Development and Performance Analysis of Real-World Applicationsfor
Distributed and Parallel Architectures*

T. Fahringet P. Blaha A. Hossingesx J. Luitz« E. Mehofeit H. Moritsch; B. Schol%

fInstitute for Software Science, University of Vienna
Liechtensteinstrasse 22, A-1092, Vienna, Austria
[tf,mehofer,schol z] @par.univie.ac.at

‘Department of Business Administration, University of Vienna
Brunner Strasse 72, A-1210 Vienna, Austria
moritsch@finance2.bwl.univie.ac.at

*Institute of Physical and Theoretical Chemistry, Vienna University of Technology
Getreidemarkt 9/156, A-1060 Vienna, Austria
[p.blaha,j.luitz] @tuwien.ac.at

“*Institute for Microelectronics, Vienna University of Technology
Gusshausstr. 27-29/E 360, A-1040 Vienna, Austria
hoessinger @iue.tuwien.ac.at

Abstract

Several large real-world applications have been developed for distributed and parallel architectures. We examine two
different program development approaches: First, the usage of a high-level programming paradigm which reduces the time to
create a parallel program dramatically but sometimes at the cost of a reduced performance. A source-to-source compiler, has
been employed to automatically compile programs — written in a high-level programming paradigm — into message passing
codes. Second, manual program development by using a low-level programming paradigm — such as message passing —
enables the programmer to fully exploit a given architecture at the cost of a time-consuming and error-prone effort.

Performance tools play a central role to support the performance-oriented development of applications for distributed and
parallel architectures. SCALA — a portable instrumentation, measurement, and post-execution performance analysis system
for distributed and parallel programs — has been used to analyse and to guide the application development by selectively
instrumenting and measuring the code versions, by comparing performance information of several program executions, by
computing a variety of important performance metrics, by detecting performance bottlenecks, and by relating performance
information back to the input program. We show several experiments of SCALA when applied to real-world applications.
These experiments are conducted for a NEC Cenju-4 distributed memory machine and a cluster of heterogeneous workstations
and networks.

* This research is partially supported by the Austrian Science Fund as part of Aurora Project under contract SFBF1104.

1 Introduction

Performance-oriented development of efficient programs for distributed and parallel systems is an error-prone and time-
consuming process that may involve many cycles of code editing, compiling, executing, and performance analysing. Many
different programming paradigms such as explicit message passing [20], High Performance Fortran (HPF) [26], OpenMP
[11], Java RMI [44], and HPC++ [30] have been introduced for distributed and parallel architectures. A trade-off is implied
by the programming paradigm employed. On the one hand, programming at a low level (i.e., message passing paradigm)
enables the programmer to fully exploit and to control the features of a specific architecture at the cost of a very time-
consuming and error-prone programming effort. On the other hand, choosing a high-level programming paradigm can reduce
the program development effort dramatically, however, sometimes at the cost of a reduced performance. There is a large
variety of reasons that can cause performance losses in distributed or parallel programs. For instance, ineffective data and
work parallelism, uneven load balance, compiler organization overhead, ineffective memory access behavior (i.e., cache),
and high communication, synchronization and input/output overhead. The source for these performance bottlenecks can
frequently be related to the intricate structure and details of an application program, to the code transformation system, or to
the target architecture.

Performance tools play a crucial role to support the performance-oriented development of applications for distributed
and parallel architectures by locating performance problems and mapping them back to the input program. Many existing
performance monitoring and analysis systems collect and present performance data for programs that have been generated
and modified by transformation systems without the possibility to relate performance data back to the input program. A
performance system must have access to transformation systems in order to record code changes and associate performance
problems with the input program. Commonly, performance information is provided for low-level system calls (i.e., operating
and runtime library calls) that cannot be mapped to specific locations in the input program. There are performance tools
that provide only summary information for entire programs without relation to specific program points or regions of interest.
Crucial correlation of performance bottlenecks with exact positions in the input program is disabled which severely restricts
the usefulness of such tools. Finally, many performance tools are restricted to a specific programming paradigm.

SCALA [19, 43, 41, 42] is an instrumentation, measurement, and post-execution performance analysis system for dis-
tributed and parallel programs that combines a portable instrumentation system, performance data correlation, data man-
agement and measurement analysis, and an interface for performance visualization. SCALA can be used to monitor and
analyze the performance of many different programming paradigms ranging from high-level (i.e. High Performance Fortran)
to low-level programs including data parallel, task parallel and message passing programs. Various instrumentation features
are supported that enable both comprehensive and selective monitoring in order to control the monitoring overhead and the
performance data generated. Performance data correlation maintains the performance relationship between the input program
and code changes applied by transformation systems. Data management and measurement analysis supports a rich set of
performance data reduction, filtering, summary, and analysis techniques. Many performance metrics and statistics can be
computed. SCALA supports several trace formats which allows the use of various visualization systems (e.g. Medea [7], and
Upshot [23]). Finally, SCALA has highly sophisticated scalability analysis integrated, that examines the scaling behavior of
a program for varying input data and machine sizes.

This paper describes the performance-oriented development of real-world applications for distributed and parallel architec-
tures. SCALA has been used to analyse and to guide the application development by selectively instrumenting and measuring
the code versions, by comparing performance information of several program executions, by computing a variety of impor-
tant performance metrics, by detecting performance bottlenecks, and by relating performance information back to the input
program. We used the following three applications: (1) a Monte-Carlo ion implantation simulator for three-dimensional
crystalline structures [25, 5] developed by Prof. Selberherr and his associates at the Vienna University of Technology; (2)
a system for pricing of financial derivatives [12] developed by Prof. Dockners’ group at the University of Vienna; and (3)
WIEN97 [3], a system for guantum mechanical calculations of solids developed by Prof. Schwarz and his group at the Vienna
University of Technology.

The ion implantation simulator is a heterogeneous code which comprises both Fortran and C code segments. A master-
slave model has been manually implemented as an MPI message passing program that exploits both data and task parallelism
and runs on a cluster of heterogeneous workstations and networks. The pricing system for financial derivatives has been
developed from scratch as an HPF/Fortran90 program that uses data parallelism. WIEN97 has been parallelized by employing
HPF/Fortran77 which benefits from data parallelism. Whereas the pricing system has been developed from scratch with the
aim to carefully uncover and exploit parallelism, the other two applications have been parallelized based on existing sequential
codes. The pricing system and WIEN97 have been parallelized by using VFG[@ompiler that translates HPF programs
into message passing programs (Fortran90 with MPI message passing calls) —and executed on a NEC Cenju-4 [38] distributed

memory parallel machine.

In the next Section, we give an overview of SCALA as an integrated system of a restructuring and optimizing compiler.
Sections 3.1 to 3.3 describe the three applications and show how they have been parallelized for distributed and parallel archi-
tectures. We demonstrate the usefulness of SCALA to instrument, monitor, and analyze the performance for the application
codes. Experiments are shown for a NEC Cenju-4 distributed memory machine and a cluster of heterogeneous workstations
and networks. Related work is discussed in Section 4. Summary and concluding remarks are are given in Section 5.

| o Post-execution
nput Program > Visualization - N
> analysis/visualization

Data Management and
,,,,,,,,,,, Measurement Analysis

VEC Frontend

Performance Data
Correlation
A A

Code Region

Instrument.

