re�ning the attributes can be neglected because of its advantage. After all, to increase the

accuracy is to increase e�ciency. The ow chart of re�ning system is shown in Figure 11. The programmer

can determine whether to use re�ning system before deriving an ideal loop-scheduling algorithm for the

program or not. When using the re�ning system, the programmer can also decide the number of loop-

scheduling algorithms selected by inference engine.

5XQ � DSSOLFDWRQV

DSSO\LQJ GLIIHUHQW

DOJRULWKPV

3URGXFH SURILOH

0RGLI\ WKH DWWULEXWHV

LQ NQRZOHGJH EDVH

<HV

1R

6FKHGXOLQJ

PHWKRG

VHOHFWHG

$QDO\]H SURILOH

LQIRUPDWLRQ

5HILQH WKH

6\VWHP"

,QIHUHQFH (QJLQH

VHOHFWV � DGHTXDWH

VFKHGXOLQJ

PHWKRGV LQ OLEUDU\

Figure 11: Flow chart of re�ning system

3.4 Run-Time Parallelization

The way of parallelizing our general inspector is by partitioning the entire range of iterations into consec-

utive segments and each segment is assigned to a di�erent thread. Each thread computes a valid parallel

14

schedule for iterations in its segment and ignoring any dependences with other iterations outside of its

segment. After all segments have �nished, we have a schedule for each segment. Every such schedule, we

called a sub-schedule, is a mapping from the iterations in the corresponding segment to the wavefronts of

that segment. The overall schedule is formed by concatenating the sub-schedules with the order of the

segments in entire range of iterations. The number of segments can be set to a appropriate number, in

intuitively, we will set the number of processors to it. But, if the number of segments is larger, then it will

increase the total number of wavefronts (i.e., depth) in overall schedule. The larger number of wavefronts

implies that there are fewer iterations in each wavefront, and then it will decrease the speedup of run-time

parallelization.

The executor performs the overall schedule extracted by the general parallel inspector. As a rule of

thumb, the executor performs the sub-schedule of each segment in order, i.e., visits the �rst wavefront till

the last wavefront in a segment, then does for next segment's �rst wavefront closely, go on until the last

wavefront of the last segment have been visited. Every wavefront is sequentially executed and ideally, all

iterations in the same wavefront are executed concurrently. In practice, iterations in the same wavefront

are partitioned into equal-sized chunks and every chunk is enclosed in one thread, the number of threads

are automatically adapted according to the number of iterations in each wavefront by calling function

auto-adapted, and then the threads scheduled by OSF/1 can be executed in parallel manner.

Now, we explain that why the auto-adapted function is used in executor phase. In inspector phase, the

number of iterations in each wavefront will vary by the distribution of data dependence in a loop. Therefore

not all wavefronts will have a great quantities of iterations to obtain good parallelism. In practice, if the

executor engage large number of threads for a wavefront which has fewer iterations, then it will incur

additional run-time overheads or even let the iterations execute in sequential manner (when number of

threads > number of iterations in wavefront). Conversely, if the executor engages fewer threads for a

wavefront which has more iterations, then we cannot obtain the deserved parallelism.

Table 4: The auto-adapted mapping function.
Number of iterations 1 2 �8 �16 �32 �64 �128 �
Number of threads 1 2 3 4 5 6 8 12

For the sake of e�ciency, we propose a strategy to solve above problems, to get a tailored number of

threads for each wavefront, threads are dynamically engaged to a wavefront according to the number of

iterations in it. The auto-adapted function is a mapping function that maps number of iterations in a

wavefront to number of threads. For example, the auto-adapted function for our system (4 processors) is

shown in Table 4. It should be noted that this mapping function will be modi�ed according to the system

environment.

We now compare the methods described in this paper to several other techniques that have been

proposed for analyzing and scheduling DO loops at run-time. Most of this work has concentrated on

developing inspectors. A high level comparison of the various methods is given in Table 5. Since the

process of inspector for �nding the wavefronts can be parallelized fully without any synchronization. Our

15

executor can perform the loop iterations concurrently. In addition, for each wavefront in a loop, the

auto-adapted function is used to get a tailored thread number for optimizing execution.

