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Abstract

Parallel applications typically do not perform well in a multiprogrammed envi-

ronment that uses time-sharing to allocate processor resources to the applications'

parallel threads. Coscheduling related parallel threads, or statically partitioning

the system, often can reduce the applications' execution times, but at the expense

of reducing the overall system utilization. To address this problem, there has been

increasing interest in dynamically allocating processors to applications based on

their resource demands and the dynamically varying system load. The Loop-Level

Process Control (LLPC) policy [16] dynamically adjusts the number of threads an

application is allowed to execute based on the application's available parallelism and

the overall system load. This study demonstrates the feasibility of incorporating

the LLPC strategy into an existing commercial operating system and paralleliz-

ing compiler and provides further evidence of the performance improvement that

is possible using this dynamic allocation strategy. In this implementation, appli-

cations are automatically parallelized and enhanced with the appropriate LLPC

hooks so that each application interacts with the modi�ed version of the Solaris

operating system. The parallelism of the applications are then dynamically ad-

justed automatically when they are executed in a multiprogrammed environment

so that all applications obtain a fair share of the total processing resources.

Keywords: multiprogramming; process scheduling; processor allocation; operating system;

parallelizing compiler; shared-memory multiprocessor; performance measurement.
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1 Introduction

Fairly allocating processors to the threads of parallel application programs in a multi-

programmed shared-memory multiprocessor is necessary to minimize the execution time

of each simultaneously executing application while ensuring high overall system through-

put. Traditional time-sharing, such as that implemented in most Unix-based operating

systems, typically does not work well to share the processing resources due to high con-

text switching overhead, poor cache utilization, ine�cient locking and synchronization,

and other related problems [5, 8, 9, 13, 19].

Coscheduling [9] or gang scheduling can solve some of these problems by allocating

processors to threads as a group rather than individually. It has the advantage that

it can be implemented on top of the time-sharing used in existing operating systems

[3]. Statically dividing the system into multiple partitions is another simple approach for

allocating processors to parallel applications. While these approaches can improve the ex-

ecution time of an individual application, they also tend to reduce the system utilization.

Dynamically partitioning the system based on the system load is one of the new ap-

proaches that can improve the parallel applications' performance in a multiprogrammed

environment while maintaining high system utilization [1, 6, 11, 13, 16].

This paper extends our previous work on dynamic processor allocation [15, 16, 17] by

implementing and analyzing a strategy called Loop-Level Process Control (LLPC) with

Sun Microsystems' Solaris operating system and related parallelizing compiler. This

paper addresses the feasibility of incorporating a dynamic allocation strategy into an ex-

isting commercial operating system and compiler and discusses the related design trade-

o�s and novel techniques used in the implementation. Finally, the performance of this

strategy is studied using applications from the SPEC95 benchmark suite.

The remainder of the paper is organized as follows: Section 2 provides further back-

ground information on the multiprogrammed multiprocessor scheduling problem and de-

scribes existing solutions. Our programming model and system architecture are also

described. Section 3 describes the LLPC processor allocation strategy and the imple-

mentation details. The experimental results are presented in Section 4. The �nal section

concludes the paper.

2 Background

This section discusses the targeted system architecture and the corresponding program-

ming model. It also provides additional details on the performance issues in multipro-

grammed multiprocessor systems and reviews existing strategies.
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2.1 System Architecture and Programming Model

The system used in this study is a shared-memory multiprocessor in which the memory

is equally accessible to all of the processors. Since these systems have a programming

model that is similar to traditional uniprocessor systems, shared-memory multiprocessors

have been widely commercialized and are often used as general-purpose high-performance

compute servers. In this type of system, all processors run at the same speed with each

of the processors executing its instructions independently of the others. Most shared-

memory systems also have a local cache memory in the processor module to improve the

average memory access time.

One of the most common programming models for shared-memory multiprocessor

systems is the loop-level parallelized model. A programmer or compiler parallelizes an

application with this model by recognizing the independent sections of the application,

which usually are the iterations of a loop, and partitioning them into parallel tasks that

can be executed concurrently [7]. With this programming model, the parallelism of

many existing application programs can be exploited automatically by a sophisticated

compiler without rewriting the sequential code. Although this approach might not be

able to exploit the maximum inherent parallelism in an application, it can increase the

portability of the code and can lessen the programmer's burden in developing new parallel

applications.

