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Abstract

We present a new domain decomposition algorithm for the parallel �nite element solution

of elliptic partial di�erential equations. As with most parallel domain decomposition methods

each processor is assigned one or more subdomains and an iteration is devised which allows the

processors to solve their own subproblem(s) concurrently. The novel feature of this algorithm

however is that each of these subproblems is de�ned over the entire domain | although the vast

majority of the degrees of freedom for each subproblem are associated with a single subdomain

(owned by the corresponding processor). This ensures that a global mechanism is contained

within each of the subproblems tackled and so no separate coarse grid solve is required in order

to achieve rapid convergence of the overall iteration. Furthermore, by following the paradigm

introduced in [5], it is demonstrated that this domain decomposition solver may be coupled easily

with a conventional mesh re�nement code, thus allowing the accuracy, reliability and eÆciency

of mesh adaptivity to be utilized in a well load-balanced manner. Finally, numerical evidence is

presented which suggests that this technique has signi�cant potential, both in terms of the rapid

convergence properties and the eÆciency of the parallel implementation.

Key words. Partial di�erential equations, Parallel computing, Domain decomposition, Mesh adap-

tivity, Finite element method.

1 Introduction

Parallel algorithms for the eÆcient solution of elliptic partial di�erential equations (PDEs) have

developed signi�cantly over the past �fteen years or so. The majority of these algorithms fall into

the general category of domain decomposition (DD) methods, about which there exists an extensive

body of literature (see for example [27] or previous proceedings in this series). In such methods

the domain must be divided into a number of subdomains (either overlapping or disjoint) and it is

necessary to solve a sequence of smaller problems on these subdomains in order to determine the

overall solution. The attraction of this approach for users of parallel computing systems comes when

the sequence is such that some of these smaller problems may be solved concurrently.

One of the simplest parallel DD algorithms is the additive version of the Schwartz alternating

method. Assuming that there is a one-to-one correspondence between processors and subdomains

this technique only requires data communication between processors owning neighbouring subdo-

mains. Its weakness however is that, as the underlying �nite element (or �nite di�erence) mesh is

re�ned, its rate of convergence deteriorates signi�cantly. (This may be viewed in terms of a cor-

responding preconditioned system whose condition number increases rapidly with the number of

degrees of freedom in the mesh.)
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One approach to overcoming this weakness is to add some coarse mesh correction procedure

directly to the additive Schwartz method (e.g. [17, 35]). Such a mechanism for the global transport

of information appears to be essential for the quality of any algorithm not to deteriorate as the

underlying mesh is re�ned. In particular, it is also present in iterative substructuring methods

such as [11, 12, 13, 14, 18, 20, 24, 33]. For all of these algorithms the condition number of the

underlying preconditioned system increases only very slowly, if at all, as the mesh is re�ned. The

price that is paid for this improvement however is that the additional communication overhead and

load-balancing costs associated with the global mechanism are quite signi�cant. This tends to make

eÆcient parallel implementations for irregular meshes (due to the use of adaptivity or the geometric

complexity of the domain for example) quite challenging.

A further development of the concept of a global or coarse mesh correction comes from the

use of multilevel methods (e.g. [15, 37]). In these algorithms the coarse mesh is itself only a little

coarser than the original mesh and is also partitioned by subdomain, so the coarse level correction

problem may also be solved by a domain decomposition method. When the same two-level method is

applied recursively to n levels using a nested sequence of meshes a (parallelizable) multilevel method

is obtained. This is one approach to obtaining a global correction in a naturally parallel manner

however it does tend to add further to the overall (global) communication overheads which now

build up at each level. Practical parallel implementation on locally re�ned unstructured meshes is

also far from straightforward.

In [36] Xu discusses how all of these DD techniques (and numerous others which are cited) relate

to more general subspace correction ideas (with parallel multigrid algorithms also being considered

in the same context). It may be observed that in all of the above approaches parallelism is achieved

through each processor working on its own subdomain with an additional global correction introduced

in some manner. The parallel algorithm that we introduce in this paper (motivated by the work

of [5, 30, 31]) is rather di�erent however since each processor works over the entire domain. The

function spaces that each processor computes with are nevertheless very di�erent from each other:

each having the vast majority of their degrees of freedom in the particular subdomain owned by that

processor. One way of viewing the proposed algorithm is therefore as a variation on the subspace

correction approach. In Section 2, where this algorithm is introduced in detail, we take a more

geometric view however and describe the method in terms of di�erent �nite element meshes and

their corresponding sti�ness matrices. An empirical study of the convergence properties of the

algorithm is presented in Section 3. This is put forward as justi�cation for the approach, along

with some further variants which are also described. Finally, in Section 4, the parallel eÆciency of

our implementation is considered and a number of issues which warrant further investigation are

discussed.

2 The parallel algorithm

The parallel technique that we introduce in this section is designed to utilize standard sequential

adaptive mesh algorithms based upon local h-re�nement, such as [4, 10, 16, 28, 34] (and many more),

with only minimal modi�cations. The initial implementation described here is for linear problems

in two space dimensions however we foresee no signi�cant obstacles to extending the technique to

nonlinear problems (as in [4, 23] for example) or to three space dimensions (as in [10, 34]). In order

to simplify the description below it is convenient to make a small number of assumptions at this

point. These are considered further at the end of the section.

Assumption 2.1 Some local error estimator is available which, given a triangular element, is able
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to return an estimate of the error on that element.

Assumption 2.2 The domain has been triangulated with a coarse mesh and this mesh has been

partitioned into p sub-meshes (where p represents the number of processors in use) which each have

an approximately equal total error (as de�ned by the above error estimator when applied to each

element of the coarse mesh). Furthermore, each processor holds a complete copy of this coarse mesh

and has a record of which subdomain (i.e. sub-mesh) each element of the coarse mesh belongs to.

Assumption 2.3 A sequential hierarchical re�nement code is available for locally re�ning the coarse

mesh based upon local error estimates. At this stage only piecewise linear approximations will be

considered on the re�ned meshes and the location of each node will remain �xed once it has been

created (i.e. neither p-re�nement (e.g. [1, 2]) nor r-re�nement (e.g. [4, 16]) will be considered).

2.1 Introduction to the algorithm

In order to introduce the proposed algorithm it is simplest to consider the special case where p = 2.