I I
I I
Syntax : |
Tree | Selector | l
I I
R
: Parallel : M eaajrer@i
} Description
I

Parallelization SIS run-time
System
Instrumented Comglatl on @
Code Execution
VFC run-time
System

Figure 1. Execution-Driven Performance Analysis System

2 SCALA

SCALA is a post-execution performance system that instruments, measures, and analyses the behavior of distributed and
parallel programs. The architecture of SCALA is based on a portable instrumentation system, runtime-libraries that collect
performance data during program execution, and post-execution performance anaysis that computes various performance
metrics and relates them back to the input program. In addition, SCALA supports severa interfaces to visualization systems.
Although SCALA has been integrated with an existing compiler it can be easily ported to front-ends and compilers for other
programming languages and architectures by porting itsinstrumentation and runtime libraries.

Figure 1 shows the architecture of SCALA as an integrated system of VFC [2] which is a compiler that translates Fortran
programs into message passing programs (Fortran90 with MPI message passing calls). The input programs (Fortran77,
Fortran90, HPF, and explicit message passing programs) of SCALA are processed by the compiler front-end which generates
an abstract syntax tree (AST). The SCALA Instrumentation System (SIS) enabl esthe user to select (by directives or command-
line options) code regions of interest. Based on the selected code regions, SIS automatically inserts monitoring code in
the AST which will collect al relevant performance information during execution of the program. SIS also generates a
measurement description file that enables relating all gathered performance data back to the input program. Thisisa crucial
aspect of SCALA, as instrumentation may be done at a different level (e.g. message passing program) than the original input
program (e.g. HPF). Then the compiler generates an instrumented distributed or parallel program which will be executed on
thetarget architecture. Note that the compiler can also process explicitly distributed and parallel programs for instrumentation
and performance analysis. During execution all relevant performance datais collected in atrace-file.

The trace-file provides a generic input for a post-mortem data management and measurement analysis to reduce, filter,
summarize, and analyse performance information. Among others, a variety of performance metrics are computed which
includes speedup, efficiency, communication, and work distribution. Several interfaces for visualization systems have been
developed in order to graphically display various performance statistics and profiles that can be shown together with the
original input program.

The general structure of SCALA comprises several modules which combined together provide a robust environment for
advanced performance analysis:

e SCALA Instrumentation System (SIS)

¢ Performance data correlation

¢ Datamanagement and measurement analysis
¢ Performance visualization interface

Inwhat followswe give a brief overview of each of these modules. A detailed description of SCALA and its functionality
can befoundin[19, 43, 41, 42]

2.1 SCALA Instrumentation System

Based on user-provided command-line options or directives, SIS inserts instrumentation code in the program for each
information of interest which includes: timing events, execution frequency events, values for program unknowns (unknowns
in array subscript expressions, loop bounds, etc.), and array information (rank, shape, alignment, distribution, mapping,
etc.). SIS supportsthe programmer to control monitoring and generating performance data through selective instrumentation
of specific types of code regions (i.e., program, procedures, loops, communication, and I/O operations). SIS also enables
instrumentation of arbitrary code regions through explicit instrumentation of all entry and exit points of code regions. Finaly,
instrumentation can be turned on and off by a specific instrumentation directive.

In order to measure arbitrary code regions SIS provides the following instrumentation:

I'sis$ SIS BEA N_MEASURE r ef erence
code region

I'sis$ SIS END MEASURE reference

The directive SIS BEGIN_-MEASURE must be inserted by the programmer before the region starts whereas after the code
region ends, the directive SIS END_MEASURE is inserted. The code region of interest is uniquely identified by an integer
number reference. Note that there can be several entry and exit points for a code region. Appropriate directives must be
inserted by the programmer in each entry and exit point of a given code region.

Furthermore, SIS provides specific directives in order to control monitoring. The directives SIS TRACE_ENABLE and
SIS TRACE_DISABLE enable the programmer to turn on and off monitoring of a program.

I'sis$ SI'S TRACE ENABLE
code region

I'sis$ SI'S TRACE DI SABLE

For instance, the following example instruments a portion of the pricing code discussed in Section 3.1, where for the
sake of demonstration, the call to function RANDOM_PATH is not measured by using the facilities to control monitoring as
mentioned above.

I'sis$ SI'S BEG N _MEASURE 10
| HPF$ | NDEPENDENT, NEW PATH), ON HOVE(VALUE(I))
DOI =1, N

I'sis$ SI'S TRACE DI SABLE

PATH = RANDOM PATH(0, 0, N)
I'sis$ SIS TRACE ENABLE
VALUE(1) = DI SCOUNT(0, CASH FLON(B, 1, N) , FACTORS_AT(PATH))
END DO
PRI CE = SUM VALUE)/ N
I'sis$ SI'S END MEASURE 10

Note that directives must be inserted by the programmer based on which SCALA automatically instruments the code.
2.2 Data management and measurement analysis

Tracing the performance data can lead to alarge amount of performance informationwhich needsto be filtered and reduced
to provide the user with a compact and easy-to-interpret set of parameters describing the characteristics of the program. The
level of detail of this set depends mainly on the scope of the performance analysis. As an example, if the communication
behavior of the application is under investigation, a performance analysis tool should be able to extrapolate from measured
data only the most significant information regarding the communication activities such as total time spent transmitting a
message, amount of data transmitted, and communication protocols used in each transmission. The data management and
measurement analysis module (see Figure 1) implements several data-reduction techniques. Filtering is the simplest form
of data reduction to eliminate data that do not meet specified performance analysis criteria retaining only the pertinent char-
acteristics of performance data. The raw performance data (for instance, timing and frequency events) is summarized from
aggregate (i.e., entire program) through procedure, procedure calls, loops, arbitrary code sections, and individual source code
lines. The programmer thus can concentrate performance analysis on the most important code sections. For instance, the
upper Profiling Visualization Window in Figure 5 displaystiming information only for a specific procedure call highlightedin
the Source Code Profiling Window. Among the range of statistical techniquesthat can be applied to a data set, mean, standard
deviation, percentiles, minimum, and maximum are the most common and provide a preliminary insight on the application
performance, while reducing the amount of data.

The data management and measurement analysis module computes a variety of performance metrics which includes
speedup, efficiency, execution signatures, and communication and work distribution. For instance, the Metric Visualiza-
tion Windowsin Figure 5 show the execution (time) signature and speedup for varying number of processors with respect to
an entire parallel program. The analysis of distribution gives information on how the communication and computation are
distributed across processors and the user or compiler can apply transformations to improve the performance. Moreover, the
coefficients of variation of communication time and computation time are good metrics to express the “goodness’ of work
and communication distributions across processors. As an example see Figure 14, where the Grace graphical user interface
of SCALA shows uneven distribution of idle times for different number of slave processors which indicates a severe load
balancing problem. In many cases, the data measured need to be scaled in a common interval so that further statistical tech-
nigues can be successfully applied. Timing indices also can be scaled in a more significant metric for the analysis such as
from seconds to microseconds or nanoseconds.