Multiple threads are used to execute a loop-level parallelized application. Threads

share the application's instructions and most of its data, but each thread has its own

program counter and its own stack for storing local data. When a parallelized application

begins to execute, a number of threads, usually equal to the number of physical CPUs,

are created. During the execution of the sequential section of the application, only one

thread is used with the remainder waiting idly. When a parallel section is reached, all

of the threads are used with each obtaining its share of the available work according to

some parallel loop scheduling algorithm [7]. After the parallel work is completed, all the

threads are synchronized and one thread continues to execute the sequential section of

the code until the next parallel section is encountered.

2.2 Processor Scheduling

Threads are the scheduling entities in the operating system. With time-sharing in the

Unix operating system [2], threads that are ready for execution are put into the ready

queue. Whenever a processor is idle, it removes the �rst thread from the ready queue

and begins executing the task. If the task is not completed before the time quantum

expires, the thread is returned to the end of the ready queue. The processor then begins

executing the next thread from the beginning of the queue.
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The Solaris operating system uses multiple queues to enhance scalability. Moreover,

it has a two-level thread model with user-level threads and kernel threads. Kernel threads

are the scheduling entities in the operating system. Multiple user-level threads can share

a single kernel thread [10]. For the loop-level parallel programming model used in this

study, a one-to-one mapping is used in which a single user-level thread is bound to a

kernel thread.

Although time-sharing produces good system utilization by multiplexing the proces-

sors among several applications, it can signi�cantly degrade the performance of parallel

applications compared to their execution time on a dedicated system. Studies have

shown that the performance is a�ected due to context switching overhead, cache corrup-

tion, ine�cient locking and synchronization, and other related e�ects [5, 8, 9, 13, 19].

For example, running threads might be waiting for results that will be produced by other

threads that are in the queue waiting for processors on which to run.

A common solution for this problem is to allocate processors to all the threads of an

application at the same time [9]. As a result, the active threads will not be waiting for

some queued threads. Instead of scheduling the threads of an application independently

whenever there are idle processors, this coscheduling strategy schedules the threads as

a group. The IRIX
TM

operating system from Silicon Graphics provides a coscheduling

strategy called gang scheduling [3]. The operation of this gang scheduling depends on the

information contained in a gang control block, which is created when the related threads

from the same application are created. The gang control blocks of the applications form a

gang queue. The scheduler, using the information from the gang control blocks, schedules

these related threads to execute during the same time quantum.

Another possible solution is to divide the processors into several independent parti-

tions and then execute each application in its own partition. By using only a portion

of the system, this type of space-sharing or static partitioning eliminates the competi-

tion between applications for processors. The disadvantage is that idle processors in

one partition are not accessible to an application running in a di�erent partition. Both

Solaris and IRIX have a feature called processor set in which a subset of the processors

is statically allocated to the applications.

Coscheduling and space-sharing perform better than time-sharing by minimizing the

interference between applications. Another advantage of these strategies is that they

can be easily incorporated into existing operating systems. However, the performance of

coscheduling can still be a�ected by excess context switching while space-sharing su�ers

from poor system utilization [13].

To improve the system utilization while minimizing the number of context switches,

the system can be dynamically partitioned. With this strategy, the sizes of the partitions

on which the applications run are adjusted based on the system load. When there are

few applications so that the system load is light, the system will have fewer partitions.
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When the load is high, the system will have more partitions with fewer processors in

each. This strategy has the advantages of static partitioning in that interference between

applications is minimized, and it improves the overall system utilization.

Although they are not targeted speci�cally for loop-level parallelized applications,

scheduler activation [1] and process control [13] are two strategies that provide dynamic

partitioning for multithreaded applications. In both of these strategies, the kernel com-

municates changes in the system load to the user-level thread library. The thread library

then reacts to the changes by adjusting the number of runnable threads.

For loop-level parallelized applications, the Distributed Resource Management System

(DRMS) [6] from IBM, Automatic Self-Allocating Threads (ASAT) [11], and Loop-Level

Process Control (LLPC) [16] are some of the approaches that dynamically adjust the

parallelism of the applications based on the system load. DRMS is designed for SPMD

Fortran applications executed on distributed-memory architecture systems. It repar-

titions and redistributes the data of the application based on user or compiler inserted

directives when processor availability changes. The job scheduler and various components

in the system make the re-partitioning decision and coordinate with the user application

on the change.

