
Parallel solution of rotating
ows in cavities

Rudnei Dias da Cunha� and �Alvaro Luiz de Bortoliy

Postgraduate Programme on Applied Mathematics

Institute of Mathematics

Federal University of Rio Grande do Sul

Av. Bento Gon�calves 9500 - Agronomia - Pr�edio 43111-A

91501-970 Porto Alegre - RS - BRAZIL

Abstract

In this paper, we investigate the parallel solution to the rotating internal
ow prob-
lems, using the Navier-Stokes equations as proposed in [16] and [15]. A Runge-Kutta
time-stepping scheme was applied to the equations and both sequential and message-
passing implementations were developed, the latter using MPI , and were tested on an
SGI Origin200 distributed, global shared memory parallel computer. The results show
that our approach to parallelize the sequential implementation requires little e�ort whilst
providing good results even for medium-sized problems, on this particular computer.

1 Introduction

Speziale and Thangam [16], and Speziale [15] have developed a formulation for the problem
of rotating internal
ows, i.e. determining the behaviour of \pressure-driven laminar
ows in
straight ducts, subjected to a steady spanwise rotation" (see [15]). The governing equations
are the Navier-Stokes equations and the continuity equation in a rotating framework, which
can be written as follows

@~v

@t
+ ~v � r~v = �

1

�
rP + �r2~v � 2
� ~v (1)

r � ~v = 0 (2)

where ~v is the velocity vector, P is the modi�ed pressure which includes both the gravitational
and centrifugal force potentials,
 is the steady spanwise rotation, � is the density of the
uid
and � is the kinematic viscosity of the
uid. The axial pressure gradient @P=@z = �G is
constant.

For a nonzero rotation rate, the velocity vector is of the form ~v = u(x; y)~i + v(x; y)~j +
w(x; y)~k, w being the axial velocity and u and v representing the secondary
ow. As the
rotation is around ~j, it is of the form
 =
~j; since the
ow properties are independent of z,
equations (1) and (2) may be written in component form as

@u

@t
+ u

@u

@x
+ v

@u

@y
= �

1

�

@P

@x
+ �r2u� 2
w (3)

�rudnei@mat.ufrgs.br
ydbortoli@mat.ufrgs.br

1

@v

@t
+ u

@v

@x
+ v

@v

@y
= �

1

�

@P

@y
+ �r2v (4)

@w

@t
+ u

@w

@x
+ v

@w

@y
=
G

�
+ �r2w + 2
u (5)

@u

@x
+
@v

@y
= 0 (6)

Due to the simple form (6) of the continuity equation, it follows that a secondary
ow
stream function exists such that the velocity components are

u = �
@

@y
; v =

@

@x
: (7)

The function is the solution to the Poisson equation r2 = @v=@x � @u=@y = �, where �
is the axial component of the velocity vector and is expressed by

@�

@t
+ u

@�

@x
+ v

@�

@y
= �r2� + 2

@w

@y
(8)

Introducing the velocity and length scales W0 and D, the equations to be solved numeri-
cally are written as follows:

@w

@t
+ u

@w

@x
+ v

@w

@y
= C +

1

Re
r2w + 2Ro u (9)

@�

@t
+ u

@�

@x
+ v

@�

@y
=

1

Re
r2� + 2Ro

@w

@y
(10)

r2 = � (11)

u = �
@

@y
; v =

@

@x
(12)

where Re and Ro are the Reynolds and rotation numbers, C is the dimensionless pressure
gradient, and the following relationships hold:

Re =W0D=�; Ro =
D=W0; C = GD=�W 2
0 : (13)

The initial condition for w, i.e. a non-rotating
ow, satis�es the equation

r2w = �
G

��
(14)

The reader is referred to [15] for more details.
The set of equations (9)-(12) are to be computed numerically and a rectangular grid of

M � N points, M > N are placed over a duct with length D and height H (H > D), with
spacings hx = D=(M + 1) and hy = H=(N + 1); therefore we may refer to the variables
of interest in those equations for an speci�c time-step t as discrete points on the grid with
indices i; j along the vertical and horizontal directions respectively.

Boundary conditions are u = 0; v = 0; w = 0 and = 0 on the walls of the duct; also, by
taking a Taylor's expansion of (11), boundary conditions on the axial vorticity at time-step t
are obtained and written as

�ti;0 =
8 ti;1 � ti;2

2h2x
; �ti;M+1 =

8 ti;M+1 � ti;M
2h2x

(15)

2

�t0;j =
8 t1;j � t2;j

2h2y
; �tN+1;j =

8 tN+1;j � tN;j
2h2y

(16)

In this work, we have used a modi�ed explicit Runge-Kutta time-stepping integration
scheme, approximating time and spatial derivatives by forward and central �nite-di�erences
respectively. Other authors (see [13, 14, 12]) have used di�erent approaches for
uid dynam-
ics simulations, mainly �nite-element discretizations and implicit time-stepping integration
schemes, and the parallelization is expressed via domain-decomposition.