Based on our assumptions above each coarse element may be re�ned locally on each processor until

the error in each leaf element satis�es some prescribed tolerance (or some maximum re�nement

depth is reached). If, on processor i, this tolerance is chosen to be extremely large for each element

not belonging to subdomain i, then the �nal mesh on that processor will only be re�ned inside

subdomain i or immediately outside it. (Typical h-re�nement codes only permit a di�erence of at

most one level of re�nement between neighbouring elements in which case there may be a \safety

layer" of re�nement on the outer border of subdomain i on processor i.) In fact, it is actually

convenient to extend this region of re�nement on processor i by an extra \layer" of elements by

only setting an arti�cially high tolerance on elements not in subdomain i and which do not border

subdomain i. (Note that an element's parent may border subdomain i without the element itself

being on the border. In this situation the element will be given a large error tolerance, even though

its parent was not, so as to prevent further local re�nement.) Figure 1 illustrates this for the case

p = 2 on the domain (0; 1)� (0; 1) with one subdomain consisting of the region above the line y = x

and the other consisting of the region below this line.

We now de�ne a global �ne mesh as being the union from i = 1 to p of the �ne mesh on subdomain

i created by processor i. To avoid complications at this point we make the following assumption

(which will also be considered further in Subsection 2.4 below).

Assumption 2.4 The union from i = 1 to p of the �ne mesh on subdomain i created by processor

i is a conforming �nite element mesh over the entire domain.

When solving a linear elliptic PDE such as

�r � (Aru) + b � ru+ cu = f on 
 � <
2 (2.1)

(where A is symmetric and strictly positive-de�nite, b may be 0 and c � 0) subject to well-posed

boundary conditions (e.g. uj@
 = 0 for simplicity) using the Galerkin �nite element method on the

global �ne mesh one obtains a system of n linear algebraic equations of the form

Z



0
@Ar( nX

j=1

uj�j)

1
A � r�i dx+

Z


b � r(

nX
j=1

uj�j)�i dx+

Z


c(

nX
j=1

uj�j)�i dx =

Z


f�i dx (2.2)

for i = 1; :::; n. Here n is the total number of vertices in the global �ne mesh (excluding the Dirichlet

boundary), �j is the usual piecewise linear �nite element basis function which has value 1 at vertex
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Figure 1: A typical pair of locally re�ned meshes for two subdomains. In this small example the

coarse mesh contains 64 elements and at most three levels of re�nement are permitted.

j of the mesh, and uj is the solution value at vertex j which is to be determined. It is conventional

to express these equations in matrix form as the n� n linear system

Ku = f ; (2.3)

where the sti�ness matrix K and the load vector f have entries given by

Kij =

Z


(r�i � (Ar�j) + �i(b � r�j) + c�i�j) dx ; (2.4)

fi =

Z


f�i dx : (2.5)

It is this sparse system that we wish to solve in parallel.

Suppose the vector, u, of unknown nodal values on the global �ne mesh is written as uT =

(uT1 ; u
T
2 ; u

T
s ) where u1 is the vector of unknowns strictly inside subdomain 1, u2 is the vector of un-

knowns strictly inside subdomain 2 and us is the vector of unknowns shared by the two subdomains.

The system (2.3) may be expressed in block matrix form as

2
64 A1 0 B1

0 A2 B2

C1 C2 As

3
75
2
64 u1

u2

us

3
75 =

2
64
f
1

f
2

f
s

3
75 (2.6)

with the obvious block structure. Note however that it is also possible to apply the Galerkin �nite

element method on the meshes generated by the two processors. On processor 1 this yields the

system 2
64 A1 0 B1

0 ~A2
~B2

C1
~C2 As

3
75
2
64 u1;1

u2;1

us;1

3
75 =

2
64
f
1
~f
2

f
s

3
75 (2.7)
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whilst on processor 2 this yields the system2
64

~A1 0 ~B1

0 A2 B2

~C1 C2 As

3
75
2
64 u1;2

u2;2

us;2

3
75 =

2
64

~f
1

f
2

f
s

3
75 : (2.8)

Note that the matrix blocks with a tilde over them are smaller than the corresponding blocks in

(2.6) since they correspond to the use of a coarser �nite element mesh. The use of the additional

layer of re�ned leaf elements around the subdomains ensures that the block As appears in (2.7) and

(2.8) in its original form (i.e. as in (2.6)).

To obtain an approximate solution to the �ne mesh problem (2.6) one may solve the two smaller

problems (2.7) and (2.8) concurrently and then set2
664
u
(1)
1

u
(1)
2

u
(1)
s

3
775 =

2
64 u1;1

u2;2
1
2(us;1 + us;2)

3
75 : (2.9)

Note that a communication between the two processors is required in order to evaluate the average
1
2(us;1 + us;2).

Having obtained this approximation to the solution the corresponding residual may now be

calculated using the identity

r
(1) =

2
664
r
(1)
1

r
(1)
2

r
(1)
s

3
775 =

2
64
f
1

f
2

f
s

3
75�

2
64 A1 0 B1

0 A2 B2

C1 C2 As

3
75
2
664
u
(1)
1

u
(1)
2

u
(1)
s

3
775 : (2.10)

This may also be achieved in parallel since

r
(1)
1 = f

1
� A1u

(1)
1 �B1u

(1)
s (2.11)

for which all necessary data is present on processor 1, and

r
(1)
2 = f

2
� A2u

(1)
2 �B2u

(1)
s (2.12)

for which all necessary data is present on processor 2. Also,

r
(1)
s = f

s
�

2X
i=1

�
Ciu

(1)
i � As(i)u

(1)
s

�
(2.13)

where As(i) is the contribution to As which is obtained by restricting integration to subdomain i

only. (This may be assembled at no extra computational cost at the same time that As is being

assembled on processor i.) Note that although each term in the sum may be computed concurrently

by each of the processors a further communication is required to add these two contributions. In

general this residual will be non-zero and so it is necessary to form a �xed point iteration based

upon solution of the error equation:

Ke
(k) = r

(k) (2.14)

u
(k+1) = u

(k) + e
(k)

: (2.15)

The algorithm for this �xed point iteration is shown in Figure 2. Note that it is necessary to restrict

r
(k)
1 to the coarse mesh covering subdomain 1 on processor 2 and r

(k)
2 to the coarse mesh covering

subdomain 2 on processor 1. This is done using the rectangular matrices M1 and M2 respectively,

which make use of the hierarchical data structure which is present by Assumption 2.3. These matrices

are discussed further over the next two subsections.
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1/. Initialise: k = 0

u
(0)
1 = 0; u

(0)
2 = 0; u

(0)
s = 0

r
(0)
1 = f

1
; r

(0)
2 = f

2
; r

(0)
s = f

s

2/. Repeat

2.1

2
64
A1 0 B1

0 ~A2
~B2

C1
~C2 As

3
75
2
64 z1;1

z2;1

zs;1

3
75 =

2
664

r
(k)
1

M2r
(k)
2

r
(k)
s

3
775

2.2

2
64

~A1 0 ~B1

0 A2 B2

~C1 C2 As

3
75
2
64 z1;2

z2;2

zs;2

3
75 =

2
664
M1r

(k)
1

r
(k)
2

r
(k)
s

3
775

2.3

2
64 z1

z2

zs

3
75 =

2
64 z1;1

z2;2
1
2
(zs;1 + zs;2)