ASAT and LLPC, on the other hand, are designed for shared-memory architec-

tures and require the applications to make the adjustment decisions. ASAT-enabled

applications occasionally measure the time required to synchronize threads, which pro-

vides an indirect indication of the system load. The application then creates or sus-

pends threads based on this measurement [11]. LLPC-enabled applications use user-level

shared-memory to communicate with each other about the processing resource require-

ments of each of their parallel loops [16]. Based on this load information, applications

create a suitable number of threads for the execution of each parallel loop.

Our previous work has shown that using LLPC to dynamically adjust the number

of runnable threads in the system has the advantage of reducing the contention for

the processing resources which in turn improves the performance of the applications

[15]. The fundamental idea underlying LLPC is that, by controlling the number of

threads an application is allowed to create based on the system load and the application's

available parallelism, the application will be able to utilize as many processors as possible

without overloading the system. When the system load is high, LLPC reduces the context

switching rate by allowing the applications to create only a small number of threads

instead of the maximum number of threads that they may like to create. As a result,

execution can still proceed for all applications while no single application monopolizes all

of the processors. When the system load is light, however, a highly parallel application

is allowed to utilize all of the idle processors.

In the reminder of this paper, we present our integration of LLPC into the Solaris

operating system and parallelizing compiler. We also compare its performance with that
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of the time-sharing and static partitioning strategies already available in Solaris.

3 LLPC Implementation in Solaris

The implementation of loop-level process control requires both kernel level support and

enabling the compiler's microtasking library to use LLPC. This section describes each of

these parts in detail.

3.1 Kernel Support

The original LLPC implementation on the SGI Challenge system was done entirely at

the user level [16]. LLPC-enabled applications communicated their load information with

each other through the use of shared memory. Based on this information, they adjusted

the number of threads used to execute each parallel loop. There are several advantages to

this type of user-level implementation. First, it is simple and straight-forward. Since the

load information is maintained by the applications themselves, no kernel modi�cations

were necessary. Second, the load information is accurate. That is, all LLPC-enabled

applications know exactly how many LLPC-enabled threads are active in the system at

all times.

On the other hand, accuracy in this case is a relative term. Since the load information

is maintained by the LLPC-enabled applications, non-LLPC applications do not update

this information. Therefore, the LLPC-enabled applications do not know the load of the

whole system|they know about only the LLPC load. Another issue is that, although the

LLPC-enabled applications accurately report the number of threads they create, some

of these threads might be blocked and so do not require any processing resources. Thus,

the actual system load might be lower than indicated by simply counting the number of

threads created.

One way to solve the load information problem is to have a daemon process peri-

odically check the overall system load and update an appropriate data structure. Then

the LLPC-enabled applications can use this more accurate information to determine how

many threads to activate. In fact, the overall system load information is already being

maintained by the Solaris kernel in 1-minute, 5-minute, and 15-minute averages, which

can be seen using the Unix uptime command. However, this information is too coarse

for LLPC. A low overhead mechanism is needed to obtain �ner-grained system load

information from the kernel.

Fortunately, Solaris (version 2.6) has a feature called scheduling control [14]. This

feature is designed to provide an e�cient mechanism for the kernel and the user-level

applications to share scheduling information such as the execution state of a thread and
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the identi�cation number of the last CPU on which it ran. Threads also can provide some

extra information to assist the kernel in making scheduling decisions. One of the primary

advantages of this feature over the usual means of communication, such as system calls

and signals, is its low overhead.

Scheduling control uses physical pages as the communication medium to achieve low

overhead. When an application invokes scheduling control the �rst time, a kernel page

is mapped into the application's address space and locked into physical memory. When

there is a change in the status of a thread, the kernel puts the updated information into

this page with a simple store instruction. Similarly, at the user level, the thread obtains

this information simply by reading the page. Since the page is locked into the physical

memory, page faults will never occur.

The current implementation of scheduling control provides information on only a

per-thread basis with no overall system information. However, because of its low over-

head and the already-implemented API, we extended scheduling control to include the

needed information. When a thread makes a call to the scheduling control routine in

our prototype, it obtains not only the scheduling information about itself, but also the

total number of threads that are currently running on the CPUs and the total number of

threads that are waiting on the run queues. This system load information is maintained

with clock tick granularity, although it is updated to the page only when the scheduling

control routine is invoked.