2 Description of the explicit method

The computation is divided in two main parts. Initially, we solve Equation (14) for w with an
iterative method, writing the Laplacian in central �nite-di�erences and obtaining the value
of w at the (i; j) cell from

wk+1i;j = Æ

�
h2xh

2
y

G

��
+ h2y(w

k
i;j�1 + wki;j+1)+

h2x(w
k
i�1;j +wki+1;j)

�
(17)

where Æ = (2h2x + 2h2y)
�1, i = 1; 2; : : : ; N; j = 1; 2; : : : ;M; k = 0; 1; : : : ; kmax, and we proceed

with the iterations until
jjwk+1 �wk jj1 < �w (18)

where �w is suÆciently small.
The second part is the solution of equations (9)-(12) which is made using a modi�ed

explicit Runge-Kutta time-stepping scheme [10, 6, 5]. We proceed from time-step t to t + 1
as follows:

w0
i;j = wti;j ; �

0
i;j = �ti;j; u

0
i;j = uti;j; v

0
i;j = vti;j (19)

wki;j = w0
i;j + �kht

�
C +

1

Re
r2wk�1i;j + 2Ro uk�1i;j �

uk�1i;j

@wk�1i;j

@x
� vk�1i;j

@wk�1i;j

@y

!
(20)

�ki;j = �0i;j + �kht

1

Re
r2�k�1i;j + 2Ro

@wki;j
@y

�

uk�1i;j

@�k�1i;j

@x
� vk�1i;j

@�k�1i;j

@y

!
(21)

r2 k = �k (22)

uki;j = �
@ ki;j
@y

; vki;j =
@ ki;j
@x

(23)

wt+1i;j = wKi;j; �
t+1
i;j = �Ki;j; u

t+1
i;j = uKi;j ; v

t+1
i;j = vKi;j (24)

where ht is the time-step length, k = 1; 2; : : : ;K (K is the order of the Runge-Kutta scheme)
and �(K) = f�kg

K
k=1 is the set of weights for the integration, with �(3) = f1=2; 1=2; 1g,

3

�(4) = f1=4; 1=3; 1=2; 1g and �(5) = f1=4; 1=6; 3=8; 1=2; 1g (see [6]). All derivatives appearing
in equations (20)-(23) are replaced by central �nite-di�erences.

To stabilize the computation, the time-step ht is chosen such that at each iteration it
satis�es the condition

ht � (2�(h�2x + h�2y) + jju jj1=hx + jj v jj1=hy)
�1 (25)

Now the iterations in t proceed until

jj�(w)jj1 + jj�(�)jj1 + jj�()jj1 +

jj�(u)jj1 + jj�(v)jj1 < � (26)

where �(f) denotes f t+1 � f t and � is suÆciently small. In case this tolerance has not been
achieved, the boundary conditions on the axial vorticity � are updated, using (15) and (16),
and another iteration is performed. The algorithm used is outlined below:

Algorithm 2.1 Rotating
ow algorithm

1. initialize constants, boundary conditions, etc.

for k = 1; 2; : : : ; kmax
2. compute (17)

3. if jjwk+1 � wk jj1 < �w
then break;

endfor

for t = 0; 1; : : : ; tmax
for k = 1; 2; : : : ;K

4. compute (20)-(23)

endfor

5. if jj�(w)jj1 + jj�(�)jj1 + jj�()jj1+
jj�(u)jj1 + jj�(v)jj1 < �
then break;

6. update boundary conditions on � using

equations (15)-(16)

7. correct ht using equation (25)

endfor

8. output the results.

3 Parallelization of the method

The parallelization of an explicit method such as that described in the previous section requires
a careful analysis of the equations in use in order to ascertain the relationships between the
variables involved, since this will determine the
ow of data in the code and between the
many processors collaborating in the parallel computation.

The parallel algorithm developed is based on the single-program, multiple-data, SPMD

paradigm and we consider that the number of processors available, p, is less than the number
of computational cells (M �N). No assumption is made with regard to as how the processors

4

are interconnected, though both point-to-point communication and reduction operators are
supposed to be available.

To partition the grid among the processors, we consider that since the domain is regular,
the only major requirement to attend is that we must partition it across the largest dimension,
thereby increasing the computation-communication ratio and leading to a potential good
parallel performance. In our case, we divide the domain across M (as M > N), obtaining
m =M=p panels of N cells, and assign to each one of p processorsm�N contiguous cells; ifM
is not an integer multiple of p, then one extra row of N cells is assigned to some r processors,
where r is the modulus of M=p (i.e. these processors will store panels of size (m + 1) �N).
This partitioning leads to a logical interconnection of the processors as if they were on a linear
array (a topology which can be easily embedded on other physical interconnections available
in parallel computers, like hybercubes, 2D/3D grids and others).