3
75

2.4

2
664
u
(k+1)
1

u
(k+1)
2

u
(k+1)
s

3
775 =

2
664
u
(k)
1

u
(k)
2

u
(k)
s

3
775+

2
64 z1

z2

zs

3
75

2.5

2
664
r
(k+1)
1

r
(k+1)
2

r
(k+1)
s

3
775 =

2
64
f
1

f
2

f
s

3
75�

2
64 A1 0 B1

0 A2 B2

C1 C2 As

3
75
2
664
u
(k+1)
1

u
(k+1)
2

u
(k+1)
s

3
775

2.6 k += 1

Until kr(k)k � TOL

Figure 2: An algebraic description of the 2 subdomain version of the �xed point iteration for the

solution of (2.3) (which may be partitioned as (2.6)).

2.2 Generalization of the algorithm

Having introduced the �xed point iteration for p = 2 it is now possible to generalize this to arbitrary

choices of p. The mesh generation and matrix assembly on each processor are unaltered, and we

will again work with Assumption 2.4 for the time-being. Hence we may de�ne a global �ne mesh as

before and the corresponding Galerkin �nite element equations, (2.3), may be partitioned as

2
64 Ai 0 Bi

0 �Ai
�Bi

Ci
�Ci Ai;s

3
75
2
64 ui

�ui
ui;s

3
75 =

2
64

f
i
�f
i

f
i;s

3
75 (2.16)

for any choice of i 2 f1; :::; pg. Here ui is a vector of �ne mesh nodal values inside subdomain i, �ui is

a vector of �ne mesh nodal values outside subdomain i and ui;s are the remaining �ne mesh nodal

values, on the interface of subdomain i. The rest of the partition into blocks follows from this.

As with the case p = 2 it is only possible to fully assemble the �nite element equations for the
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meshes actually generated on each processor. For processor i these may be written as

2
64
Ai 0 Bi

0 ~Ai
~Bi

Ci
~Ci Ai;s

3
75
2
64 ui

~ui
ui;s

3
75 =

2
64

f
i
~f
i

f
i;s

3
75 ; (2.17)

where the tilde above a block again indicates that it is smaller than the corresponding block in (2.16)

due to the use of a coarser �nite element mesh. Now, by introducing the restriction operatorMi, from

the part of the global �ne mesh outside subdomain i to the coarser mesh covering the same region

on processor i, the overall �xed point iteration shown in Figure 2 may be generalized to p processors.

This is done in Figure 3. Note that in this �gure Ai;s(i) and f
i;s(i)

represent the contributions to Ai;s

and f
i;s

respectively obtained by restricting integration to subdomain i only. Since the latter terms

are typically assembled from each element in turn there is no additional computational overhead

associated with accumulating the partial assemblies Ai;s(i) and f
i;s(i)

as well.

2.3 Parallel implementation issues

The algorithm of Figure 3 has been developed with a distributed memory programming model in

mind and a straightforward parallel implementation may be obtained with calls to only a small num-

ber of communication subprograms (using the Message Passing Interface (MPI), [29], for example).

In this subsection we discuss the main features of such an implementation, making frequent reference

to the steps enumerated in Figure 3 and Assumptions 2.1 to 2.4 (which are discussed and justi�ed

in Subsection 2.4 below).

Step 1 is the parallel mesh generation phase. By Assumption 2.1 there exists some error indicator

upon which to base the local re�nement of each mesh (which may be undertaken independently on

each processor by Assumption 2.3), and by Assumption 2.2 we may reasonably expect that the

meshes generated will all have a similar number of elements (since the error per element will be

approximately equal to some �xed target value and the total error per subdomain is approximately

equal). If Assumption 2.4 is also valid then no inter-processor communication at all is required in

the parallel generation of these matching, load-balanced meshes. Again we emphasize that, as in

Figure 1, although each mesh covers the entire domain the vast majority of the nodes and elements

are located in and around subdomain i.

The assembly of the �nite element equations (Step 2) may clearly be completed in parallel without

the need for inter-processor communication since each processor works only with its own mesh. In

practice the sti�ness matrix should be stored using a sparse data structure (as in [7] for example),

with only a small amount of additional memory required for the separate storage of Ai;s(i) and f i;s(i)
.

In our implementation we also compute a sparse incomplete LU factorization of the sti�ness matrix

on each processor at this stage, to be used as a preconditioner in the iterative solution of the system

at Step 4.1. This too may be completed independently on each processor using standard sequential

algorithms (e.g. [8, 9]).

The initialization of Step 3 also requires no inter-processor communication. It should be noted

that initialization of ~u
(0)
i and ~r

(0)
i is not strictly necessary in the version of the algorithm given in

Figure 3 since they are not used in subsequent steps. A slight modi�cation of the algorithm however

would be to use ~r
(0)
i instead of Mi�r

(0)
i at the �rst pass of Step 4.1 in order to avoid some global

communication (see below). This corresponds to solving (2.17) on each processor at the �rst pass of

Step 4.1.
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1/. Generate the mesh for processor i

2/. Assemble the FE equations (2.17) (saving Ai;s(i) and f
i;s(i)

separately for later use)

3/. Initialise: k = 0

u
(0)
i = 0; ~u

(0)
i = 0; u

(0)
i;s = 0

r
(0)
i = f

i
; ~r

(0)
i = ~f

i
; r

(0)
i;s = f

i;s

4/. Repeat

4.1

2
64
Ai 0 Bi

0 ~Ai
~Bi

Ci
~Ci Ai;s

3
75
2
64 zi

~zi
zi;s

3
75 =

2
664

r
(k)
i

Mi�r
(k)
i

r
(k)
i;s

3
775

4.2 Let each entry of zi;s be averaged over all corresponding entries found on

neighbouring processors

4.3 u
(k+1)
i = u

(k)
i + zi; u

(k+1)
i;s = u

(k)
i;s + zi;s

4.4 r
(k+1)
i = f

i
�Aiu

(k+1)
i � Biu

(k+1)
i;s ; r

(k+1)
i;s = f

i;s(i)
� Ciu

(k+1)
i �Ai;s(i)u

(k+1)
i;s

4.5 Let each entry of r
(k+1)
i;s be summed over all corresponding entries found on

neighbouring processors

4.6 k += 1

Until kr(k)k � TOL

Figure 3: An algebraic description of the algorithm to be followed by processor i (from 1 to p) in the

p subdomain version of the �xed point iteration for the solution of (2.3) (which may be partitioned

as (2.16)).