Table 5: Characteristics comparison between several methods. The superscripts have the following mean-
ings: 1, Our serial inspector version can perform an optimal schedule. 2, The bit-vector atomic operation
must be applied to avoid the use of global synchronization. Since most of parallel machines don't provide
this operation, the performance of this run-time method is degraded.

Methods Get optimal No sequential No global No restrict No merge No large local Integrate

schedule portions syn. type of loops between pro. mem. required in compiler

Our Method No1 Yes Yes Yes Yes Yes Yes

Zhu and Yew No Yes No Yes Yes Yes No

Midki� and Padua Yes Yes No Yes Yes Yes No

Chen et al. No Yes No Yes Yes Yes Yes

Rauchwerger et al. Yes Yes Yes Yes No No Yes

Saltz et al. Yes No No No Yes Yes Yes

Leung and Zahorjan Yes Yes No No Yes Yes Yes

Sheng et al. Yes Yes Yes
2

Yes Yes Yes No

4 Experimental Results

4.1 Performance of PPD

To evaluate the performance of PPD for PFPC, experiments were performed using both practical and

contrived data. The practical data included two numerical packages, LINPACK and EISPACK, while the

contrived data included several examples that appeared in other papers. Another program parallelization

restructurer, Parafrase-2, was also applied to the same testing data, and the results compared with those

from our design. LINPACK and EISPACK are two well-known numerical packages. LINPACK is a

collection of FORTRAN subroutines that analyze and solve various systems of simultaneous linear algebraic

equations, while EISPACK is a collection of subroutines for evaluating the eigenvalues of matrices. Because

of their systemization and representatives, the packages have been widely adopted as benchmark programs

[14]. There is total of 256 DO loops distributed across the 52 subroutines in LINPACK. PPD was able to

exploit 51 DOALL loops and 0 DOACROSS loops, as was Parafrase-2. In the experiments using LINPACK,

we have examined all the DOALL loops detecting by PPD and Parefrase-2 carefully. PPD was able to

exploit the same 51 DOALL loops as Parafrase-2 was. Because there is no DO loop that can be translated

into DOACROSS loop by using our algorithm in the experiments of LINPACK. So, we show the other

experiments for demonstrating the DOACROSS loops detected by using PPD.

There are a total of 657 DO loops distributed across the 77 subroutines in EISPACK. PPD was able

to exploit 185 DOALL loops and 7 DOACROSS loops, while Parafrase-2 was able to exploit only the 185

DOALL loops. If there is a constant dependence distance in the loop, PPD will record the information for

generating the synchronization statements, and translate that loop into DOACROSS loop during codegen

phase. In our version, Parafrase-2 cannot detect the DOACROSS loops, so PPD was able to exploit 7

DOACROSS loops in the experiments using EISPACK, while Parafrase-2 was not. Comparative results

are shown in Table 8. PPD translated the loops into DOALL or DOACROSS loops conservatively. So,

16

it is not possible that PPD mistakenly marks non-DOALL loops as DOALL or non-DOACROSS loops as

DOACROSS.

The practical data, as shown in Figure 12(a), is a program segment that computing the transitive

closure of an adjacency matrix. Only loop K could be transformed into a DOALL loop by PPD, as shown

in Figure 12(b), while loops J and K are both transformed into DOALL loops by Parafrase-2, as shown

in Figure 12(c), but, parallelizing loop J seems wrong. We expose the mistake as follows: Suppose that

the iteration vector of the accesses A(I, K) is (J; I;K), and the one of the access A(J, K) is (J 0; I0; K0).

If loop J is a DOALL loop, then we cannot ensure execution order between, say (J; I;K) = (2; 3; 4) and

(J 0; I0; K0) = (3; 2; 4), with the result that the anti-dependence at memory location A(3, 4) can not be

preserved.