While other strategies could be followed to achieve load-balance between the processors,
this one makes the communication pattern regular, as each processor has to exchange at most
two rows of N cells with its two neighbours (or a single row if it is at one of the ends of the
linear array).

It should be stressed that though the partitioning by panels is very simple, it can be used
on a variety of other problems, including those involving complex geometries, if the problem
is recast using generalized coordinates and type C- and O-grids (see [8, V.2,Ch.12] and [7]).

Analysing the
ow of data between equations (20)-(23), we note that there is a feedback
mechanism in the overall Runge-Kutta scheme, as once a variable in the k-th step is produced,
it is used in the computation of the next variable in sequence. This mechanism implies the
need of data exchange between the processors inside the Runge-Kutta scheme, in order to
compute the �nite-di�erences approximations to the derivatives.

Thus, once every processor has computed wk in their assigned portion of cells using (20),
they swap their left- and right-most columns of cells of wk (say, w:;1 and w:;m, where the colon
indicates a whole column) and also of �k�1 with their left and right neighbours (this is done
in a single message of length 2N instead of two messages of length N to reduce the e�ect of
message-passing latencies in the performance of the algorithm). Every processor is then able
to compute �k in their cells; afterwards, they exchange �k in the same way in order to solve
Poisson's equation for k and once this is completed, k is exchanged in order to compute
the velocities uk and vk. Therefore in every step of the Runge-Kutta scheme there are three
data-exchanges between neighbouring processors.

Also, note that the initial condition for w is the solution of Equation (14); as it is solved in
the form (17), the computation can be organized such that one data exchange is suppressed,
since for the �rst iterations (i.e. for k = 0 at t = 0), a processor will have already received
columns w:;m and w:;1 from its left and right neighbouring processors, which has been done
in the last iteration prior to convergence using (17).

The boundary conditions on u; v; w; and � can be computed without any communication
due to their simple form. For the update of the boundary conditions on � { equations (15) and
(16) { we use the same approach as explained in the previous paragraph, since every processor
will have stored �t+1:;m and �t+1:;1 of its left and right neighbours, from the last Runge-Kutta
iteration.

The whole algorithm is organized by dividing the computation of equations (20)-(23) into
two parts: one that refers to data stored locally in a single processor, and another which
depends on the local availability of data stored in its neighbouring processors. If now we
make use of asynchronous point-to-point communications (as present in MPI [9]), then we can

5

compute any one of the variables involved using the following algorithm:

Algorithm 3.1 Parallel computation of a variable f

1. asynchronously send variable f to its left and

right neighbours

2. compute variable f with its local data, i.e.
from columns 2 to m� 1
3. request the m-th column of f from processor

p� 1 (left) and store locally into column 0 of f
4. request the 1-st column of f from processor

p+ 1 (right) and store locally into column

m+ 1 of f
5. compute columns 1 and m of variable f

It is then possible to almost completely hide the time spent communicating between two
processors, provided the amount of time spent in step 2 of the above algorithm is greater
than the time needed for the two point-to-point communications between a processor and
its two neighbours. A suÆciently large grid will allow this to happen; in our speci�c case,
we are interested when the ratio M=N is large, since that will maximize the amount of local
computation for a given p while keeping small (relative to the local computation) the com-
munication time. This approach has been successfully applied in other parallel applications
(see [2], [3], [4] and [1]).

However, there are two penalties brought about by the parallel computation of equations
(20)-(23):

1. The amount of time needed to set-up the asynchronous sends and the retrieval of data
from the local communications bu�er into the appropriate memory locations of the
user's program;

2. The computation of reductions, needed to obtain the norms used in the stopping criteria
of the iterations.

We can not hide these times within the local computation time and therefore they are the main
causes for being unable to achieve the optimal speed-up; but we may expect that by dividing
the storage of the variables among p processors, the use of processors with cache memories will
provide some interesting phenomenon for large size problems and small number of processors.

The parallel algorithm can now be described as follows. Each processor stores its m
columns of N cells, for each variable (w, �, , u and v) in arrays of size 0:(N+1),0:(m+1),
where the two extra rows and columns serve to hold the boundary conditions values. Due
to the simple form of some of the boundary conditions speci�ed, one could argue that it is
not needed to store them; however this would lead to a speci�c piece of code be written to
compute the equations in the cells where the boundary conditions are involved.