Step 4.1 is the most complex step of the algorithm from a parallel programming point of view.

Obtaining the right-hand side of the linear system requires global (all-to-all) communication between

the processors and consequently needs to be implemented as eÆciently as possible. Due to the

importance of this implementation we postpone a detailed description until the end of this discussion

of the overall algorithm. Once the right-hand side of each linear system has been obtained on

each processor however the systems may clearly be solved independently using standard sequential

algorithms. Since the sti�ness matrices are sparse it is appropriate to use an iterative solver for these

equations (e.g. [3]), possibly with an ILU factorization (computed at Step 2) as a preconditioner,

and so the issue of convergence needs to be considered. Experiments suggest that a fairly large

convergence tolerance is optimal (see Section 4 for further details).

The next step, 4.2, also requires inter-processor communication, but only locally between pro-

cessors owning neighbouring subdomains (i.e. subdomains which share one or more vertex). Each

processor sends to each of its neighbours a list of those entries of zi;s which correspond to vertices
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shared with that neighbour. Such a list is also received from each neighbour and each item of data

is added to the corresponding entry in zi;s. To obtain an average, each entry in zi;s is divided by

a positive integer, mi;s(j) say, where mi;s(j) is equal to the number of subdomains which share

the vertex corresponding to the jth entry of zi;s on processor i. Note that mi;s(j) can be comput-

ed after Step 1 of the algorithm without any inter-processor communication since, for 2-d meshes,

mi;s(j) = 2 for any node on the boundary of subdomain i which is not in the original coarse mesh

and, by Assumption 2.2, the value of mi;s(j) may easily be determined for any node present in the

original coarse mesh.

Steps 4.3 and 4.4 are clearly local operations on each processor and Step 4.5 may be completed

using the same local communication routines required for Step 4.2. (It should be noted that this

neighbour-to-neighbour communication pattern occurs in most distributed memory parallel �nite

element codes (e.g. [20, 24]) and so is well-understood.)

The �nal step of the algorithm in Figure 3 is the test for convergence. This too requires a (small)

global communication, as well as a synchronization. In our implementation we use the 2-norm of

the residual and make use of the MPI Allreduce subprogram. Each processor �rst accumulates

krik
2
2 +

dim(ri;s)X
j=1

(ri;s)
2
j

mi;s(j)
(2.18)

(where (ri;s)j is the j
th entry of ri;s for j = 1 to dim(ri;s)), and then the global sum is taken in order

to determine the square of the 2-norm of the residual on the global �ne mesh.

For the rest of this section we return to the formation of the right-hand side vector in Step 4.1

of the algorithm. Once the issues associated with the accumulation of this vector on each processor

have been satisfactorily resolved the detailed discussion of the parallel implementation issues will be

complete.

In order to form Mi�r
(k)
i , processor i needs to know the restriction of (r

(k)
j ; r

(k)
j;s ) to the part of

mesh i which covers subdomain j (for j = 1 to p but j 6= i). By calculating this restriction on

processor j and then sending it on to processor i the length of the message that must be sent from

j to i is equal to the number of vertices in mesh i which lie in subdomain j or on its boundary.

Note that as the global �ne mesh is re�ned this length does not increase very signi�cantly (if at

all) since it depends mainly on the size of the coarse starting mesh in subdomain j (plus a small

amount of additional re�nement on part of the edge of subdomain j if j is a neighbour of i). Hence

the major programming issue that must be resolved is that of how processor j is able to calculate

the restriction of (r
(k)
j ; r

(k)
j;s ) to the part of mesh i which covers subdomain j. Once this is done,

assembly of the right-hand side of the system in Step 4.1 may be completed on processor i as soon

as it has received a contribution to the restriction Mi�r
(k)
i from each of the other processors. (Note

that processor j must use the value of r
(k)
j;s calculated at Step 4.4, not 4.5, when performing this

restriction since nodes on the interface with other processors will be counted more than once.)

For processor j to restrict (r
(k)
j ; r

(k)
j;s ) to the part of mesh i which covers subdomain j this part

of mesh i must be communicated to processor j in a pre-processing step. This may occur any time

after the completion Step 1 of the algorithm (and simultaneously with Step 2 if desired). Once j

has received this mesh from i it must identify which of the vertices of its own mesh correspond to

the vertices received (by Assumptions 2.3 and 2.4 each vertex received must match the location of a

vertex that has been generated on processor j). A naive way of implementing this process for each

vertex received would be to search through each vertex in mesh j which lies in subdomain j, or on

its boundary, until the location matches that of the received vertex. This would be very ineÆcient
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as the global �ne mesh is re�ned however since one would be searching through nearly all of the

nodes on mesh j. By including a node level �eld in the hierarchical mesh data structure however this

search may be trimmed signi�cantly since a node generated at level m of the hierarchical re�nement

need only be compared against nodes of the same level on processor j. Further eÆciency gains may

be obtained for the larger values of m by searching through the nodes on j which are closest to

the boundary with i �rst. Once this matching process is complete for each vertex received from

processor i, the hierarchical data structure on processor j may be used to calculate the restriction

of (r
(k)
j ; r

(k)
j;s ) onto mesh i at each iteration.

2.4 Discussion

We conclude this section with a brief discussion of the underlying Assumptions (2.1 to 2.4) that have

been made in order to justify the parallel algorithm that we have introduced. A numerical study

of the performance of the algorithm is postponed until Sections 3 and 4, where it is respectively

demonstrated that the technique appears to show good conditioning properties when the global �nite

element mesh is uniformly re�ned and that an eÆcient parallel implementation may be achieved.

The main motivations for the DD method proposed here come from the full domain parallel

multigrid approach of [30, 31] and the parallel adaptive meshing paradigm of [5]. This latter approach

to undertaking parallel adaptive �nite element computations addresses the load-balancing problem in

a new way, requiring less communication than existing techniques, and also allows existing adaptive

PDE codes, such as [4, 16, 34], to run in a parallel environment with only a small amount of recoding.

There are three main components.

1. The solution of the small �nite element system that is obtained by approximating the problem

of interest on a coarse initial mesh, followed by the use of a posteriori error estimates to

partition the mesh. This partition is undertaken such that each subregion has about the same

total approximate error, and so the size of these subregions could vary considerably in terms

of numbers of coarse elements or grid points.

2. Each processor is provided the complete coarse mesh and instructed to sequentially solve the

entire problem, with the stipulation that its adaptive re�nement should be limited largely to

its own subdomain. The target number of elements and grid points for each problem is the

same.

3. A �nal mesh is made up of the union of the re�ned subdomains provided by each processor.

This mesh is regularized and a �nal solution computed, using a parallel domain decomposition

or multigrid technique.