A crucial aspect is to compare different code versions with respect to specific performance metrics. Programmers fre-
quently determine a performance problem, for instance idle times or communication overhead. After applying appropriate
code changes the performance outcome of the code before and after the code change should be comparable which is sup-
ported by the data management and measurement analysis module of SCALA. Performance data is stored together with the
associated code version. Performance metrics can be computed for different code versions and displayed together so that the
programmer can easily interpret the impact of code changes. For instance, Figure 9 shows the execution time behavior for
two different code versions for different problem sizes in the same SCALA visualization window.

2.3 Performance Data Correlation

A crucia aspect of performance analysisis to relate performance information back to the original input program. A com-
piler may imply many codes changes (e.g. copying, hoisting and sinking of code sections) so that the relationship between
its execution dynamics and its input program is obscure. An example for such a code change is optimizing communica-
tion through latency hiding [18]. This optimization causes send statements to be hoisted upwards and receive statements
downwards in the control flow of a program. Other transformations may fuse or distribute loops that respectively resultsin
collapsing several loops or generating several loops out of a specific loop. Irregular programs are frequently compiled based

on the inspector/executor paradigm [2] which causes a loop to be transformed into a preparation (inspector) and an execu-
tion (executor) phase. Moreover, for specific procedure cals, a compiler may imply additional overhead such as distribution
of data before and after the call. In order to examine which performance aspect corresponds to what code region, SCALA
generates a measurement description file which is updated while the compiler is applying code transformations. The data cor-
relation moduleisinvoked by the data management and measurement analysis moduleto relate performance metricstoa given
code region which is the visualized by the performance visualization module. Figure 5 shows part of the application source
code in the Source Code Profiling Window. The user can click on a specific statement, for instance, call traverse discount for
which the upper most Profiling Visualization Window of SCALA (based on Medea graphical user interface — see Section 2.4)
displaysthe compiler overhead before (head overhead) and after (tail overhead) the call. Moreover, the executor overhead for
theentire call is presented.

2.4 Performance Visualization

Visualization of performance metrics and statistics, and also dynamic information about arrays is of crucial importance
to support the programmer in performance tuning of distributed and parallel programs. SCALA supports severa different
trace formats — including ALOG and Grace formats — for collected performance data which enables the usage of various
performance visualization systems.

Based on the ALOG trace format we can use well-established visualization systems such as Medea [7], TAU [36], and
Upshot [23]. Medea is a post-mortem performance analysis and visualization system. Among otherswe use Medea to derive
and visualize performance metrics together with the input program. This work has been described in detail in [8]. Figure 5
shows Medea visualizing various performance metrics for one of our experimental codes (see Section 3.1).

SCALA also generates Grace [22] data files for various 2D performance data visualizations and for comparing different
program versions and their performance outcome as seen in Figures 4, 9, 13, and 14. Note that al performance analysisis
conducted by SCALA whereas Grace is solely used for visualization of performance data.

SCALA'sgraphical user interfaceis connected with the execution-driven performance analysis system asshownin Figure 1
through a communication layer implemented as a Java RMI distributed middle-ware (supports Java JDK 2.0). The execution-
driven performance analysis system and SCALA's graphical user interface can thus run on different workstations possibly on
different networks. Such an architecture has been shown to be very useful, as the graphical user interface may require only
measurement description files, performance data provided by the data management and measurement analysis module, and
theinput program without having full access to VFC and SIS.

3 Experiments

The functionality of SCALA as described in Section 2 has been implemented and runs under most Unix systems. In this
section we present three experiments to demonstrate the usefulness of SCALA for real-world applications. In thefirst experi-
ment SCALA isemployed to examine the performance of a system for pricing of financia derivatives[12] developed by Prof.
Dockners' group at the University of Vienna. The pricing system has been implemented from scratch as an HPF/Fortran90
program that exploits data parallelism and was executed on a NEC Cenju-4 [38] distributed memory parallel machine.

The second experiment employs SCALA to examine the performance for two different HPF parallelization strategies of a
material science code called WIEN97 [4]. This code has been developed by Prof. Schwarz's group at the Vienna University
of Technolgy. The sequential code originally existed and has been extended by HPF directives which exploitsdata parallelism
and was executed on a NEC Cenju-4 distributed memory parallel machine.

In the third experiment we used SCALA to analyze the performance of a Monte-Carlo ion implantation simulator for
three-dimensional crystalline structures [25, 5] as developed by Prof. Selberherr and his associates at the Vienna University
of Technology. The ion implantation simulator is a heterogeneous code which comprises both Fortran and C code segments.
A master-slave model has been manually implemented as an MPI message passing program that exploits data and task
parallelism and runs on a cluster of heterogeneous workstations and networks.

3.1 Pricing of Financial Derivatives
The pricing of derivate and interest rate dependent products is an important field in finance. A derivative (or derivative

security) is a financial instrument whose value depends on other, so called underlying securities (e.g. stock options) [27].
We concentrate on the pricing of interest rate dependent products, whose payments depend on actual or past interest rates

0.12

0.10

0.08

0.06

D=

0.04

0.02

0.00 I T T T |

time

Figure 2. Hull and White tree for the At spotrate with selected path

(e.g. variable coupon bonds). The pricing problem can be stated as follows: what is the price today of an instrument
which will pay some cash flows in the future, depending on the development of interest rates ? For simple cases analytical
formulas are available, but for a range of products, whose cash flows depend on a value of a financial variable in the past -
so called path dependent products - Monte Carlo simulation techniques have to be applied [6],[10]. By utilizing massively
parallel architectures very efficient implementations can be achieved [29],[46]. For a detailed description of the technique
implemented see [37].

'HPF$ PROCESSORS:: PR(NUMBER_OF_PROCESSORS())
'HPF$ DISTRIBUTE (BLOCK) ONTO PR :: VALUE

TYPE(BOND) :: B ! the bond to be priced
INTEGER :: PATH(O: N_.STEPS) I path in the Hull and White tree
REAL(DBLE) :: VALUE(1: N) I all path results
'HPF$ INDEPENDENT, NEW/(PATH), ON HOME(VALUE(I))
DOI=1,N
PATH = RANDOM_PATH(0,0,N) ! select a path starting at node (0,0)
VALUE(l) = DISCOUNT(0,CASH_FLOW(B,1,N),FACTORS AT (PATH)) I discount the bond’ s cash flow to time 0
END DO
PRICE = SUM(VALUE)/N I mean value

Figure 3. HPF DO-INDEPENDENT Code of the Pricing System

The Monte Carlo simulation is based on a discrete representation of a stochastic process that describes the dynamics
of interest rates over time [28]. The Hull and White tree describes the future development of the short term interest rate,
which is a state variable used to calculate the interest rates for different maturities for a specific state of the system [27].
Each state is represented by a node in a directed graph and has three successor nodes, representing increasing, constant, and
decreasing interest rates. Nodes are described by (time, interest rate) pairs. Arcs are labeled with the transition probabilities
Dups Pmids Pdown . A State can be reached by more than one predecessor; this recombining property establishes a lattice
structure. Figure 2 shows a Hull and Whitetree withtime (i.e. inyears) on the horizontal axis and interest rates on the vertical
axis.