We wrote the code to compute each of the equations (20)-(23) as a pair of loops scanning
the columns and rows of the array holding the variable values at the cells. As an example,
we will show how a sequential code to compute ki;j in Equation (20) was transformed into a
parallel code according to Algorithm 3.1. The sequential code is as follows

6

DO J = 1,M

DO I = 1,N

DXPSI = PSI(I,J-1) + PSI(I,J+1)

DYPSI = PSI(I-1,J) + PSI(I+1,J)

PSINEW(I,J) = APSI*ZETANEW(I,J) + BPSI*DXPSI +

+ CPSI*DYPSI

END DO

END DO

where APSI, BPSI and CPSI are constants involving hx and hy, derived from the central
�nite-di�erences equations. Its equivalent parallel version, using MPI , is

* 1. Asynchronously send PSI to its left and

* right neighbours

CALL SNDRCV(MYID,P,PSI,NP1,MP1,900,1000,IDSND,IDRCV)

* 2. Compute PSI with its local data

DO J = 2,MYM-1

DO I = 1,N

DXPSI = PSI(I,J-1) + PSI(I,J+1)

DYPSI = PSI(I-1,J) + PSI(I+1,J)

PSINEW(I,J) = APSI*ZETANEW(I,J) + BPSI*DXPSI +

+ CPSI*DYPSI

END DO

END DO

* 3-4. Request columns from neighbouring processors

CALL GETDATA(MYID,NPROCS,IDSND,IDRCV)

* 5. Compute columns 1 and m of PSI

DO J = 1,MYM,MYM-1

DO I = 1,N

DXPSI = PSI(I,J-1) + PSI(I,J+1)

DYPSI = PSI(I-1,J) + PSI(I+1,J)

PSINEW(I,J) = APSI*ZETANEW(I,J) + BPSI*DXPSI +

+ CPSI*DYPSI

END DO

END DO

where MYM ism and SNDRCV and GETDATA are subroutines which call the MPI routines MPI ISEND

and MPI IRECV, and MPI WAIT respectively. Note that by using the MPI ISEND and MPI IRECV

routines we have an asynchronous parallel implementation which maximizes the use of the
processors. A fully asynchronous implementation, on the other hand, is not possible, for
the underlying numerical method can not cope with the nonlinear instabilities that may be
generated by that kind of implementation.

With this approach, once a sequential version of the code has been tested and certi�ed to
be producing the desired results, it is easy to obtain its parallel version, since the second pair
of DO loops is the same as the �rst, apart from the indices on J. It is less error-prone, since the
loop body remains unchanged; in fact, if the �rst pair is encapsulated in a subroutine, having
the indices on J as parameters, if a modi�cation in the body of the loops was required, then
just a single part of the code would need attention. As for the performance of such code, if

7

one uses a compiler which is capable of inlining a subroutine, then it will not be a�ected by
this approach.

Another possible way of writing the parallel code (which we have also done) would be to
provide three di�erent parts to handle the computation, depending on the position of each
processor: the �rst, the last, and those in the middle of the linear array. It is easy to see that
this would increase three-fold the size of the code, and make it even more diÆcult to maintain;
one could make use of subroutines which would certainly make the code more readable but,
for an eÆcient program execution, the subroutines should be inlined, thereby increasing the
object code size accordingly. As an example, with the �rst approach, the ratio of source code
sizes of the parallel to the sequential versions is 1:46 : 1, whereas for this latter approach it
was 3:28 : 1.

The other modi�cation required in the sequential code to produce the parallel version is
in the computation of the norms. This requires a reduction operation over several values (i.e.
the partial norms) stored in the processors. Due to the SPMD programming model used, the
reduced value (i.e. the 1-norm of a variable) is required to be present in every processor.
Therefore, a reduction, followed by a broadcast of the reduced value to all processors is em-
ployed, this being implemented by the MPI routine MPI ALLREDUCE. It is a costly operation;
note that the reduction and broadcast require sending/receiving several messages between the
cooperating processors (with the associated latencies to set-up the message transfers), albeit
some of those may be done in parallel.

As such, we look at Algorithm 2.1 and notice that norms are required in steps 3, 5 and 7.
Now we ask ourselves: can we combine the reductions in the last two steps into a single one,
therefore reducing the latencies? If we consider that the computational cost of a reduction
of r values followed by a broadcast is 2b log2 p c(� + r�), where � and � are the latency and
the transfer rate between two processors (directly related to each other), then it is easy to
see that if we combine the �ve reductions needed in step 5 with the two reductions in step 7,
we will be saving one latency per reduction. For the overall computation, we will have

2tmax(� b log2 p c+ 7�) < 2tmax(2� b log2 p c+ 7�) (27)

and the savings will be greater for large p, as we shall see in x5.3.
With the above reasoning, if the sequential code corresponding to the computation of

steps 5 and 7 is written as

* 5. Compute norms

DO I = 1,5

NORMS(I) = 0.0

END DO

DO J = 1,M

DO I = 1,N

NORMS(1) = MAX(NORMS(1),ABS(W(I,J)-WNEW(I,J)))

NORMS(2) = MAX(NORMS(2),ABS(ZETA(I,J)-

+ ZETANEW(I,J)))

NORMS(3) = MAX(NORMS(3),ABS(PSI(I,J)-

+ PSINEW(I,J)))

NORMS(4) = MAX(NORMS(4),ABS(U(I,J)-UNEW(I,J)))

NORMS(5) = MAX(NORMS(5),ABS(V(I,J)-VNEW(I,J)))

END DO

END DO

8

NORM = NORMS(1) + NORMS(2) + NORMS(3) + NORMS(4) +

+ NORMS(5)

* 6. Update boundary conditions on ZETA

...