This approach has a number of interesting features, such as the reduction of the load-balancing

problem to the numerical solution of a small elliptic problem on a single processor for example

(but see also Section 4 below), and is justi�ed in detail in [5]. In particular however the new

parallel DD method outlined in this section is ideally suited for the computation of the �nal, global,

solution required by component 3 above. Moreover, by following this approach each of the �rst three

Assumptions (2.1 to 2.3) will be automatically satis�ed.

In order to satisfy Assumption 2.4 it is proposed in [5] that a conforming global �ne mesh be

made from each of the subdomains through the use of local communication between processors

owning neighbouring subdomains, followed by a small amount of additional local re�nement where

necessary. An alternative to this comes from the observation that, in the algorithm used in this

paper, the small overlap in the regions that are re�ned by each processor means that it is quite
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unusual for Assumption 2.4 not to be satis�ed automatically (given a reliable error indicator and

in the absence of r-re�nement). Hence, only if a match cannot be found for a boundary node

when completing the pre-processing required for the computations of the right-hand sides in Step

4.1, should any further mesh modi�cation be undertaken. This will save unnecessary neighbour-

to-neighbour communications. If one wishes to make use of local node movement (r-re�nement) to

improve mesh quality (as in [4, 16] for example) then this may be undertaken in parallel after the

pre-processing for Step 4.1 has been completed. We have yet to investigate such an approach in

detail however.

3 Convergence and acceleration

The parallel DD solver introduced in the previous section is designed to make use of standard

sequential algorithms and software as much as possible. This includes code for adaptive meshing,

�nite element assembly, solution of sparse systems and a posteriori error estimation. In this section

we justify the algorithm both through an empirical study of its convergence properties and by

considering convergence acceleration using Krylov subspace techniques. Some related mathematical

theory is also discussed as a means of further justi�cation.

3.1 Convergence of the algorithm

We consider the algorithm outlined in Figure 3 when applied to two simple test problems.

Problem 1

�r � (ru) = f :

Problem 2

�r � (ru) +

"
1

1

#
� ru = f :

In each case the domain 
 = (0; 1)�(0; 1) and Dirichlet boundary conditions are applied throughout

@
. These are chosen, along with the source term f , so that the exact solution is given by

u(x) = (x1 �
1

2
)2(x2 �

1

2
)2 : (3.1)

Table 1 shows the performance of the algorithm when TOL = 10�6kr(0)k2 and the systems

encountered at step 4.1 in Figure 3 are solved exactly at each iteration. For each calculation a

coarse mesh of just 64 elements has been used and the global �ne meshes contain between 1024 and

1048576 elements (representing between 2 and 7 levels of uniform re�nement respectively of the coarse

mesh). Between 2 and 32 subdomains have been considered (corresponding to the use of between

2 and 32 processors in a parallel implementation | although discussion of parallel performance is

postponed until Section 4).

It is apparent from the results contained in Table 1 that the �xed point iteration proposed

converges very rapidly and (for these examples at least) in a manner which is independent of the

size (h say) of the �ne mesh. Moreover, the algorithm performs just as well on the non-self-adjoint
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Problem 1 Problem 2

Elements/Procs. 2 4 8 16 32 2 4 8 16 32

1024 3 4 4 4 4 3 4 4 4 5

4096 3 4 4 5 4 3 4 5 5 5

16384 3 4 4 5 5 3 4 5 5 5

65536 3 3 4 5 5 3 4 5 5 5

262144 3 3 4 5 5 3 4 5 5 5

1048576 3 3 4 5 5 3 4 5 5 5

Table 1: The performance of the proposed algorithm on two test problems: �gures quoted represent

the number of iterations required to reduce the initial residual by a factor of 106.

problem (Problem 2) as on the self-adjoint one; at least in this case, where the convection term

does not dominate. It would also appear that the rate of convergence of the algorithm is only very

weakly dependent upon p, if at all. This observation, along with the apparent independence from the

mesh size, h, leads one to suspect connections between this approach and that of optimal additive

Schwartz algorithms (see, for example, [17, 22, 35, 36]). This connection is discussed in Subsection

3.3 below.

3.2 Acceleration of convergence

The use of Krylov subspace methods ([3, 21]) to accelerate the convergence of �xed point iterations,

such as that proposed in Figure 3, is quite standard. In this subsection we propose using a parallel

GMRES ([32]) algorithm to solve (2.3) (partitioned as in (2.17) on each processor still) using steps

4.1 to 4.2 of Figure 3 as a preconditioner. This requires only very minor modi�cation to the parallel

code described in the previous section: and, in particular, the data structures and partition of the

data are identical. (Furthermore, the code for the parallel matrix-vector products (step 4.4) and the

parallel inner products (2.18) in the �xed point algorithm is directly re-used in the generalization to

preconditioned GMRES.)

The performance of the �xed point algorithm is very good when it is applied to Problems 1 and

2 (see Table 1). Hence, the application of the corresponding preconditioned GMRES algorithm to

these two problems gives results that are very similar: with iteration counts being either one fewer or

exactly the same for each computation. A more demanding test problem is the following anisotropic

di�usion equation.

Problem 3

�r �

 "
100 0

0 1

#
ru

!
= f :

Once more the domain is 
 = (0; 1)� (0; 1), Dirichlet boundary conditions are applied throughout

@
 and f is chosen so as to give the exact solution (3.1).

Table 2 shows the number of iterations required for both the original and the accelerated versions

of the algorithm to solve this example on various meshes with di�erent numbers of subdomains.

Again, a convergence tolerance of 10�6kr(0)k2 is used and the subproblems at step 4.1 in Figure

3 are solved exactly at each iteration. The cost of a single iteration is almost identical for both

versions of the algorithm.
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Original Precon. GMRES

Elements/Procs. 2 4 8 16 32 2 4 8 16 32

1024 5 6 11 11 11 5 6 7 8 9

4096 7 7 10 11 12 5 6 8 9 10

16384 8 8 11 16 14 6 7 9 11 11

65536 9 8 12 24 17 6 7 9 12 12

262144 10 9 14 32 20 6 7 10 12 13

1048576 10 9 14 39 23 6 8 10 13 14

Table 2: The performance of the original and the preconditioned GMRES versions of the proposed

algorithm on Problem 3: �gures quoted represent the number of iterations required to reduce the

initial residual by a factor of 106.