To price interest rate dependent productsthe interest rate tree is used either to solve it backwards in time or by simulating
paths through the tree and averaging the corresponding prices. The Monte Carlo Simulation algorithm selects a number N
of paths in the Hull and White tree from the root node to some final node (see Figure 2). Along each path, it iteratively
discounts, backwards from the final node to the root node, the cash flow generated by the instrument along this path. For

variable coupon bonds, the cash flows are path dependent, i.e. depend on the interest rates at predecessor nodes. Discounting
is performed using the interest rates along this path. The resulting price of the instrument is the mean value over all selected
paths. The HPF/Fortran90 code segment in Figure 3 showsthe main loop of the simulation procedure TRAVERSE DISCOUNT .

10 time steps 50 time steps
1 21 1
&= Version-1: Data Parallel il &= Version-1: Data Parallel
Version-2: Data Parallel + Reduction 20 Version-2: Data Parallel + Reduction -
6 G—6 Version-3: Data Pardlel + DO Independent + Reduction | | G—o Version-3: Data Parallel + DO Independent + Reduction B
=4\ Sequential 18 /4 Sequentia —
4 L 4
- 16 —
g g 14 b
g] 2w 1
= =
2 S
5 7 5
8 8
5] 5]
ol | | T D 0 3
12 4 8 16 32 12 4 8 16 32
number of processors number of processors
&—© Version-1: Data Parallel
Version-2: Data Parallel + Reduction
100 time steps G—o Version-3: Data Parallel + DO Independent + Reduction 100 time steps
40T I 207 \ \
3 &= Version-1: Data Parallel 7 r
36 Version-2: Data Parallel + Reduction — 18— -
&—6 Version-3: Data Paralel + DO Independent + Reduction
32\ ~—4\ Sequentia

28] B 14

24jk i 12

20: 10

speedup

161 E

execution time (secs)

12— —

L1 \ | i ! ! !
T2 4 8 16 2 12 4 8 16 2

number of processors number of processors

Figure 4. Accumulated execution times are measured and visualized by SCALA for all three versions of func-
tion TRAVERSE _DISCOUNT of the system for pricing of financial derivatives (three HPF and one sequential
version). Speedups are for the problem size of 100 time steps only. Experiments have been conducted by
using SCALA for three different problem sizes (number of time steps) and varying number of processors on
a NEC Cenju-4

We extend the procedure in order to price also bonds with embedded options (callable or putable bonds, see [13]). The
holder of a callable bond has given the issuer the right to redeem the bond before its maturity date. The issuer will redeem
(and pay the principal), when the present value of future cash flowsis greater than a specified " exercise” value. In the case of
aputable bond, the holder will sell the bond to the issuer, when the present value of future cash flowsisless than the exercise
value.

We model the effect of redemption through a modification of the cash flows: the cash flow at redemption time is set to
the principa payment value, and the cash flows after that time are set to zero. For the computation of the decision, whether
redemption takes place at anode & or not, we perform a nested Monte Carlo simulation, which samples paths in the ” subtree”
defined by node k. We end up with two levels of simulation [37]. At the first level, paths starting at the root node are
processed. At the second level, for each node in such a path, " subpaths’ emanating from this node are selected. Discounting
along the subpathsis performed to compute the redemption decision at node k.

At both levels the same recursive simulation procedure TRAVERSE_DISCOUNT is used. During the simulation at the first
level, it calls an extended DISCOUNT function, which again invokes TRAVERSE_DISCOUNT to perform the nested simulation
asshowninFigure 3. At the second level, redemption is handled without further recursion. More details about thisapplication
on pricing of financial derivatives can be found in[12].

3.1.1 Paralldization

During the simulation, the information at the tree nodes is potentially used the by the computation of every path. This
motivates a replication of the whole tree over al processors. The storage requirements for these structures are comparatively
small and not critical in terms of local memory size.

Sampling as well discounting along the paths can be done in parallel. Because all the path computations are independent
from each other, they can be performed without communication. Every path computation has access to the whole tree data.
After processing the individua paths, the final price is computed via a summation of the path results over all processors. A
reduction operation is used, which first computes partial sums on each processor simultanously, and then sends the partial
results to a selected processor which computes the final sum. Thisisthe only operation which requires communication.

We encoded three different HPF versions of the pricing system and executed them on a NEC Cenju-4 [38] distributed
memory paralel machine. First, a data parallel version was developed based on distributing array VALUE block-wise onto
the maximum number of processors— by using the HPF intrinsic function NUMBER_OF_PROCESSORS() —that are available
on a given architecture. The summation of the path results is replicated which causes communication and as a conseguence
deteriorates the scalability behavior of this version. SCALA has been used to instrument and measure the communication
of thiscode. In order to reduce the communication, we created a second code version that uses the HPF reduction directive,
which causes the summation of the path results to be executed by an efficient machine function. SCALA determined that
the second code still does not sufficiently scale with increasing number of processors. Thisled to the development of a third
code version by using the HPF DO-INDEPENDENT directive which specifies that each iteration of the main simulation loop
can be executed simultaneously. Every iteration of the simulation loop is executed by the processor that owns array element
VALUE(I) based on the owner-computes paradigm [2].

The development of the sequential pricing code took several months. Only a few HPF directives needed to be inserted in
order to provide a parallel code that could be effectively parallelized by VFC. Actual paralléization with VFC, performance
analysis, and performance tuning by using SCALA took only a few days.

3.1.2 Experimental results and further work

VFC has been used to generate Fortran90/M Pl programs based on input HPF programs. SCALA has been employed to find
the best code version with respect to performance out of the three code versions as described above. The code versions
have been instrumented and measured on the NEC Cenju-4 machine for different machine sizes by using SCALA. The data
management and measurement analysis module of SCALA examines the tracefiles, and computes the execution times for
every code version including the sequential program which are then plotted in graphs shown in Figure 4. Note that these
graphs are based on SCALA's interface to the Grace visualization system as described in Section 2.4.