3.2 Compiler Support

In our previous work, LLPC calls were manually inserted into the applications [17]. At

the beginning of each parallel loop, a call to the LLPC routine was made to determine the

number of threads to be used for the execution of that loop. This number was then passed

to the run-time library which distributed the parallel loop iterations to the threads. To

eliminate the manual work of inserting LLPC routines, and to reduce their execution

time overhead, LLPC routines have been incorporated into the run-time library of Sun's

Fortran-77 and C parallelizing compilers [4].

This compiler automatically parallelizes Fortran-style DO loops. It uses many well-

known techniques to determine which loops of a sequential application can be e�ectively

parallelized and transforms them into tasks that can be executed concurrently by multi-

ple processors. The execution of these tasks is facilitated by the microtasking run-time

library. This library manages the threads and supports parallel loop scheduling algo-

rithms such as guided self-scheduling and factoring [7]. The default scheduling strategy

is static scheduling, in which the loop iterations are evenly distributed to the threads.

As an example, the compiler recognizes the following loop as one that can be executed

in parallel.
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DO I = 1, 1000

A(I) = B(I) * C(I)

END DO

To parallelize the loop, it replaces the loop with a subroutine call to the microtasking

library and transforms the loop body itself into a parallel subroutine, as shown below.

call dopar(parallel_subroutine_1234,...)

...

subroutine parallel_subroutine_1234(begin_I, end_I)

DO J = begin_I, end_I

A(J) = B(J) * C(J)

END DO

end subroutine

When the application begins executing, the main thread, which is also called the

master thread, creates a number of slave threads. The total number of threads (master

plus slaves) is set to the number of physical processors, unless the user speci�es a smaller

value. When the master thread is executing a sequential section of the application, the

slave threads wait idly. When a parallel section is reached, the master thread calls the

dopar routine, which sets up the necessary data structures and unblocks all of the slave

threads. Each thread then calculates its share of work and calls the subroutine that

encapsulates the parallel loop body. When a thread �nishes its share of iterations, it

waits for all of the other threads to complete. At this point, the master thread continues

with the execution of the subsequent sequential section while the slave threads return to

the idle state.

Our prototype integrates the LLPC algorithm into the microtasking library to manage

the slave threads using a call to the scheduling control routine at the beginning of the

master thread routine. This call allows the master thread to obtain the latest system load

information whenever a parallel loop is initiated. The master thread uses this system load

information to determine how many threads should be used to execute that particular

parallel loop, using the algorithm described in the next section.
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3.3 Loop-Level Process Control Algorithm

The original microtasking library from Sun allows slave threads to be in one of two states,

either running or spinning. In the running state, a thread is executing a chunk of work

from a parallel loop and is thus using the CPU for useful work. When it is in the spinning

state, it is executing an idle loop waiting for work. Therefore, the CPU resource is being

wasted doing no useful work. The master thread is always in the running state either

executing the application or managing its slave threads.

The LLPC algorithm incorporated into the microtasking library adds a third possible

state for a slave thread|sleeping. In this state, the slave thread consumes no CPU

resources until it is awakened by the master thread. This additional state provides a

mechanism for LLPC-enabled applications to reduce the CPU resources they consume to

thereby adjust the load they place on the system. Note that slave threads always start

in the spinning state when the microtasking library creates them at the beginning of the

application's execution.

The reason for adding a sleeping state but not putting the slave threads into this state

whenever they are not running is because of the overhead incurred when awakening them.

When a parallel loop is encountered and the slave threads are spinning, the slave threads

can start executing work from the parallel loop instantly. If all of the slave threads are in

the sleeping state, however, they need to be awakened before the parallel execution can

begin, which can add a signi�cant amount of time to the execution of the parallel loop.

When an LLPC-enabled application begins executing a parallel loop, its master thread

obtains the current load information (current load), which is de�ned to be the number

of simultaneously running threads, through the scheduling control system call. It com-

pares this latest information with the previous system load value. If the load has not

changed, the parallel loop will be executed using the same number of threads as the last

parallel loop that it executed. No adjustment is made when the system load is the same

as the number of physical CPUs.

If the current load information obtained by the master thread is di�erent than the

previous value, the master calculates a new adjustment (NumThreadsAdj). First, it de-

termines if the number of running threads in the system is higher than the number of

CPUs. If it is, the system is overloaded and the master thread calculates how many of

its currently spinning slave threads (NumThreadsSpin) should be put into the sleeping

state to reduce the total number of active threads in the system to the number of CPUs.