It is now less apparent that the �xed point algorithm has a performance (in terms of the iteration

count) that is independent of the �ne mesh size h. For small values of p (2, 4 and 8) the number

of iterations appears to have stopped growing between the 6th and 7th re�nements, however this

is not yet apparent when p = 16 or 32. Also, for this anisotropic example, the performance of the

�xed point algorithm appears to be much more sensitive to the number of subdomains than for the

isotropic di�usion example (Problem 1). Figure 4 shows the partition of the coarse mesh into 16 and

32 subdomains respectively and, for this particular example, it appears that the latter is a better

partition than the former. Other partitions into 16 subdomains are possible of course and it is to

be expected that the rate of convergence when solving highly anisotropic problems such as this will

depend upon the precise decomposition that is used. This fact has been noted in the context of

more conventional domain decomposition solvers by Keyes et al., [26], for example who suggest that

in order to achieve peta
ops computing \partitioning... must adapt to coeÆcients (grid spacing and


ow magnitude and direction) for convergence rate improvement". This important issue of how to

obtain the most appropriate partitions of a mesh is beyond the scope of this paper however.

Figure 4: The partition of a 64 element coarse mesh into 16 and 32 subdomains.

Use of the preconditioned GMRES version of the algorithm is clearly seen, from Table 2, to be

considerably superior to the original �xed point scheme described in Section 2. In all but the most
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trivial cases, where the iteration count is unaltered, the GMRES solver requires substantially fewer

iterations when used to solve Problem 3 (with an almost identical cost per iteration). Even more

signi�cantly however, the rate of increase in the number of iterations appears to be substantially

slower as the mesh size, h, is decreased. In fact, it again appears to be the case that the convergence

rate may well be independent of h as h! 0.

The dependence of the convergence rate on p, the number of subdomains, is harder to speculate

on from this single example however. This is due, at least in part, to the dependence upon the

shape of the subdomains mentioned above. Nevertheless, it does appear that the preconditioned

GMRES approach is more robust in the sense that the performance seems to be less a�ected by the

apparently poor quality of the partition when p = 16 than the original �xed point iteration.

3.3 Comparison with analytic results

We have now presented a new parallel domain decomposition algorithm that is applicable to the

wide class of PDE (2.1). Furthermore, the empirical evidence presented in the preceding subsections

suggests that the performance of this algorithm as a GMRES preconditioner is nearly optimal. To

see why this may be the case it is informative to contrast the proposed technique with more classical

DD solvers. To this end, for the remainder of this subsection we restrict our consideration to the

particular case where b = 0 in (2.1), whereupon the equation is self-adjoint. In this situation it

follows that the sti�ness matrix (K in (2.3)), given by (2.4), is symmetric and positive-de�nite

(SPD). It is therefore possible to solve (2.3) using the preconditioned conjugate gradient (PCG)

algorithm which is more eÆcient than GMRES in the sense that the search vectors which span the

Krylov subspace at each iteration are de�ned via a two-term recurrence relation (as opposed to a

k-term recurrence at iteration k with GMRES).

It is important to note however that in order to solve a SPD system using the PCG algorithm

the preconditioner must itself be a SPD matrix. This is not the case for the preconditioner proposed

in Subsection 3.2 however, even when b = 0. To illustrate this one need only consider the simplest

case of p = 2 where the preconditioner, M say, is given by

M
�1 =

2
64 I

0
1
2
I

3
75
2
64 A1 0 B1

0 ~A2
~B2

B
T
1

~BT
2 As

3
75
�1 2
64 I

M2

I

3
75+

2
64 0

I

1
2
I

3
75
2
64

~A1 0 ~B1

0 A2 B2

~BT
1 B

T
2 As

3
75
�1 2
64 M1

I

I

3
75 : (3.2)

Note that in (3.2) the symmetry of K when b = 0 implies that

C1 = B
T
1

~C1 = ~BT
1

C2 = B
T
2

~C2 = ~BT
2

in the notation of Figure 2. Despite this fact it is clear from (3.2) thatM is not generally a symmetric

matrix and cannot therefore be used as a preconditioner in the PCG algorithm. Hence, even when

b = 0, the preconditioner proposed in Subsection 3.2 should always be used with a GMRES (or

similar) solver. At �rst sight this may appear to be a drawback; however the results presented below

(in Table 3) suggest that this is not the case.

In [6], an analysis is presented of a symmetric version of the preconditioner proposed here given
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by, in the case p = 2 (for simplicity of presentation),

M
�1 =

2
64 I

M2

I

3
75
T 264
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T
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3
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�1 264 M1

I

I

3
75 : (3.3)

The results of this analysis show that the preconditioner is optimal in the sense that the number of

PCG iterations required to solve (2.3) (with b = 0 and c = 0 in (2.4)) is independent of both h (as

h ! 0) and p (as p!1). Table 3 shows the performance of this symmetric preconditioner on the

two di�usion examples above: Problem 1 and Problem 3. We refer to this as the additive Schwartz

variant of our proposed algorithm.

Problem 1 Problem 3

Elements/Procs. 2 4 8 16 32 2 4 8 16 32

1024 7(3) 9(3) 13(4) 16(4) 18(4) 8(5) 12(6) 17(7) 21(8) 24(9)

4096 7(3) 9(3) 14(4) 16(4) 22(4) 9(5) 13(6) 17(8) 21(9) 27(10)

16384 7(3) 8(3) 13(4) 16(4) 21(5) 9(6) 14(7) 17(9) 23(11) 27(11)

65536 6(3) 8(3) 12(4) 15(4) 21(5) 9(6) 14(7) 18(9) 25(12) 28(12)

262144 6(3) 8(3) 12(4) 15(4) 19(5) 8(6) 14(7) 18(10) 25(12) 29(13)

1048576 6(3) 7(3) 11(4) 14(4) 19(5) 8(6) 13(8) 18(10) 24(13) 29(14)

Table 3: The performance of the Additive Schwartz variant of the proposed algorithm on two self-

adjoint test problems: �gures quoted represent the number of iterations required to reduce the

2-norm of the initial residual by a factor of 106 (and �gures in brackets are the equivalent number

of GMRES iterations when using the preconditioner of Subsection 3.2).

The independence of the number of iterations from h as h ! 0 can clearly be seen in Table 3

however the lack of dependency on p is not so apparent for the relatively small values used here.

Comparison with the number of GMRES iterations required to solve the same problems using (3.2)

(and its generalizations to p = 4; 8; 16 and 32) clearly shows the advantage of the latter approach,

despite the slightly increased cost at each iteration. Furthermore, the analytical results in [6], which

apply to the additive Schwartz variant of the algorithm, might reasonably be used to provide some

(although certainly not rigorous) theoretical basis for the parallel DD solver introduced here.