* 7. Time-step stabilization test

NORMS(1) = 0.0

NORMS(2) = 0.0

DO J = 1,M

DO I = 1,N

NORMS(1) = MAX(NORMS(1),ABS(UNEW(I,J)))

NORMS(2) = MAX(NORMS(2),ABS(VNEW(I,J)))

END DO

END DO

MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) + INVHX*NORMS(1) +

+ INVHY*NORMS(2)

HT = MIN(HT,1.0/MAXHT)

then an equivalent parallel code, including the computation of the jju jj1, jj v jj1 needed in
step 7, is

* 5. Compute norms

DO I = 1,7

NORMS(I) = 0.0

END DO

DO J = 1,MYM

DO I = 1,N

NORMS(1) = MAX(NORMS(1),ABS(W(I,J)-WNEW(I,J)))

NORMS(2) = MAX(NORMS(2),ABS(ZETA(I,J)-

+ ZETANEW(I,J)))

NORMS(3) = MAX(NORMS(3),ABS(PSI(I,J)-

+ PSINEW(I,J)))

NORMS(4) = MAX(NORMS(4),ABS(U(I,J)-UNEW(I,J)))

NORMS(5) = MAX(NORMS(5),ABS(V(I,J)-VNEW(I,J)))

NORMS(6) = MAX(NORMS(6),ABS(UNEW(I,J)))

NORMS(7) = MAX(NORMS(7),ABS(VNEW(I,J)))

END DO

END DO

CALL MPI_ALLREDUCE(NORMS,REDUOUT,7,MPI_REAL,MPI_MAX,

+ MPI_COMM_WORLD,IERR)

NORM = REDUOUT(1) + REDUOUT(2) + REDUOUT(3) +

+ REDUOUT(4) + REDUOUT(5)

* 6. Update boundary conditions on ZETA

...

* 7. Time-step stabilization test

MAXHT = 2.0*NU*(INVHXSQ+INVHYSQ) +

+ INVHX*REDUOUT(6) + INVHY*REDUOUT(7)

9

HT = MIN(HT,1.0/MAXHT)

where REDUOUT is the bu�er holding the reduced NORMS values and which is present in all
processors after the call to MPI ALLREDUCE.

3.1 Output of the results

At the end of the overall computation, we save the values of the variables involved in �les
for later analysis. We consider that each processor has parallel access to the disk �lesystem
and each processor is thus able to open its own �le, all p �les being written as simultaneously
as possible. In our experiments, even for the large problems, this proved to be eÆcient and
accounted for less then 1% of the run-time. An in-house developed visualization program (see
[11]) is later used, which opens the several �les in sequence and exhibits the data in a variety
of forms (eg. colour maps, particle traces and vector �elds).

4 Theoretical models of computation

In this section, we will derive equations that express the computational cost for the sequential
and parallel versions of the code. In the sequel, C� is the computational cost of a � operation.

Analysing equations (15)-(26), it is possible to count the number of operations required.
In our implementation, all constant values involved in those equations have been computed
previously and stored in separate scalar variables, thus guaranteeing that no unnecessary

oating-point operations will be done.

4.1 Sequential version

For the solution of (17), we have a cost of

C0
w = kmax(3MNC�) (28)

where kmax is the number of iterations required until convergence is obtained.
For the solution of the Navier-Stokes equations, we have the following costs

Cw = KMN(8C+ + 12C�) (29)

C� = KMN(8C+ + 13C�) (30)

C = KMN(4C+ + 3C�) (31)

Cu + Cv = 2KMN(C+ + C�) (32)

Cjj:jj = 5MNC+ (33)

CB:C:on � = 2(M +N)C+ + 4(M +N)C� (34)

Cht correction = 2C+ + 2C� + 2C� + C1=x (35)

where K is the order of the Runge-Kutta integration scheme. Adding the above equations
we have

S� = (30KMN + 4M + 4N + 2)C� (36)

S+ = (22KMN + 5MN + 2M + 2N + 2)C+ (37)

CN�S = tmax(S� + S+ + 2C� + C1=x) (38)

10

where tmax is the number of iterations required for convergence.
Adding (28) to (38) and disregarding the terms involving divisions and inversions, the

expression for the cost of the sequential version of the code is

CS = tmax(S� + S+) + kmax(3MNC�) (39)