Finally, if the number of running threads is lower than the number of CPUs, the CPU

resources are not fully utilized. In this case, the master thread determines how many

its sleeping slave threads it can awaken. This LLPC algorithm as implemented in the

microtasking library is summarized below:
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current_load = schedctl();

loadDiff = NumCPUs - current_load;

if ((loadDiff != 0) && (loadDiff != LastLoadDiff)){

if (loadDiff > 0) /* load is low */

{

/* No. of threads to wake up */

NumThreadsAdj = NumThreadsCreated - NumThreadsSpin - 1;

if (NumThreadsAdj > loadDiff)

NumThreadsAdj = loadDiff;

}

else /* load is high */

{

/* No. of threads to go to sleep */

if (- loadDiff > NumThreadsSpin)

NumThreadsAdj = (- NumThreadsSpin);

else

NumThreadsAdj = loadDiff;

}

}

LastLoadDiff = loadDiff;

To further enhance the performance of LLPC, we developed two new techniques

for load adjustment. After the master thread determines the adjustment required, it

must either put some slave threads to sleep or awaken some sleeping threads. Instead

of applying the adjustment immediately, however, it is delayed. When the system is

overloaded and spinning threads must be put to sleep, the master does not suspend the

threads immediately. Instead, since the spinning slave threads are already ready to run,

they are allowed to participate in the execution of the current parallel loop. A 
ag is

set to notify the selected slave threads to go to sleep after completing their share of the

parallel work.

On the other hand, when the system is underutilized, the master thread does not

wait for sleeping threads to awaken before starting the parallel loop execution. Rather,

it sends a signal to awaken the sleeping threads and then starts the parallel loop execution

with the threads that are already in the spinning state. This approach masks the thread

wake-up time with the execution of useful work. The newly awakened threads then go

into the spinning state to later participate in the next parallel loop execution.
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3.4 Example Execution Trace

To provide a better idea of how the various LLPC pieces work together, an example is

shown in Figure 1. This diagram shows the execution of an application on a 4-CPU

system using the LLPC strategy. When the application begins its execution, a master

and three slave threads are created and the slave threads are put into the spinning state.

At the beginning of the �rst parallel loop, the master thread determines that it is the only

application using the system. Consequently, it uses all of the slave threads to execute

the parallel loop. After the parallel execution, the slave threads return to the spinning

state.

When the second parallel loop is reached, the master thread �nds that the system

load has increased due to other applications sharing the CPUs. The system load is at

�ve, which is one more than the number of CPUs, so it decides to put one of its slave

threads to sleep. The second parallel loop is still executed by four threads (one master

and three slaves) but after the loop is executed, one of the slave threads goes into the

sleeping state. At the third parallel loop, the system load remains unchanged, so only

the slave threads that are in the spinning state are used for this loop execution.

In the meantime, the other application terminates. When the master thread checks

the load again at the beginning of the fourth loop, it decides that it can awaken one of its

sleeping threads. After sending a signal to the sleeping thread, the master and the two

spinning threads execute the fourth parallel loop. The sleeping thread eventually wakes

up and goes into the spinning state. It can then participate in the execution of the next

parallel loop.

4 Performance Evaluation

In this section, we compare the performance of our implementation of LLPC on Solaris

with time-sharing and static partitioning using applications from the SPEC95 benchmark

suite. First, however, we used the TNF (Trace Normal Form) tracing tool in Solaris to

verify that an LLPC-enabled application controls its slave threads as expected. TNF

probes were inserted into the microtasking library. A synthetic benchmark consisting

of ten sequential loops and ten parallel loops was then compiled and executed with this

instrumented library. Figure 2, which is an annotated screen shot of the tracing output,

shows that the LLPC-enabled application works as expected.
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master thread

create
slave threads

slave threads
spin

parallel loop
execution

load = 4
-> use all threads

sequential
execution

load = 5
-> 1 thread to sleep

parallel loop
execution

sequential
execution 1 thread sleeps

2 spin

load = 3
-> wake up the thread

parallel loop
execution

thread waking up

sequential
execution

load = 4
-> use all threads

parallel loop
execution

destroy
slave threads

end of program

sequential
execution

slave threads
spin

slave threads
spin

load = 4
-> use 3 threads

parallel loop
execution

1 thread sleeps
2 spinsequential

execution

Figure 1: An example showing how LLPC changes the number of threads it uses to

execute the parallel loops of an application program.
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check load

master thread

sleep

awaken

sequential sections

slaves created

spin

doall
begin

doall
end

slaves
destroyed

block after the execution

Figure 2: The execution trace of the synthetic benchmark program showing the state

changes of the LLPC-controlled slave threads.