DO 10 J=1, 1000

DO 20 I=1, 1000

IF (A(J, I) .EQ. .TRUE.) THEN

DO 30 K=1, 1000

IF (A(I, K) .EQ. .TRUE.) THEN

A(J, K)= .TRUE.

END IF

30 CONTINUE

END IF

20 CONTINUE

10 CONTINUE

(a)

DO 10 J=1, 1000 CDOALL 10 J=1, 1000

DO 20 I=1, 1000 DO 20 I=1, 1000

IF (A(J, I) .EQ. .TRUE.) THEN IF (A(J,I) .EQ. .TRUE.) THEN

C DOALL 30 K=1, 1000 CDOALL 30 K=1, 1000

DO 30 K=1, 1000 IF (A(I,K) .EQ. .TRUE.) THEN

IF (A(I, K) .EQ. .TRUE.) THEN A(J,K)= .TRUE.

A(J, K)= .TRUE. END IF

END IF 30 CONTINUE

30 CONTINUE END IF

C ENDALL 30 20 CONTINUE

END IF 10 CONTINUE

20 CONTINUE

10 CONTINUE

(b) (c)

Figure 12: The transitive closure program.

4.2 Performance of IPLS

To demonstrate the performance of IPLS, there are two experimentations on UMA system and NUMA

system, the �rst one concerns each execution time and speedup of above ten applications, and the other

is a combined program, including ten applications. Under the implementation on UMA system, which is

2-processor machine, the execution time and the corresponding speedup are shown in Table 6.

GSS performs poorly for Adjoint Convolution because the workload of iterations is decreasing, and TSS

is the most e�cient algorithm for Adjoint Convolution. CSS/2 is suitable for the applications like Gauss

17

Table 6: The execution time (ms)/speedup of 11 applications applying di�erent scheduling algorithms.
Applications SERIAL CSS/2 GSS TSS Factoring SSS AHS IPLS

Adj Con 20104/1 15042/1.337 15055/1.335 10398/1.933 13974/1.439 12359/1.627 12352/1.628 as TSS
Gauss Eli 365359/1 256945/1.422 197157/1.853 202922/1.8 195016/1.873 208055/1.756 196852/1.856 as Factoring
Gauss Jor 7765/1 4245/1.829 5587/1.39 5599/1.387 5266/1.475 4333/1.792 4391/1.768 as CSS/2
Jacobi Iter 14047/1 10109/1.39 12836/1.094 12656/1.11 13125/1.07 9802/1.433 9758/1.44 as AHS

LU 40995/1 28094/1.459 33521/1.223 34356/1.193 33071/1.24 28505/1.438 28432/1.442 as CSS/2
Matrix Mul 23453/1 12281/1.91 12095/1.939 12229/1.918 12214/1.92 12187/1.924 12203/1.922 as CSS/2
Radj Con 27235/1 21274/1.28 14719/1.85 15587/1.747 15255/1.785 14336/1.9 15477/1.76 as SSS

SOR 109062/1 76891/1.418 82594/1.32 83943/1.299 86742/1.257 77376/1.41 77680/1.404 as CSS/2
Spath 63063/1 57032/1.106 58867/1.071 43146/1.462 61547/1.025 38126/1.654 38797/1.625 as SSS

Tran Clos 479188/1 298312/1.606 308844/1.552 325430/1.472 310469/1.543 295922/1.619 296078/1.618 as SSS
If Then 17125/1 9682/1.769 9693/1.767 8595/1.992 8667/1.976 8656/1.978 8620/1.987 as AHS

Jordan Elimination with random unbalanced workload, LU Decomposition with decreasing unbalanced

workload, and SOR with uniform balanced workload respectively. Factoring scheduling algorithm is suitable

for Gauss Elimination with random balanced workload. SSS is suitable for the applications like Reverse

Adjoint Convolution with increasing unbalanced workload, All Pairs Shortest Paths with random balanced

workload, and Transitive Closure with random unbalanced workload respectively. AHS is suitable for Jacobi