4.2 Parallel version

For the parallel solution of (17), we have a cost of

C0
w = kmax (max(3MN=pC�; Ccomm(n)) +Cred(1)) (40)

where
Ccomm(n) = �+ �n (41)

is the cost of sending n words between two neighbouring processors, with latency � (in
seconds) and rate of transmission � (in seconds/word), and

Cred(r) = 2b log2 p cCcomm(r) (42)

is the cost of a reduction over p processors of r values, followed by a broadcast.
Equation (40) involves a maximum of two costs due to the organization of the Algorithm

3.1; for instance, if the workload in each processor is not enough to mask the communication
time, then this last dominates the whole computation (degrading the performance).

For the parallel solution of the Navier-Stokes equations, we have the following costs

Cw = KMN=p(8C+ + 12C�) (43)

C� = max(KMN=p(8C+ + 13C�); Ccomm(2N) (44)

C = max(KMN=p(4C+ + 3C�); Ccomm(N)) (45)

Cu + Cv = max(2KMN=p(C+ + C�); Ccomm(N)) (46)

Cjj:jj = 5MN=pC+ + Cred(7) (47)

CB:C:on � = (2(M=p+N)C+ + 4(M=p +N)C�) (48)

Cht correction = 2C+ + 2C� + 2C� +C1=x (49)

where the cost for CB:C:on� was considered that of the �rst and last processors, since due to
holding the �rst and last columns of the grid respectively, they have more work to do while
computing this correction.

Now in the case when the grid is suÆciently large to o�set the point-to-point communi-
cation between two neighbouring processors, we may disregard the Ccomm terms above and
adding the equations obtain

P� = (30KMN=p + 4M=p+ 4N + 2)C� (50)

P+ = (22KMN=p + 5MN=p+ 2M=p+ 2N + 2)C+ (51)

CN�S = tmax

�
P� + P+ + 2C� + C1=x +Cred(7)

�
(52)

Again, we disregard divisions and inversions in the above equation and adding C0
w to

CN�S, the asymptotical behaviour of the parallel version is given by

CP = tmax (P� + P+ + Cred(7)) + kmax (3MN=pC� + Cred(1)) (53)

11

4.3 Analysis of scalability

Considering the ratio CS=CP i.e. the parallel speed-up (not the optimal speed-up), the scal-
ability of the parallel version with respect to p, per iteration (i.e. tmax = kmax = 1), is given
by

SP =

�
S� + S+ + 3MNC�

pP� + pP+ + pCred(7) + pCred(1)

�
p (54)

and since the constant multiplying p is less than unity, the optimal scalability of p cannot be
achieved. The terms most responsible for this loss of parallel performance are those accounting
for the reductions.

The same equation shows that for a �xed p and for largeM and/or N , the terms involving
MN will dominate the expression in parentheses and that its value tends to unity; therefore
for a large grid, the parallel version will provide an acceleration of almost p over the sequential
version of the code.

5 Experiments

A number of experiments were carried out on Silicon Graphics Origin200 distributed, global
access memory parallel computer located at the Brazilian National Supercomputing Centre.
Our software is a FORTRAN 77 code which implements Algorithm 2.1 with the parallelization
expressed as in Algorithm 3.1. All computations were carried out in single-precision (32 bits)
and with the computer in dedicated mode.

The parallel computer used is a four-processor machine in a twin-tower con�guration,
each tower equipped with two MIPS R10000, 180MHz processors with 1MB cache memory
each, and interconnected via a CrayLinkTM cable. It has an aggregate RAM memory size
of 256MBytes. The machine is a \scalable, shared-memory processor (S2MP)" and it has
a hierarchical memory, with increasing memory access time for data requested from farther
processors. It is interconnected like a hypercube, with the use of CrayLink cables and routers.
For an Origin computer with 16 and 32 processors, XpressLinkTM interconnects are added
to the interconnection network, making use of the spare ports on the routers, minimizing
latency and increasing the bandwidth. Nonetheless, the fact remains that this machine does
not have a constant latency and transfer rate between any pair of processors.

5.1 Typical results

With regards to the
ow problem itself, typical results that were obtained are shown in Figure
1, which shows the streamlines for . In that experiment, taken from [15, p. 272], Re = 279,
Ro = 0:833,
 = 0:1 rad=s, G = 6 � 10�4 lb=ft3 and ht = 10�4 (throughout the iterations).
The tolerance for convergence for the initial condition on w was 10�5 and it was achieved
in 2; 595 iterations, taking 0:0008s on two processors. Convergence of the solution of the
Navier-Stokes equations using the three-term Runge-Kutta scheme (K = 3) for a tolerance of
10�4, took 406:9987s after 202; 255 iterations. The �gures show a similar appearance to that
presented in [15, p. 272].