4.1 Experimental Environment

The system we used for this performance evaluation is a Sun Ultra Enterprise 6000

Server [12]. This single-bus shared-memory architecture system was equipped with four

UltraSPARC processors running at a clock rate of 167 MHz. Each processing unit had 16

Kbytes of on-chip data cache and 16 Kbytes of on-chip instruction cache. The secondary

cache was 512 Kbytes of uni�ed instruction and data cache. The system had a total of

256 Mbytes of physical memory.

4.2 Benchmarks

The benchmarks we used for the performance comparison are four applications from the

SPEC95 
oating-point suite that have similar parallel run-times. The mgrid program is a

multigrid solver in a 3D potential �eld while the swim program is a shallow water model

using a 1024 x 1024 grid. The su2cor program computes the masses of elementary
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particles and hydro2d computes galactic jets by solving the hydrodynamical Navier-

Stokes equations. All of the benchmark programs were parallelized using the standard

Fortran compiler and linked with our modi�ed microtasking library.

Table 1 summarizes the characteristics of these benchmarks. The �rst column shows

the total number of loops in these programs. The second column is the number of these

loops that were parallelized by the compiler, while the third column shows the number

of times these parallelized loops were actually executed. The parallel speedup of the

entire application, when compiled with the standard compiler, linked with the original

microtasking library, and run by itself on the 4-processor system, is shown in the last

column.

Table 1: Characteristics of the selected SPEC95 
oating-point benchmark programs.

Total no. of No. of parallel Dynamic parallel Speedup on a

Application loops loops detected loop counts dedicated system

swim 21 11 10262 3.51

su2cor 134 35 190932 2.39

hydro2d 150 65 76377 2.97

mgrid 53 10 58225 3.72

4.3 LLPC Overhead

To determine the execution time overhead of adding the LLPC calls to the benchmark

programs, they were linked with the enhanced version of the microtasking library and

run individually on the test system with the modi�ed kernel. Table 2 shows the average

run-time of three executions of the benchmarks. The run-times of the LLPC-enabled

benchmarks are slightly higher than the unmodi�ed programs since, when LLPC is en-

abled, the applications become sensitive to the unavoidable background load caused by

the various system daemon processes. However, the overhead e�ect is quite small. The

benchmarks were able to use all of the CPUs for executing their parallel loops most of

the time, as shown by the average number of threads used per loop being almost equal

to the number of physical CPUs.

4.4 LLPC Compared to Time-Sharing

Next we compare the e�ectiveness of LLPC to time-sharing with a parallelized application

and a sequential application executing concurrently. In this experiment, a synthetic

sequential application was used that repeatedly executed for 18 seconds then slept for
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Table 2: The overhead due to adding the LLPC calls to the test programs.

original LLPC-enabled average no. of

Application run-time (sec) run-time (sec) threads used/loop

swim 172 174.67 3.999

su2cor 166 166.33 3.999

hydro2d 241 241.0 3.996

mgrid 247 249.0 3.999

5 seconds. This benchmark was executed simultaneously with the individual SPEC

benchmarks. A corresponding slowdown factor for the parallel application was then

calculated as follows:

slowdown =
measured run-time with sequential application running

parallel run-time on a dedicated system
:

A slowdown of one means that the execution time of the parallel application was not

a�ected by the sequential application while a slowdown factor of two would mean that

the parallel application executed for twice as long as it did on a dedicated system.

As shown by the slowdown factors in Table 3, the performance of the LLPC-enabled

applications are not a�ected by the sequential load as much as those executed with time-

sharing. With LLPC, the execution time of the parallel applications increases from 15%

to 25% while with time-sharing, the execution time increases by at least 46%. For su2cor,

the run-time with time-sharing is more than twice its stand-alone run-time. This table

also shows that the average number of threads used per parallel loop for each benchmark

with LLPC has decreased from around four threads per loop in stand-alone execution

to about 3.25 threads per loop. This change clearly illustrates that LLPC adjusted its

thread usage to compensate for the varying sequential background load.

Table 3: The slowdown factors of the benchmarks when using time-sharing and LLPC

to execute one parallel application and one sequential application.