4 Parallel performance

In this section we attempt to assess the parallel performance of the proposed domain decomposition

preconditioner by considering a speci�c implementation of the preconditioned GMRES algorithm

using MPI (message passing interface [29]). We begin with a short introduction and then focus on

two representative test problems: one which uses uniform mesh re�nement and the other using local

mesh re�nement. All calculations reported took place on a 32 processor SG Origin 2000 computer

which has a NUMA (non-uniform memory access) virtual shared memory architecture. The non-

uniform nature of the memory access means that, even when there are no other users on the machine,

timings of the same run may vary by a few percent according to how memory has been allocated.

For this reason, all timings quoted in the section represent the best time that was achieved over �ve

consecutive repetitions of the same computation (always in single-user mode).
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4.1 Assessing parallel performance

One of the simplest metrics for assessing the quality of a parallel program is to consider the speedup

that it provides when solving a single problem on p processors. Here, speedup is de�ned to be the

time required to solve the problem using the best available algorithm (and implementation) on a

single processor divided by the time required to solve the problem using the parallel algorithm on p

processors. This is the metric that we use in this section.

In order to apply this metric it is �rst necessary to establish the best available sequential solver

for the problems that we consider here. This is of course a highly non-trivial issue and the best

sequential algorithm could well vary from one problem to another within the wide class of PDEs

de�ned by equation (2.1). It is likely however that for many such PDEs the best sequential algorithm

will be based upon multigrid in some way and so we have used as our benchmark sequential code a

generalized conjugate gradient solver with a multilevel ILU preconditioner similar to that described

in [9]. This sequential solver is the same one that is used for the sparse linear systems that must be

solved on each processor at step 4.1 of the parallel algorithm given in Figure 3 and contains a number

of parameters to control the amount of �ll-in (via a drop tolerance) and the maximum number of

hierarchical levels permitted. Whenever a sequential time is quoted it is the best time that we were

able to obtain for a range of di�erent choices of these parameters. Similarly, for the parallel timings

a range of choices for these parameters were also considered in order to permit the best times to be

recorded.

A further issue that must be addressed when obtaining parallel results is the accuracy to which it

is necessary to solve the systems at step 4.1 in Figure 3. If these systems are solved very accurately

then unnecessary time is wasted; however highly inaccurate solutions lead to the number of GMRES

iterations increasing signi�cantly. Generally, a reduction in the 2-norm of the residual by a factor

of 102 appears to give optimal or near-optimal solution times however, in the timings which follow,

the �gures quoted are always the best ones obtained over a range of di�erent test values for the

reduction in the 2-norm of the residual.

In addition to comparing the parallel solution time on p processors with the best sequential

solution time it is also informative to compare with the time taken by a sequential version of the

p-subdomain preconditioned GMRES solver. Whilst this does not provide a true speedup �gure

it does demonstrate clearly the level of parallelism achieved by the p-subdomain solver (we will

refer to this �gure as the parallel speedup). Moreover, it also allows one to assess the quality of the

p-subdomain preconditioner itself by comparing this sequential time with that obtained for other

choices of p (and by comparing with the best sequential time). In some cases it may be seen that the

sequential time using p subdomains is greater than the sequential time using q subdomains, where q

is some integer multiple of p. In such situations it may be possible to obtain a better parallel time on

p processors by using the q subdomain version of the algorithm and so we de�ne the optimal speedup

to be the speedup ratio corresponding to the best parallel time on p processors using q subdomains

(where q may be any integer multiple of p between p and 32 inclusive).

4.2 An example with uniform mesh re�nement

For this �rst assessment of the parallel performance of our proposed domain decomposition precon-

ditioner we return to Problem 2, de�ned in subsection 3.1. This is solved on a mesh of 1048576

triangular elements which is a uniform re�nement of an initial coarse grid of 256 congruent triangu-

lar elements. (Note that the choice of 256 elements in the coarse mesh (rather than 64 say) makes

little di�erence to the quality of the preconditioner but does allow more 
exibility when selecting a

partition into p subdomains.)
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Table 4 shows the time taken by the best sequential algorithm and the sequential times taken for

the p-subdomain preconditioned GMRES algorithm for p = 2; 4; 8; 16 and 32. The parallel times are

then given, followed by the speedups achieved. The following two rows show the parallel speedup

and the optimal speedup respectively (as de�ned in the subsection above).

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

Sequential time 234.4 351.0 301.2 271.0 262.6 238.2

Parallel time | 191.0 83.1 42.9 20.6 10.7

Speedup | 1.2 2.8 5.5 11.4 21.9

Parallel speedup | 1.8 3.6 6.3 12.7 22.3

Optimal speedup | 1.4 2.8 5.7 11.4 21.9

Table 4: Solution times (in seconds) and speedups for the proposed algorithm on the uniform mesh

re�nement example.

4.3 An example with local mesh re�nement

For our second assessment of parallel performance we consider a fourth PDE of the form (2.1) which

has been selected because the accurate and eÆcient �nite element solution requires the use of local

mesh re�nement. This PDE takes the same form as Problem 1 from Subsection 3.1 however f(x) is

now chosen such that the exact solution is given by

u = (1� (2x1 � 1)100)(1� (2x2 � 1)100) 8x 2 
 = (0; 1)� (0; 1) : (4.1)

This has a value of 1 in the interior of 
 but tends to 0 very rapidly in a thin layer near to the

boundary: allowing the Dirichlet condition u = 0 to be satis�ed throughout @
.

Structured initial grid

Again a coarse mesh of 256 congruent triangular elements was used when solving this problem on

2; 4; 8; 16 and 32 processors. The �nal mesh for this problem is obtained via local re�nement (up to

eight levels) based upon the interpolation error in the known solution and contains 760628 elements

(most of which are situated in the boundary layer). Figure 5 illustrates this mesh (with a maximum

of just three levels of re�nement). The subdomains are created by partitioning the coarse mesh

in such a way that the �nal number of elements in each subdomain is similar, which means that

there are di�ering numbers of coarse elements in each subdomain for the cases p = 8; 16 or 32. The

partitions into 2 and 4 subdomains are easily achieved using the symmetries of the problem and the

mesh: again see Figure 5.

Table 5 shows the results of the same set of timings that were used for the previous test problem.

This includes both sequential and parallel solution times as well as a range of speedup metrics for

p = 2; 4; 8; 16 and 32.

Unstructured initial grid

We now compute solutions to the same problem based upon the local re�nement of the unstructured

initial grid of 560 elements illustrated in Figure 6. Once more a maximum of eight levels of re�nement

are permitted, yielding a �nal mesh containing 828430 elements. This is also partitioned so as to

17



Figure 5: The �nal �ne mesh using at most three level of re�nement (left) and the corresponding

mesh on one processor when p = 4 (right) for the �rst local mesh re�nement example with a 256

element structured coarse mesh.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

Sequential time 73.4 99.5 92.8 84.7 88.9 91.1

Parallel time | 54.1 25.6 12.0 6.8 5.3

Speedup | 1.4 2.9 6.1 10.8 13.8

Parallel speedup | 1.8 3.6 7.1 13.1 17.2

Optimal speedup | 1.5 3.1 6.1 10.8 13.8

Table 5: Solution times (in seconds) and speedups for the proposed algorithm on the �rst local mesh

re�nement example.

ensure that the �nal number of elements in each subdomain is similar: although this is a harder

problem than for the structured initial grid (see Figure 6 for an example when p = 4). Table 6 shows

the corresponding timings and speedups for this set of computations.