Iteration with random unbalanced workload. We can �nd that none of six scheduling algorithms on UMA

system is suitable for all applications. Alternatively, IPLS can choose an appropriate scheduling algorithm

and get good performance for most applications except Matrix Multiplication and If Then application. In

the case of Matrix Multiplication, IPLS does not apply the optimal approach, GSS, but chooses CSS/2,

because the workload of iterations in this program is uniform. Whereas the number of processor, 2, is so

small that CSS can not exploit the ability fully. In the case of If Then application, IPLS does not apply

the optimal approach, TSS, but chooses AHS, because AHS is suitable for random workload of iterations

in the program. The reason for not selecting an optimal approach is like the case of Matrix Multiplication.

Although the selection of scheduling algorithms is not absolute accurate, we can solve the problem by

re�ning the attributes causing the error. Re�ning system in IPLS will be used afterwards. Traditionally,

once a scheduling algorithm is used, it will be used through the entire program. But in IPLS, it can always

choose an appropriate scheduling algorithm according to the behaviors of the loops among one program.

As the second experiment, IPLS chooses di�erent scheduling algorithms for each loop in the combined

program integrated from the above eleven applications. For example, according to the loop behaviors,

IPLS selects TSS for the Adjoint Convolution part of the combined program and factoring for the Gauss

Elimination part, instead of only one scheduling method. Table 7 shows the experimental execution time

and the corresponding speedup for the combined program.

Table 7: The execution time (ms)/speedup of the combined program for di�erent scheduling algorithms.
Applications Serial CSS/2 GSS TSS Factoring SSS AHS IPLS

All 1167396/1 789907/1.477 750968/1.554 754511/1.547 755346/1.545 709657/1.645 700640/1.666 693687/1.683

18

4.3 Performance of PFPC on Windows NT

Finally, we demonstrate the performance of PFPC, ten examples are used for DOALL loop parallelization

of S2m. Figures 13, 14 and 15 show the speedups of adjoint convolution, Gaussian elimination, matrix

multiplication, reverse adjoint convolution, transitive closure, SOR, Jacobi iteration, Gaussian-Jordan

elimination, LU decomposition, and all pairs shortest paths by using di�erent program sizes loop. In

the experiments, CSS is used to partition every example and obtain their corresponding performances.

Obviously, speedup of parallel version is always higher than serial version. So, the S2m translator used in

Windows NT can perform high speedup on multiprocessor systems. Particularly, for the loop with uniform

workload, such as matrix multiplication shown in Figure 13 (c), it can achieve higher speedup, since the

CSS is suitable for the uniform workload loop.

+d, +e,

+g,+f,

Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@83 Q@433 Q@483

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Pdwul{ Pxowlsolfdwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Uhyhuvh Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@83 Q@433 Q@483

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Jdxvvldq Holplqdwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Figure 13: Part I: partial results of DOALL examples.

We examine the characteristics of adjoint convolution and reverse adjoint convolution. In Figure 16

(a), because adjoint convolution is with decreasing workload, we distribute 1=3 of all workload to the �rst

thread and 2=3 of workload to the second thread. As a result of workload is balanced, the speedup is

raised. Moreover, in Figure 16 (b), because reverse adjoint convolution is with increasing workload, we

distribute 2=3 of all workload to the �rst thread and 1=3 of workload to the second thread. As a result

of workload is balanced, the speedup is raised. Furthermore, for loop of increasing workload, GSS can

distribute workload more balanced, so its speedup is raised again.

In order to compare performances of di�erent loop partition algorithms, we examine �ve representative

applications. Figure 17 shows speedup when applications was run with di�erent loop-partitioning algo-

19

+h, +i,

+j, +k,

Wudqvlwlyh Forvxuh

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

VRU

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Mdfrel Lwhudwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Jdxvv0Mrugdq Holplqdwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@633 Q@933

Orrs Vl}h

V
s
h
hg
x
s

Vhuldo

Sdudooho

Figure 14: Part II: partial results of DOALL examples.

rithms and arguments. For adjoint convolution and reverse adjoint convolution, Factoring obtains highest

performance. For matrix multiplication and transitive closure, CSS/2 obtains highest performance. For

Gaussian elimination, TSS obtains highest speedup.