5.2 Scalability

The experimental results given in tables 1 and 2 shows the run-time (in seconds/iteration)
for several mesh sizes. It can be seen that as the mesh sizes increase, the scalability increases

12

Figure 1: Typical results for a 64 � 32 mesh, Re = 279. From left to right: the contour
streamlines for the complete domain and the contours generated by each processor.

as well. Also noticeable is that in two cases (1024� 64 and 1024� 128) a substantial increase
of the run-time occurs. Using the SGI perfex performance analyser, which reports among
other data the number of loads and stores per
oating point instruction, we see that for the
512 � 64 mesh, this value is 2:2582, whereas for the 1024 � 64 mesh it jumps to 83:3133.
It appears that the increased data traÆc to/from the memory is responsible for the larger
run-time exhibited in the latter case.

Another important e�ect being shown is that of a speed-up larger than 2 for the larger
problem sizes when using two processors. Theoretically, such \superlinear" e�ect is impossible
to achieve; however, if we are using a parallel computer with a separate cache memory for
each processor, what may happen if we double the number of processors in use is that we
have at our disposal the double of cache memories while at the same time we are halving the
amount of data being accessed locally (supposing that load balance is achieved which is our
case). In this case, more data will �t in these extra cache memories when compared to using
a single processor

The above reasoning was con�rmed by the data cache hit rate reported by perfex; in
Table 3 we show this rate for a few problem sizes. Note that when p = 2 the data cache hit
rate becomes 1 but for the 256� 64 problem size, which is small compared to the others.

13

Table 1: Run time (in seconds per iteration) and speed-ups on the SGI Origin200.

M �N p = 1 p = 2 p = 3 p = 4

16� 16 0:0019 0:0018 0:0022 0:0024
1:0649 0:8836 0:7982

32� 16 0:0031 0:0026 0:0026 0:0025
1:1795 1:1997 1:2103

64� 16 0:0058 0:0038 0:0034 0:0031
1:5190 1:7272 1:9086

128� 16 0:0116 0:0068 0:0053 0:0045
1:7152 2:1810 2:5667

256� 16 0:0224 0:0127 0:0094 0:0081
1:7643 2:3875 2:7770

32� 32 0:0058 0:0039 0:0035 0:0033
1:4865 1:6426 1:7815

64� 32 0:0116 0:0068 0:0053 0:0047
1:7114 2:1770 2:4609

128� 32 0:0226 0:0124 0:0093 0:0079
1:8245 2:4448 2:8567

256� 32 0:0441 0:0236 0:0166 0:0133
1:8704 2:6489 3:3117

512� 32 0:0889 0:0466 0:0321 0:0265
1:9090 2:7719 3:3486

64� 64 0:0224 0:0123 0:0092 0:0088
1:8199 2:4278 2:5415

128� 64 0:0442 0:0235 0:0168 0:0132
1:8844 2:6384 3:3605

256� 64 0:0863 0:0458 0:0317 0:0246
1:8836 2:7232 3:5041

512� 64 0:1806 0:0900 0:0624 0:0469
2:0055 2:8940 3:8479

1024 � 64 42:5168 21:7635 14:4899 10:8587
1:9536 2:9342 3:9155

14

Table 2: Run time (in seconds per iteration) and speed-ups on the SGI Origin200 (continued).

M �N p = 1 p = 2 p = 3 p = 4

128 � 128 0:0869 0:0457 0:0317 0:0245
1:9018 2:7394 3:5505

256 � 128 0:1816 0:0892 0:0615 0:0468
2:0360 2:9547 3:8818

512 � 128 0:3829 0:1857 0:1232 0:0958
2:0625 3:1093 3:9961

1024 � 128 85:0758 43:5478 28:9583 21:8141
1:9536 2:9379 3:9000

Table 3: Data cache hit rates for some problem sizes. A value closer to 1 represents a better
cache memory usage.

p = 1 p = 2 p = 3 p = 4

256 � 64 0:9696 0:9926 1:0 1:0
512 � 64 0:9789 1:0 1:0 1:0
1024 � 64 0:9635 1:0 1:0 1:0
256 � 128 0:9802 1:0 1:0 1:0
512 � 128 0:9753 1:0 1:0 1:0
1024 � 128 0:9635 1:0 1:0 1:0

15

5.3 Reducing the latency in the computation of norms

As noted in the discussion of the parallel algorithm developed, we combined the reductions
needed for the computation of the norms appearing in steps 5 and 7. Table 4 shows the
time (in seconds) taken by two implementations of the parallel algorithm (one with combined
reductions and the other with separate reductions, and the respective gains). As can be seen
in that table, the combined reductions are a means of increasing the speed-up for small grids,
whilst still providing a reduction in the run time with increasing p, even for a large grid.

Table 4: Comparison between run times for (a) combined and (b) separate reductions.