Application time-sharing LLPC threads/loop

swim 1.46 1.20 3.26

su2cor 2.39 1.15 3.27

hydro2d 1.97 1.17 3.25

mgrid 1.73 1.25 3.27
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4.5 LLPC Compared to Static Partitioning

To evaluate the e�ectiveness of LLPC when there are multiple parallel applications shar-

ing the system, we compare LLPC to the Solaris version of static partitioning called

processor set (psrset). The processor set feature allows the system administrator to

partition the processors in a system into several subsets. These subsets then run only

those applications that are speci�cally assigned to them, although multiple applications

can share a subset of processors using time-sharing.

For the processor set measurements, we partitioned the system into two sets with two

CPUs in each. One of the SPEC application programs then was executed in each set.

For the LLPC measurements, the SPEC applications were compiled with the modi�ed

microtasking library. Pairs of applications were then executed simultaneously on all four

processors while they adjusted their processor requirements using the LLPC algorithm

described above. Because of the dynamic nature of LLPC, a slight change in the system

load can a�ect the number of processors used to execute a parallel loop, which then

produces slightly di�erent total execution times. Therefore, we conducted the LLPC

experiment �ve times for each set of benchmarks and present all �ve execution times for

comparison. We did not compare the performance with time-sharing in these experiments

since time-sharing proved to be signi�cantly slower than both LLPC and processor set.

The slowdown factors shown in Figure 3 suggest that, in almost all cases, LLPC

reduces the slowdown of the parallel applications compared to the static partitioning of

the processor set approach. The reductions in the slowdown factor for LLPC range from

a few percent to almost 20% when su2cor is run with mgrid. Only one benchmark,

swim, troubles the LLPC approach. This benchmark, as de�ned by SPEC, consists of

a single application that is run twice in succession with two di�erent input data sets.

As a result, the start-up costs for LLPC are encountered twice which contributes to the

higher overhead of LLPC on this application, as shown in Table 2. Moreover, after the

�rst run �nishes and before the second run starts, the other program executing in the

system is able to grab all of the processors, leaving the second run of the swim benchmark

with only a single thread to use. This thereby puts the second run of swim at an initial

disadvantage.

One of the main advantages of LLPC, however, is that it allows a much more 
exible

allocation of the processors. Instead of limiting the number of threads used by an appli-

cation to 2 as in the statically partitioned case, LLPC adjusts the allocation based on the

availability of the processors. For instance, when su2cor was running concurrently with

hydro2d, Table 4 shows that su2cor used 2.30 threads per parallel loop while hydro2d

used 2.97. This table shows that all of the applications were able to use an average of

more than 2 processors to execute their parallel loops with LLPC. The static partitioning,

however, sets a hard limit of at most two processors for the execution of each applica-

tion's parallel loops. Thus, this 
exibility in being able to use otherwise idle processor
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resources allows LLPC to outperform the statically partitioned processor set strategy.

Table 4: The average number of threads executed per parallel loop when using LLPC to

execute two parallel applications simultaneously.

swim su2cor hydro2d mgrid

swim 2.91 2.47 2.20

su2cor 2.68 2.30 2.52

hydro2d 2.97 2.97 2.66

mgrid 2.86 3.28 2.81

5 Conclusion

Fairly allocating the processors of a multiprogrammed shared-memory multiprocessor

system is necessary to minimize the execution time of individual parallel applications

while still maintaining high overall system utilization. Previous research has shown that,

for loop-level parallelized applications, techniques that dynamically adjust the parallelism

of the applications based on the system load can e�ectively achieve these contradictory

goals [6, 11, 16]. This paper has demonstrated how to incorporate the LLPC dynamic

processor allocation strategy [16] into the Solaris production operating system and related

parallelizing compiler.

A unique feature of this implementation is the addition of a sleeping state for slave

threads that allows parallel applications to dynamically adjust how much load they place

on the system. Another unique feature is the masking of a sleeping thread's restart time

with the execution of parallel loop iterations. Experiments with the SPEC95 benchmark

suite show that LLPC allows simultaneously executing parallel applications to exploit

more parallelism on average in each parallel loop than static partitioning or time-sharing.

As a result, parallel applications executed with LLPC have shorter execution times on

multiprogrammed systems than those executed using static partitioning or time-sharing.
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Figure 3: Comparing the slowdown factors of LLPC to the Solaris processor set (psrset)

static partitioning mechanism when executing two parallel applications simultaneously.

Five di�erent runs of the LLPC-enabled applications are shown to demonstrate its po-

tential variability.
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