We compared the performance of applications which run in various operating systems, such as OSF/1

and Windows NT. Due to machine architectures are di�erent, such as the number of CPUs. In OSF/1,

the machine has four CPUs. In Windows NT, our target machine has two CPUs. Speedup is compared

between OSF/1 and Windows NT, and speedup which obtained in OSF/1 must be divided by 2 before

comparing each other. We still use �ve representative applications. The program size of adjoint convolution

and reverse adjoint convolution are 150�150. The program size of Gaussian elimination is 750�750. The

program size of matrix multiplication is 600� 600. The program size of transitive closure is 1000� 1000.

The speedup of applications which run in the two operating system show in Figure 18.

Figure 19 (a) shows the speedup of loop with distance 4. By using doacross scheduling, parallel version

can obtain higher performance than serial version. Figure 19 (b) shows the speedup of loop with anti-

dependence and distance 2. Due to synchronization and scheduling overhead is large, the speedup is not

good as we expected. But parallel version is still better than serial version.

In Figure 20, four examples with di�erent types of loops are given to show the performance obtained

by using CSS scheduling method and the experimental environment described in the previous. In Figure 20

(a), every iteration of the outer loop has a constant workload. Figure 20 (b) is with an increase workload

and Figure 20 (c) is with a random workload. Both of them are originally obtained from the Perfect

20

+l, +m,

OX Ghfrpsrvlwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
hg
x
s

Vhuldo

Sdudooho

Doo Sdluv Vkruwhvw Sdwkv

3

315

317

319

31;

4

415

417

419

41;

5

Q@633 Q@833 Q@933

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Sdudooho

Figure 15: Part III: partial results of DOALL examples.

+d, +e,

Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@573 Q@633

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

FVV25

Dgmxvwphqw

Uhyhuvh Dgmrlqw Frqyroxwlrq

3

315

317

319

31;

4

415

417

419

41;

5

Q@483 Q@573 Q@633

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

FVV25

Dgmxvwphqw

JVV

Figure 16: Results of adjusted adjoint and reverse adjoint convolution.

Club identi�ed by other researchers as being parallel but not made parallel by current compilers [1, 5]. In

Figure 20 (d) is a synthetic loop with non-constant dependence distance and also has an increase workload.

In runtime, parallel version is obviously better than serial version. Although the speedup of a program

with parallel inspector is better than with sequential inspector, the experimental results are not satisfactory.

The results can be improved by using various scheduling strategy or adding the number of CPU.

5 Conclusions and Further Work

This paper describes the design and implementation of an e�cient and parallelizing compiler to parallelize

loops and achieve high speedup rates on multiprocessor systems. We �rst introduce how to design a

portable FORTRAN parallelizing compiler (PFPC) on a multiprocessor system by multithreading operating

system OSF/1. The main contributions of this paper are described as follows. A model of FORTRAN

parallelizing compiler on multithreading OSF/1 was also proposed in this paper. This paper also reported

on the practical parallel loop detector (PPD) that was implemented in PFPC on �nding the parallelism in

loops. Furthermore, if DOACROSS loops are available, an optimization of synchronization statements are

21

Dojrulwkpv zlwk gliihuhqw orrs sduwlwlrq

3

315

317

319

31;

4

415

417

419

41;

5

DgmFrqy UhyDgm Jdxvvldq Pdwul{ WudqFro

Dssolfdwlrqv

V
s
hh
g
x
s

FVV24

FVV25

FVV27

JVV

WVV

Idfwrulqj

Figure 17: Result of di�erent loop-partitioning algorithms.

made. Experimental results showed that PPD was more reliable and accurate than previous approaches. In

addition, a new model by using knowledge-based techniques was proposed to exploit more loop parallelisms

in this paper. The knowledge-based approach integrated existing data dependence tests and loop scheduling

algorithms to make good use of their ability to extract loop parallelisms. Experimental results show that

the speedup delivered by our compiler was high. As an ultimate goal, a high-performance and portable

FORTRAN parallelizing compiler on shared-memory multiprocessors will be constructed. In the study

of high-performance parallelizing compilers, results of this paper will be able to deliver theorectical and

technical contributions.