Each graph in Figure 4 shows the corresponding accumulated execution times for function TRAV ERSE_DISCOUNT for
all three versions including the sequential implementation of a specific problem size (number of time steps). Note that the
sequential execution correspondsto the execution on a single processor. The performance plots as derived by SCALA clearly
show that version-3 is superior to al other versions, and version-2 is better than version-1 for al problem and machine
sizes. Version-3 exploits more parallelism than version-2 due to the fact that a processor only executes a loop iteration if it
owns the corresponding array element VALUE(]). Whereas for version-2 every processor executes al loop iterations. The
array assignment, however, is only executed if a processor owns VALUE(I). Version-1 sequentializes the reduction operation
which causes the largest communication overhead across all code versions. SCALA has been used to examine the execution
behavior of all described code versions. For the smallest problem size (10 time steps), version-1 performs worse than even the
seguential version. For increasing problem sizes, however, the difference among the code versions becomes less dramatic, as
the impact of communication on the overall performance diminishes. Version-3 shows amost linear speedup (see Figure 4)
for up to 16 processors based on a problem size of 100 time steps. Based on the experiments conducted with SCALA, we
believe that larger problem and machine sizes should cause a better performance scaling behavior.

Figure 5 shows severa snapshots of the MEDEA system which is used as one of severa graphical user interfaces of
SCALA (see Section 2.4). Various performance metrics are displayed together with the input program. Note that all perfor-
mance measurements have been obtained by SCALA based on the generated Fortran90/MPI program, wheresas the perfor-

Hl.74: timin

pr==mmmmmaaaa pemmmmmmaaaa =

.24 Execution
193 Commmication
0L 000 Head averhead
T4 Erecubor
0,000 Tail cnerhead

Quit| Zosealn| Zosess Seap| Print Quit Help

Execut ion/commmications times |"”' name: B Csspunest nasse: ALY
1 [LLET G [LLEW] [LLE: G [LLES ' .

Execution e sisw commt=Lr sim
Conmmicat ion el traverse dsoaunibesad U ar Sleps U ar paths price)

g % 8 1% 48 96l 48 W writa(*,") “price =7, priea
wrilie[**) Wil (imdtiad) = °, price-peiced

oo Pt Coanuy At Quit| Prist inifoe AeteScale

tine [5] glabal, s1gnatures geedp globel spesdip
ELE =g KA l?ﬁ

'“x C0EN
1,4 k L
5 Ll S
R N — L
K pIOCessDs ¥ processrs

Figure 5. Snapshots of the MEDEA system which displays various performance metrics together with the
code section of interest (call to function TRAVERSE_DISCOUNT in middle-right window).

10

mance metrics are displayed together with the input HPF program (see middle-right window). The upper window displays
how much of the execution time (of a8 processor version) of the call to TRAVERSE_DISCOUNT accounts for communication,
for executing the main simulation loop in TRAVERSE_DISCOUNT, and for compiler overhead (head/tail) before and after the
call statement. Note that communication timeis part of the execution time. Furthermore, the entire communication — caused
by the reduction operation — is spent in the main simulation loop of code version-3. The time for the executor corresponds
to the ssimulation loop and the reduction operation as well. The middle-left window shows how long it took to execute the
call to TRAVERSE_DISCOUNT and how much has been spend in communication for 1, 2, 4 and 8 processors. The |ower-left
and lower-right windows, respectively, show the execution signature and speedup of the entire application code for various
number of processors.

The parallel simulation algorithm can cause redundant price computations due to the properties of the Hull and White tree.
We plan to implement an optimized version that avoids redundant price computations by having one processor compute prices
and broadcast the result to all processors that need this data. This procedure implies some extra communication, however,
may save substantial computation time.

DEFINE PROBLEM: OS
O o

crystal structure, atoms, atomic positions
-

Y

SETUP GENERALIZED EIGENVALUE PROBLEM
HC = ESC

h
where HNS code

Hn,m =< \I’;|H]WT|\I/m >5p +1< \IIZ|HN5‘\I/m >sp + < \I/;‘H|\I’m >int

Spm =< UE U, >g + < ULV, >

i

SOLVE HC = ESC
using LAPACK (SCALAPACK)

Figure 6. Computation of a crystal structure using WIEN97

3.2 Quantum Mechanical Calculations of Solids

During the last 16 years a program package called WIEN97 [4] has been developed and is used worldwide by more than
280 research groups. Itis based on density functional theory, for which Walter Kohn received the Nobel prize for chemistry
in 1998, and the LAPW method [40] which is one of the most accurate methods to investigate theoretically the properties
of high technology materials. Applicationsto the new high temperature superconductors, magnetic structures (for magnetic

11

recording), surfaces (catalysis) or intercalation compounds (new Li batteries) require a reliable computer code that can run
even for weeks on asingle CPU to produce final results. For thisreason parallel computing is highly desirable.

WIEN97 calculates the electronic structure of solids. Figure 6 describes the principletasks of such a calculation: After the
definition of the problem, a generalized eigenvalue problem must first be setup and then solved iteratively (i.e. many times)
leading to energies (eigenvalues, E) and the corresponding coefficients (eigenvectors, C). The size (N) of the corresponding
Hamilton (H) and Overlap (5) matrices is related to the accuracy of the calculation and thus to the number of plane wave
(PW) basis functions. About 50 - 100 PWs are needed per atom in the unit cell. For systems containing 50 up to 100 atoms
per unit cell matrices of the size 2500 to 10000 must be handled.

The most CPU intensive part of WIEN is the solution of the generalized eigenvalue problem which at present is solved
using modified LAPACK (or ScalaPack in parallel) routines. The second most important step is setting up the matrix elements
of H and S, which are complicated sums of various terms (integrals between basis functions). A large fraction of thistimeis
spent in the subroutine HN'S, where the contributionsto H due to the nonspherical potential are cal culated.

In HNS radial and angular dependent contributions to these elements are precomputed and condensed in a number of
vectors which are then applied in a series of rank-2 updates to the symmetric (hermitian) Hamilton matrix. HNS has 17 one-,
14 two-, 5 three-, and 6 four-dimensiona arrays. The computational complexity of HNS is of the order O(N?2). All floating
point operations are done in double (eight bytes) precision.

IHPF$ PROCESSORS :: PR(NUMBER. OF. PROCESSORS()) IHPF$ PROCESSORS :: PR(NUMBER. OF. PROCESSORS())
IHPF$ DISTRIBUTE(*,CYCLIC) ONTO PR :: H IHPF$ DISTRIBUTE(*,CYCLIC) ONTO PR :: H
DO601=1,N DO601=1,N
IHPF$ INDEPENDENT, ON HOME (H(:,J) H(I,L:1) = H(1L,L:1) + AIR(L L:1)* A2R(L)
DO70J=1,1 H(,L:1) = H(LL:1) - ALI(LL*A21(LI)
H(1,J) = H(1,J) + AIR(LJ*A2R(L) H(,L:1) = H(1,L:1) + BIR(L,L:1)*B2R(L,1)
H(1,J) = H(1,J) - ALI(LI)*A21(L1) H(,L:1) = H(1,1:1) - BLI(L,L:1)*B21(L,)
H(1,J) = H(1,J) + BIR(LJ)*B2R(L,1) 60 CONTINUE
H(1,9) = H(1,J) - BLI(LJ*B2I(L)

70 CONTINUE DO 2601 = N+1, N+NLO

60 CONTINUE H(,L:1) = H{LL:1) + ALR(L,L:1)*A2R(1,)

H(,L:1) = H(1,L:1) - ALI(L,L:1)*A21 (L]