M �N
64� 32 128 � 32 256 � 64 512� 64

p = 1 0:3170 0:6436 2:4457 5:1776

p = 2
(a) 0:1852 0:3528 1:2984 2:5817
(b) 0:2244 0:3979 1:3739 2:7304

gain(%) 21:1594 12:7980 5:8145 5:7586

p = 3
(a) 0:1456 0:2633 0:8981 1:7891
(b) 0:1843 0:3097 0:9773 1:9242

gain(%) 26:5539 17:6365 8:8164 7:5498

p = 4
(a) 0:1288 0:2253 0:6980 1:3456
(b) 0:1694 0:2802 0:7862 1:4756

gain(%) 31:5413 24:3674 12:6447 9:6674

6 Concluding remarks

We have presented a parallel algorithm for the solution of the rotating
ow problem de-
scribed by the Navier-Stokes equations, using an explicit Runge-Kutta time-stepping integra-
tion scheme.

We believe the results presented show that our approach to parallelize the computation
is good and can be used for the solution of related problems. Moreover, it can be used as a
framework for the parallelization of other techniques, as long as the possibility of breaking
down the computation in two parts - depending on local and remote stored data - exists.

We intend to further develop and apply it to other
uid
ow problems, including three-
dimensional domains with complex geometries, using generalized coordinates which will allow
us to use the same parallelizing technique presented here.

Acknowledgements

The authors wish to thank Mr. E. Meneghetti (Brazilian National Supercomputing Centre)
for his invaluable support and FAPERGS (Research Support Agency of the State of Rio

16

Grande do Sul) for partial �nancial support.
The experiments in this work were carried out at the National Supercomputing Centre of

the Federal University of Rio Grande do Sul.

References

[1] R.D. da Cunha. A benchmark study based on the parallel computation of the vector
outer-product a = uvT operation. Concurrency: Practice & Experience, 9(8):803{819,
August 1997.

[2] R.D. da Cunha and T.R. Hopkins. Parallel preconditioned Conjugate-Gradients methods
on transputer networks. Transputer Communications, 1(2):111{125, 1993. Also as TR-
5-93, Computing Laboratory, University of Kent at Canterbury, U.K.

[3] R.D. da Cunha and T.R. Hopkins. A parallel implementation of the restarted GMRES
iterative method for nonsymmetric systems of linear equations. Advances in Computa-
tional Mathematics, 2(3):261{277, April 1994. Also as TR-7-93, Computing Laboratory,
University of Kent at Canterbury.

[4] R.D. da Cunha and T.R. Hopkins. The Parallel Iterative Methods (PIM) package for
the solution of systems of linear equations on parallel computers. Applied Numerical

Mathematics, 19(1-2):33{50, November 1995.

[5] A.L. de Bortoli. Solution of incompressible
ows using a compressible
ow solver. 129-
94/18, DLR-IB, 1994.

[6] E. Dick. Introduction to Finite Volume Techniques in Computational Fluid Dynamics,
pages 270{297. J.F. Wendt (Ed.), Computational Fluid Dynamics - An Introduction
(2nd Ed.). Springer-Verlag, Berlin, 1996.

[7] J.H. Ferziger and M. Peri�c. Computational Methods for Fluid Dynamics. Springer-Verlag,
Berlin, 1996.

[8] C.A.J. Fletcher. Computational Techniques for Fluid Dynamics. Spring-Verlag, Berlin,
2nd edition, 1991.

[9] Message Passing Interface Forum. MPI: A message-passing interface standard. TR CS-
93-214, University of Tennessee, November 1993.

[10] A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the Euler equations by
�nite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259,
1981.

[11] D.A.R. Justo. Visual. Manual do usu�ario, Laborat�orio Integrado de Computa�c~ao
Cient���ca, Instituto de Matem�atica, Universidade Federal do Rio Grande do Sul, 1998.

[12] V. Kalro and T. Tezduyar. Parallel 3D computation of unsteady
ows around circular
cylinders. Parallel Computing, 23:1235{1248, 1997.

17

[13] L. Paglieri, D. Ambrosi, L. Formaggia, A. Quarteroni, and A.L. Scheinine. Parallel com-
putation for shallow water
ow: a domain decomposition approach. Parallel Computing,
23:1261{1277, 1997.

[14] N. Satofuka, M. Obata, and T. Suzuki. Parallel computation of super-/hypersonic
ows
on workstation network and Transputer arrays. Parallel Computing, 23:1293{1305, 1997.

[15] C.G. Speziale. Numerical solution of rotating internal
ows. Lectures in Applied Mathe-

matics, 22:261{288, 1985.

[16] C.G. Speziale and S. Thangam. Numerical study of secondary
ows and roll-cell insta-
bilities in rotating channel
ow. Journal of Fluid Mechanics, 130:377{395, 1983.

18