References

[1] W. Blume, R. Eigenmann, J. Hoeinger, and D. Padua, P. Petersen, L. Rauchwerger, P. Tu, \Automatic detection of
parallelism: A grand challenge for high-performance computing," IEEE Parallel & Distributed Technology, 2(3):37-47,
Fall 1994.

[2] J. Boykin, D. Kirschen, A. Langerman, and S. LoVerso, Programming under Mach , Addison Wesley, 1993.

[3] K. D. Cooper et al., \The ParaScope parallel programming environment," Proc. IEEE , 81(2):244-263, Feb. 1993.

[4] Y. W. Fann, C. T. Yang, C. J. Tsai, and S. S. Tseng, \IPLS: An intelligent parallel loop scheduling for multiprocessor
systems," Proc. of ICPADS'98 , Tainan, Taiwan, pp. 7751-782, Dec. 1998.

[5] L. Rauchwerger, N. M. Amato, and D. Pauda, \Run-time methods for parallelizing partially parallel loops," in Proc.

1995 Int'l. Conf. Supercomputing, Barcelona, Spain, July 1995.

[6] R. P. Wilson et al., \SUIF: An infrastructure for research on parallelizing and optimizing compilers," ACM SIGPLAN

Notices , 29(12):31-37, Dec. 1994.

[7] M. Wolfe, High-Performance Compilers for Parallel Computing, 137-162, Addison-Wesley Publishing, New York, 1995.

[8] C. T. Yang, S. S. Tseng, and C. S. Chen, \The anatomy of parafrase-2," Proceedings of the National Science Council

Republic of China (Part A), 18(5):450-462, Sep. 1994.

22

Frpsdulvrq zlwk ydulrxv RV

3

315

317

319

31;

4

415

417

419

41;

5

DgmFrqy UhyDgm Jdxvvldq Pdwul{ WudqFro

Dssolfdwlrqv

V
s
hh
g
x
s

Zlqgrzv QW+5 fsx,

RVI24+5 fsx,

Figure 18: Comparison of speedup between OSF/1 and Windows NT.

+d, +e,

H{dpsoh 4

3

315

317

319

31;

4

415

417

419

41;

5

Q@5833 Q@6833 Q@8333

Orrs Vl}h

V
s
hh
g
x
s

Vhuldo

Sdudooho

H{dpsoh 5

3

315

317

319

31;

4

415

417

419

41;

5

Q@5333 Q@5833 Q@6333

Orrs Vl}h

V
s
hh
g
x
s

Vhuldo

Sdudooho

Figure 19: Results of DOACROSS examples.

[9] C. T. Yang, S. S. Tseng, C. D. Chuang, and W. C. Shih, \Using knowledge-based techniques on loop parallelization for
parallelizing compilers," Parallel Computing, 23(3):291-309, May 1997.

[10] C. T. Yang, S. S. Tseng, and M. C. Hsiao, \A model of parallelizing compiler on multithreading operating systems,"
Int'l. J. of Modelling and Simulation, 18(1):9-15, 1998.

[11] C. T. Yang, S. S. Tseng, M. H. Hsieh, and S. H. Kao, \An e�cient run-time parallelization for do loops," J. of Info.
Sci. and Eng. | Special Issue on Compiler Techniques for High-Performance Computing, vol. 14, no. 1, pp. 237-253,
1998, the previous version in Proc. ICPADS'97 , Korea, pp. 308-313, Dec. 1997.