DO 2601 = N+1, N+NLO H(,L:1) = H(1,1:1) + BIR(L,L:1)*B2R(L,1)
IHPF$ INDEPENDENT, ON HOME (H(:,J) H(,L:1) = H(1,L:1) - BLI(LL:1)*B2I(L,])
DO270J=1,1 H(1,L:1) = H(1,1:1) + CIR(LL1)*C2R(L,)

H(1,J) = H(1,J) + AIR(LJ)*A2R(L) H(1,L:1) = H(1,1:1) - CLI(LL:1)*C2I(L,])

H(1,J) = H(1,J) - AL1I(1,9*A2I(L,]) 260 CONTINUE
H(1,J) = H(1,J) + BIR(1,J)*B2R(L)
H(1,9) = H(1,J) - B1I(1,J)*B2I(L,])
H(1,J) = H(1,J) + CIR(1,J)* C2R(L)
H(1,9) = H(1,J) - CI(1,J)*C2I(L,])

270 CONTINUE

260 CONTINUE

Figure 7. HNS based on HPF DO-INDEPENDENT Figure 8. HNS based on HPF/Fortran90 array operations

3.2.1 Paralldization

We have created two different HPF versions of the HNS code by using VFC. In both versions H, the main HNS array, has
been distributed CY CLIC [26] in the second dimension onto the maximum number of processors (HPF intrinsic function
NUMBER_OF_PROCESSORYS) —that are available on a given architecture. We choose this distribution due to the triangular
access pattern of array H (see Figure 7) which favors CY CLIC over BLOCK distribution. Inthefirst HNS version (see Figure
7), we use the HPF DO-INDEPENDENT directive to indicate that the iterations of DO-loops 70 and 270 can be executed
simultaneously. This version is solely based on Fortran77. In accordance with the owner-computes paradigm [2] an iteration
is executed by the processor that owns array section H(:,J). The second code version is based on executing Fortran90 array
operations [34] inside of DO-loops 60 and 260. The array operations are executed in parallel based on the owner-computes-
paradigm and the HPF distribution directives. Note that both code versions have identical semantics. They differ only in
their parallelization strategy. It should also be stated that detecting parallelism and inserting HPF directives took less than
1/2 day for both parallel versions of the HNS code. Performance analysis added another day which included the time for
instrumentation, measurement, and performance analysis by using SCALA.

12

30 I I I s F90 array operations, N=497
/= HPF Independent; N=497

i /= A HPF Independent; N=497 T F90 array operations; N=265

5—

25§ HPF Independenti Ni265] HPF Independent; N=265 T T T T T T T T
D= > HPF Independent; N=133 =1 F90 array operations; N=133 _ -
#—x F90 array operations; N=497 i [D=—> HPF Independent; N=133 - - 1
F90 array operations; N=265 —
20 H =& F90 array operations; N=133 4 o - -
7/

execution time (secs)

speedup
w
T T
>
1\
\

T
N
Y

\

2 4 6 8 10 12 14 16
number of processors number of processors

Figure 9. Execution times measured and vi- Figure 10. Speedups measured and visu-
sualized by SCALA for two different paral- alized by SCALA for two different parallel
lel versions of the WIEN97 HNS code (HPF versions of the WIEN97 HNS code (HPF
DO-INDEPENDENT and HPF/Fortran90 ar- DO-INDEPENDENT and HPF/Fortran90 ar-
ray operations) for varying processors and ray opera'glons) for varying processors and
problem sizes (N) on a NEC Cenju 4. problem sizes (N) on a NEC Cenju 4.

3.2.2 Experimental results and further work

SCALA has been used to instrument and measure both code versions and to plot the corresponding performance metrics
in order to determine the best version for various problem (/V - controls size of array H) and machine sizes (number of
processors). Figure 9 shows the execution times of both versions on a NEC Cenju-4 machine based on the Grace graphical
user interface of SCALA. SCALA clearly shows that the HPF DO-INDEPENDENT version outperforms the HPF/Fortran90
version for all problem and machine sizes. VFC generates more efficient code for the HPF DO-INDEPENDENT version
by determining the work distribution outside of the innermost loops. Moreover, the array subscript expressions and loop
bounds are only changed very little. Whereas for the second version, VFC uses ADLIB [9] to paralelize the Fortran90
array operations which requires changing array subscript expressions and |oop bounds more extensively and the overhead for
computing the work distribution is larger than for the HPF DO-INDEPENDENT version. The speedup metric (see Figure
10) provided by SCALA also demonstrate that the performance scales better for larger than for smaller problem sizes. For
instance, the speedup achieved for a 8 processor HPF DO-INDEPENDENT version is 3.8 for N=497 and 2.2 for N=133.
Similarly, the speedup achieved for a 8 processor HPF/Fortran90 is 2.5 for N=497 and 1.7 for N=133.

In the current work only the main loop of HNS was parallelized. The initialization part, which consumes approximately
15 % of the overall execution time (as determined by experiments with SCALA), will also be implemented. We will examine
various data distributionsfor the diagonalization routines. SCALA will be used to evaluate the corresponding execution and
communication time behavior. Thereafter, we plan to parallelize the setup phase of the spherical part Hy;r. Overal we are
very confident that HPF has the potential to parallelize large and substantial portionsof the WIEN97 application.

3.3 Ion Implantation Simulator for Three-Dimensional Crystalline Structures

In modern semiconductor process technol ogy, ion implantation isthe most important technique to introduce dopants (atom
species like boron, phosphorus or arsenic) into semiconductor materials like silicon or gallium-arsenide. lon implantation
means that accelerated ionized atoms are shot at a semiconductor material and penetrate into the solid as a consequence of
their high kinetic energy. Theintroduced dopants are used to selectively set the resistivity of the semi-conducting material and
toform diodes or transistors or other devicesin the semi-conducting material. There are various methods for the simulation of
ion implantation, but the high accuracy which is a prerequisite when simulating modern semiconductor production processes

13

often requires the application of the Monte Carlo method, which is a physically based simulation method. Thereby non-
planarity effects and phenomena resulting from ion channelling and large tilt angles can be accurately described. By the Monte
Carlo method the trajectories of theimplanted particlesin thetarget material are evaluated by cal culating theinteraction of the
fast moving ion with the electrons and the nuclei of the target material. The method is schematicaly illustrated in Figure 11.
The implanted particle moves through the target and changes its direction of motion by interaction processes with the target
material and it successively looses energy until come to rest inside the target material. The major drawback of the Monte
Carlo method isthat it requires large simulation times, especially if three-dimensiona simulations have to be performed with
very sophisticated models [25] to reach the expected accuracy. Simulations can take up severa days and even weeks for
realistic problem sizes which makes it afirst-order target for parallelization. Because the serial code for the ion implantation
simulator existed we followed a parallelization strategy that modified the original code and computation models [24, 25, 5]

as little as possible by isolating communication and synchronizationin a few routines.