4.4 Discussion

The parallel results presented in this section are representative �gures which provide evidence that

the proposed algorithm provides a simple and practical means of obtaining good speedup ratios on a

moderate number of parallel processors. Tables 4 to 6 clearly demonstrate that the sequential version

of this domain decomposition preconditioner is competitive with our best available sequential solver

and also that the parallel implementation can scale well to provide a useful parallel solver.

Closer inspection of this parallel solver reveals that the major contribution to the loss of eÆciency

that does occur is through inexact load-balancing in the preconditioning step. This can arise for two

main reasons. The most obvious cause is any lack of equality in the size of the �ne mesh on each

subdomain. Clearly if one subdomain has a mesh with many more elements than the others they

will spend a signi�cant amount of idle time waiting for that processor at each synchronization point

(e.g. each inner product in the GMRES algorithm). Such a situation arises when partitioning the
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Figure 6: The initial 560 element unstructured mesh (left) and the resulting �nal mesh on one

processor (with at most three levels of re�nement) when p = 4 (right).

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

Sequential time 103.3 128.6 120.4 122.3 122.0 124.9

Parallel time | 69.0 32.8 17.4 11.3 8.0

Speedup | 1.5 3.1 5.9 9.1 13.0

Parallel speedup | 1.9 3.7 7.0 10.8 15.6

Optimal speedup | 1.6 3.1 5.9 9.1 13.0

Table 6: Solution times (in seconds) and speedups for the proposed algorithm on the second local

mesh re�nement example.

coarse mesh for the two non-uniform local re�nement examples described in the previous subsection.

Table 7 illustrates this by showing the maximum, minimum and average number of elements in the

meshes created by each processor in the cases where p = 2; 4; 8; 16 and 32. Note that the cases where

there is a large relative di�erence between the average and the maximum number of elements on

each processor (over 10% for example) clearly correspond to those calculations in Tables 5 and 6

which yield the poorest parallel eÆciencies (i.e. parallel speedup divided by p).

The second reason for inexact load-balancing in the preconditioner stems from the fact that

the systems being solved on each processor (i.e. the systems in step 4.1 of Figure 3) are di�erent,

even when they are of the same size. These di�erences can lead to signi�cant variations in the

time required to solve the systems when a sparse iterative (or direct) solver is used. For example,

the iterative solver that we use requires a multilevel ILU decomposition to be computed and, for

a given drop tolerance, the size of this decomposition depends not only on the size and sparsity of

the original system, but also on the actual values of the non-zero entries of the sparse matrix. This

makes guaranteeing a well load-balanced preconditioner (especially on an unstructured or locally

re�ned grid) a very challenging task.

The �nal point that we mention in this section concerns a further cause of ineÆciency in the

parallel solver. This relates to the di�erences between the best sequential solution times and the

sequential solution times when using the p-subdomain preconditioner. When these di�erences are
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256 element structured coarse grid

p = 2 p = 4 p = 8 p = 16 p = 32

Maximum 381918 191826 98422 50344 28329

Minimum 381918 191826 94837 46789 22692

Average 381918 191826 96638.5 49031.75 25461.375

560 element unstructured coarse grid

p = 2 p = 4 p = 8 p = 16 p = 32

Maximum 422329 213948 111531 58043 29786

Minimum 406101 202107 94964 44675 19830

Average 414215 207107.5 103553.75 51776.875 25888.4375

Table 7: The maximum, minimum and average number of elements in the meshes created when

solving the two local mesh re�nement examples from Subsection 4.3.

small good speedups are attainable but when they are large the eÆciency of the parallel solver is

inevitably diminished. As has already been mentioned in Subsection 3.2 a major issue for domain

decomposition solvers such as the one considered here is subdomain shape. This issue has been

addressed by a number of authors (e.g. [19, 26]) and it is generally accepted that for isotropic

problems subdomains with good (i.e. small) aspect ratios are to be preferred. It is unlikely that

this will always be the case however, especially for highly directional problems (e.g. convection

dominated) and so further research needs to be undertaken in this area to understand the issues

more fully.

5 Conclusions

In this paper we have presented a new parallel domain decomposition implementation that allows

for eÆcient mesh re�nement without a signi�cant degradation in convergence rates as either the

mesh size is decreased or the number of processors is increased. The motivation for this technique

comes from the work of [5] and [30, 31] and requires a number of assumptions to be satis�ed in

order to achieve its full potential. In particular, the approach of [5] provides a much simpli�ed

load-balancing strategy based upon equidistributing an initial coarse-grid error however it may not

always be guaranteed that, for complex problems requiring signi�cant local re�nement, an ideal load

balance will be achieved on the �nal mesh. This will in turn have some detrimental e�ects on the

parallel performance of the proposed solver, as is observed for some of the computations using local

mesh re�nement described in Subsection 4.3. For example, when sixteen processors are used with

a structured initial grid the largest mesh contains only 2:6% more elements than the average and a

parallel speedup of 13:1 is achieved. On the other hand, for the unstructured initial grid partitioned

into sixteen subdomains the largest mesh contains over 12:1% more elements than the average and

the parallel speedup is reduced to just 10:8.

In situations where the load balance on the �nal mesh becomes too poor there will clearly be

some bene�t from introducing an additional communication phase to the solution process in which

the problem is repartitioned using a dynamic load-balancing algorithm (e.g. [25]). The assessment

of precisely how poor the load balance must become before this repartitioning step becomes cost-

e�ective is still an open question however. Further local communication between processors will also

be required if the �nal �ne mesh obtaineded by combining the re�ned meshes produced on each
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processor turns out to be non-conforming. In this work however, because of the additional layer of

local re�nement that is undertaken on each processor immediately beyond the boundary of its own

subdomain, this situation did not arise in any of the examples described.

Finally, we note that there are a number of possible extensions of the work considered here.

These include implementation of the technique in three dimensions and its application to nonlinear

problems, both of which are currently being undertaken with encouraging initial results. A more

ambitious extension is to use the approach described to parallelize arbitrary sequential codes without

actually altering those codes in any way: they would merely be used as sequential solvers (on each

processor) for the systems that correspond to that shown at step 4.1 of Figure 3.
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