[12] C. T. Yang, S. S. Tseng, M. C. Hsiao, and S. H. Kao, \A portable parallelizing compiler with loop partitioning," to
appear in Proceedings of the National Science Council Republic of China (Part A), 1999.

[13] C. T. Yang, C. T. Wu, and S. S. Tseng, \PPD: A practical parallel loop detector for parallelizing compilers on multi-
processor systems," IEICE Trans. Information and Systems, vol. E79-D, no. 11, pp. 1545-1560, Nov. 1996, the previous
version in Proc. ICPADS'96 , 274-281, Japan, June 1996.

[14] H. P. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, Addison-Wesley Publishing and ACM
Press, New York, 1990.

23

+d, +e,

+f, +g,

Xqlirup zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@6333 Q@8333 Q@43333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Lqfuhdvlqj zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@5333 Q@5833 Q@6333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Udqgrp zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@5333 Q@8333 Q@43333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Qrq0frqvwdqw ghshqghqfh glvwdqfh dqg lqfuhdvlqj zrunordg

3

315

317

319

31;

4

415

417

419

41;

5

Q@4833 Q@5833 Q@8333

Orrs Vl}h

V
s
h
h
g
x
s

Vhuldo

Vhtxhqwldo Lqvs1

Sdudooho Lqvs1

Figure 20: Results of runtime parallelization.

24

Table 8: The comparative result using EISPACK.
LINPACK Parafrase-2 PPD PPD LINPACK Parafrase-2 PPD PPD
subroutines no. of no. of no. of subroutines no. of no. of no. of

list DOALL DOALL DOACR list DOALL DOALL DOACR

bakvec.f 2 2 1 balanc.f 5 5 0
balbak.f 1 1 0 bandr.f 8 8 0
bandv.f 3 3 0 bisect.f 1 1 0
bqr.f 5 5 0 cbabk2.f 1 1 0
cbal.f 5 5 0 cdiv.f 0 0 0
cg.f 0 0 0 ch.f 2 2 0

cinvit.f 5 5 0 combak.f 1 1 0
comhes.f 2 2 0 comlr2.f 12 12 0
comlr.f 4 4 0 comqr2.f 9 9 0

comqr.f 2 2 0 cortb.f 2 2 0
corth.f 2 2 0 csroot.f 0 0 0
elmbak.f 1 1 0 elmhes.f 2 2 0
eltran.f 4 4 0 epslon.f 0 0 0
�gi2.f 1 1 0 �gi.f 0 0 0
foo.f 1 1 0 hqr2.f 6 6 0
hqr.f 2 2 0 htrib3.f 3 3 0

htribk.f 3 3 0 htrid3.f 0 0 0
htridi.f 3 3 0 imtql1.f 0 0 1
imtql2.f 0 0 1 imtqlv.f 1 1 0

intvit.f 6 6 0 min�t.f 10 10 0
ortbak.f 2 2 0 orthes.f 2 2 0
ortran.f 4 4 0 otqlrat.f 2 2 1
pythag.f 0 0 0 qzhes.f 5 5 0
qzit.f 0 0 0 qzval.f 0 0 0
qzvec.f 2 2 0 ratqr.f 3 3 0
rebak.f 0 0 0 rebakb.f 0 0 0
reduc2.f 0 0 0 reduc.f 0 0 0
rg.f 0 0 0 rgg.f 0 0 0
rs.f 0 0 0 rsb.f 0 0 0

rsg.f 0 0 0 rsgab.f 0 0 0
rsgba.f 0 0 0 rsm.f 0 0 0
rsp.f 2 2 0 rst.f 2 2 0
rt.f 0 0 0 svd.f 14 14 0

tinvit.f 5 5 0 tql1.f 1 1 1
tql2.f 1 1 1 tqlrat.f 2 2 1

trbak1.f 1 1 0 trbak3.f 0 0 0
tred1.f 5 5 0 tred2.f 9 9 0
tred3.f 1 1 0 tridib.f 1 1 0
tsturm.f 6 6 0

25