As aready mentioned the Monte Carlo ion implantation simulation method is based on the concept that the trgjectory of
anioniscalculated (Figure 11). During simulation the trajectories of alarge number of ions entering the device structure —
equally distributed over the device surface — are computed. As a result of the simulation the distribution of the dopants and
the crystal damage are derived from the final final position of the ions and the displaced target atoms. As an extension of the
serial code atransient simulation had to be introduced for the parallelization of the simulator to correctly consider the damage
accumulation and the influence of the damage on the ion trgjectories. Transient simulation means that time steps are defined
by assuming that ions belonging to the same time step do not interact with each other and can be treated independently.
Furthermoreit is assumed that the ions belonging to one time step are equally distributed over the device surface.

Master CPU1 CPU2 CPU3

distribute ’%\
ions e

start calculation

/ ion left geometry

| gCRuafined | cpusiiishes
e with N ions
|
CPU3finishede—"" |
with N ions >
distribute /

ions %%\.

>
cpu1finis1ed/

with N ions

receiving ion >\
/

Figure 12. Communication among master

Figure 11. Schematic presentation of the and slaves (CPUL - CPU3); tis the time-
calculation of the ion tracejctories and the axis.

distribution of the geometry among several

processors.

3.3.1 Paralldization

We parallelized theion implantation simulation by distributing the geometry of the simulation domain based on amaster-slave
computational model. The bounding box of the simulated structureis split into small rectangular blocks. At the beginning of
each time step the master processor distributesone or several rectangular blocksto a set of slave processors as shownin Figure
11. Each processor is responsible to calculate the trajectories of all ions residing inside of its assigned rectangular blocks.
The ion trgjectories are computed sequentially by each processor. Parallelism is exploited as all slaves can execute their ion
trajectories simultaneously. The order of computing ion trajectories does not matter in practice. Both ionsthat enter through
the surface as well as newly created particles (due to collisions of mobile particles with atoms of the target) can move inside
of the simulation domain. The proposed master-slave parallelization method inherently model s both cases without restriction.

14

2000 ions 5000 ions (1st run) 5000 ions (2nd run)
T

170 — T T T T T T T T 2750 — T T T T T T 2750 — T T T T T T T T
2500 — 2500 [— —
160 - 7 - 7
2250 — — 2250 [— —
150 2000 [— — 2000 —
’%\ 1750 — — 1750 —
<L 140 B B B B
g 1500 — — 1500 — —
g 1250 B | 1250 _— —_
% 130 | N | a
& 1000 |— — 1000 |— —
120 750 [— — 750 [— —
500 |— — 500 |— —

110 - - -

250 |— — 250 |— —

P T T T I S P T I ST ST N
100 o a1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

number of slaves number of slaves number of slaves

Figure 13. Execution times of the ion implantation simulator measured and visualized by SCALA for different
problem sizes and varying number of slave processors on a heterogeneous NOW

The master communicates with the slaves to inform them about a new time step of the simulation, and to maintain a record
withthe number of ionsthat reside in the geometry domain of every specific slave. The slaves communicate among each other
by exchanging ionsthat cross the slave’s geometry domain (see Figures 11 and 12). Currently, we use a static load balancing
strategy based on information about the computational capabilities of each processor. For instance, if a processor F; istwice
as fast as another processor F; then P; gets a workload (number of ion trajectories) assigned that is twice as large than that
of P;. In order to optimize the performance of our master-slave method based on static |oad balancing which is executed on
adedicated distributed or parallel architecture (exclusively used by our application), the following two constraints should be
considered:

L~ Vi 2
Pl const., Vi (2

Vi, O;, and C' PU; (e.g., floating point operations per second) are, respectively, the volume, the surface of the rectangular
area, and the relative computing capability of asave .

The sequential version of the ion implantation simulator is composed of Fortran and C code components. Our parallel
version of the ion implantation simulation exploits primarily coarse-grain parallelism and has been implemented by using
MPI (message passing interface [20]) which took several months and was very error-prone.

The experiments (see Figures 13 and 14) conducted by using SCALA's instrumentation, performance analysis and visu-
alization functionalities, clearly imply that the static load balancing should be replaced by a dynamic load balancing which
is sensitive towards dynamically changing application and machine characteristics (for instance, moving ions and application
unrelated workload).

3.3.2 Experimental results and further work

We ported our code onto a network of workstations (NOWS) as this architecture is well-suited to support coarse-grain par-
alelism and is also becoming increasingly popular due to the availability of unused computation cycles. We used a hetero-
geneous NOW consisting of several DEC a pha workstations including DEC 3000 (175 MHz), DEC 7000 (200 MHz), and
DEC 600 (333 MHz) workstations. The DEC 600 workstations are connected by a 100 Mbits/sec Ethernet, and all others
by a 10 Mbits/sec Ethernet. This NOW is a non-dedicated system where all workstations are office computers. SCALA has

15

5000 ions (1st run) 5000 ions (2nd run)

800 100
I = o 90
700 @ |Savel _ @ |Savel
® (Save2 80 ® (Save2
600 O |Slave3 5 O |Slave3 -
O |Save4 70 O |Save4 -
O |Save5 O |Save5
ﬁ 500 ﬁ 60
EAOO g 50
@ @
S 300 =
30
200
20
ﬂl il ol N Il
0 2 i1 - 0 2 1 1 []
1 2 3 4 5 1 2 3 4 5
number of slaves number of slaves
2000 ions
150
1 @ Slavel
125 u Save2
O Save3
O Slave4
100] O Save5
@
£ 75
]
=]
50
2 " "
0 1] ” ”

1 2 3 4 5

number of slaves

Figure 14. Idle times for the ion implantation simulator as measured and visualized by SCALA for two different
problem sizes (2000 and 5000 ions) for varying number of slave nodes on a heterogeneous NOW.

been used to instrument and to examine the performance of the parallel ion implantation simulator for two different problem
sizes. 2000 (192 ions per time step) and 5000 (768 ions per time step) ions have been, respectively, distributed to the slaves
considering the different computing capabilities of the various workstations. The execution times (see Figure 13 - based on
the Grace graphical user interface of SCALA) have been measured by SCALA during regular office time which means that
there has been computational load that is not related to the given application. The measurements for the problem size of 5000
ions has been done twicein order to demonstrate the impact of different workloads (unrelated to the given application) on the
NOW. For the problem sizes 2000 and 5000 ions (first run) we observe a maximum speedup of 1.6 and 2.3, respectively, for 5
slaves. Wheress, for the second run of the 5000 ions problem size, we achieve a very reasonable speedup of 5.3 for 6 dlaves.
As load balancing is a common problem on non-dedicated systems we used SCALA to examine the idle times for various
problem sizes on the NOW. Figure 14 shows the idle times (waiting for data from other slaves and the master plotted by the
Grace graphical user interface of SCALA) for each dave of every specific execution (number of slaves is fixed) of the ion
implantation simulator. Clearly, we can observe that the idle times across the slaves can be quite different. Thisis dueto an
uneven workload (unrelated to the application) on the NOW and also due to the degree of ions that move from the geometry
domain of one slave to another. Note the strong difference in idle times for two different executions of identical number of
daves and problem sizes (5000 ions). The slaves of these problem sizes have been executed on the same workstations but
with different unrelated computational load. SCALA isone of very few tools that currently allows to measure idle times for
parallel and distributed programs.

16

4 Reated Work

The Paradyn system [35] isadynamic performance instrumentation and measurement system. Instrumentationis currently
restricted to functionsand is controlled by a consultant module. Performance bottlenecks are tried to be found automatically
through a rule-based refinement system. The user can control instrumentation overhead by limiting instrumentation to a
threshold.

TAU [36] is a sophisticated instrumentation, tracing and profiling system that has been shown to be very useful for various
programming paradigms including PC++ and HPC++ [30].

Forge90 [32] reports on communication costs at the level of a generated message passing code, but not at the level of the
input program.

The SUIF Explorer [33], an interactive and interprocedural parallelizer, provides two sub-modules for performance anal-
ysis. First, the Execution Analyser which determines the loops that dominate the execution time of the program. Moreover,
this tool can instrument a program for determining data dependences during execution of the code with the goal to locate
parallelizable loops. Second, the Parallelization Guru provides two quantitative metrics to guide the parallelization process.
Parallelism coverage reflects the limit on the speedup factor. Parallelism granularity defines the average length of computation
between synchronizationsin parallel regions. The SUIF Explorer guides the programmer through the parallelization process
whereas SCALA provides more detail ed performance information that can be exploited during program parallelization. More-
over, the SUIF Explorer provides performance analysis for mostly regular applicationswhereas SCALA also coversirregular
applications.

An approach for visualizing the performance for HPF programs is described in [31]. Various insights about the interplay
between data mapping and communication for HPF programs are offered by this system.

In [1] the performance of Fortran D programs is analyzed at the source-level which is based on an integration with the
Fortran D compiler [21] and the Pablo performance system [39]. MPP Apprentice [45] supports post-execution performance
analysisfor C, C++, and Fortran90 programs on the Cray T3D machine. The previoustwo approaches are most similar to our
approach. The Fortran D/Pablo integrated performance system has sophisticated capabilities to link performance data with
distribution, alignment and mapping information for data parallel programs. It isunclear how accurate this system can record
code transformations and optimizations which is a strength of SCALA. Moreover, SCALA collects more comprehensive
information about arrays and can a so describe the memory requirements for a given program. Apprentice maintainsinforma-
tion about code restructuring for basic blocks. It reports time statistics for loops and for an entire application. SCALA goes
beyond basic blocks and can aso record code changes that imply larger code sections than basic blocks (e.g. nested loops
or procedures). SCALA can also deal with new code inserted by a compiler whose performance can be linked to a specific
source of the input program.

5 Conclusions

There are many different waysto devel op programs for distributed and parallel systems. Frequently users write programsat
avery low-level (i.e., message passing programs) in order to fully exploit the computational capabilitiesof atarget architecture
which can be very error-prone and time consuming. |n recent years compilers provide extensive support to devel op distributed
and parallel programs at a very high-level which reduces the time effort of code development substantially but sometimes at
the cost of a reduced performance. Furthermore, compilers aggressively apply code transformations in order to convert a
high-level program to a program with communication and synchronization and in order to improve the resulting performance.
This poses a substantial problem for performance measurement and analysis tools. Performance data is frequently monitored
at thelevel of agenerated program or target machine without the possibility to map performance data back to the user provided
program. In order for performance measurement and analysis toolsto be effective and useful, they must be applicable to both
high- and low-level programming paradigms.

Inthis paper we describe the performance-oriented devel opment of three real -world applicationsfor distributed and parallel
architectures. Two applications have been developed based on a high-level programming paradigm (HPF) and executed
on a dedicated parallel machine (NEC Cenju-4). They benefit by fast program development and also achieve reasonable
performance speedup. A third application is based on a master-slave programming model that has been manually developed
and ported onto a cluster of heterogeneous workstation and networks. The development time was much longer (several
months) as compared to the HPF code version for the previous application codes and was very error-prone. Good speedup
figures have been observed for low system loads that are not related to the measured application. This application suffered by
a static load balancing which is very insensitive towards dynamically changing application and machine characteristics.

17

SCALA, aportableinstrumentation, measurement and post-execution performance analysistool for distributed and parallel
systems, has been used to support the performance-oriented program development of all three applications. The following
features of SCALA have been particularly useful for these applications.

Portable instrumentation system supports selective and comprehensive instrumentation of pre-defined types of code
regions and arbitrary code regions.

Code restructuring information of transformation systems records and collects in a measurement description file which
enablesto relate performance data back to the input program.

Performance data of several executions can be compared against each other.

Many important performance metrics can be computed (i.e., speedup, efficiency, communication and work distribution,
compiler organization overhead, idle time, etc.).

Several interfaces have been developed in order to support performance visualization of parallel and distribute applica
tions.

SCALA iscurrently being used as a performance analysis system for explicit message passing programs (C and Fortran)
and for programs generated by the VFC compiler [2] (translates HPF programs into message passing Fortran90 programs
based on MPI). We are currently also investigating the usefulness of SCALA for performance analysis of distributed JAVA
programs[16]. Moreover, we are in the process to integrate SCALA with performance prediction [14] and symbolic analysis
techniques [15] to examine the scaling behavior [42] of distributed and parallel programs. Finally, we aso work on fully
automatizing the process of performance analysis[17]. This means that performance information is interpreted by SCALA
which then automatically detects the most important performance problems of a program for a given architecture.

References

[1] V.S. Adve, J. Méllor-Crummey, M. Anderson, K. Kennedy, J.-C. Wang, and D. A. Reed. Integrating Compilation and Performance

(2]
(3]

Anaysis for Data Parallel Programs. In Proc. of the Workshop on Debugging and Performance Tuning for Parallel Computing
Systems, |EEE Computer Society Press, January 1996.

S. Benkner. VFC: The ViennaFortran Compiler. Scientific Programming, 7(1):67-81, 1999.

P.Blaha, K. Schwarz, P. Dufek, and R. Augustyn. Wien95, a full-potential, linearized augmented plane wave program for calculating
crystal properties. Institute of Technical Electrochemistry, ViennaUniversity of Technology, Vienna, Austria, 1995.

P. Blaha, K. Schwarz, and J. Luitz. WIEN97, Full-potential, linearized augmented plane wave package for calculating crystal prop-
erties. Ingtitute of Technical Electrochemistry, Vienna University of Technology, Vienna, Austria, ISBN 3-9501031-0-4, 1999.

W. Bohmayr, A. Burenkov, J. Lorenz, H. Ryssel, and S. Selberherr. Trajectory split method for Monte Carlo simulation of ion
implantation. |EEE Transactions on Semiconductor Manufacturing, 8(4):402-407, 1995.

P. Boyle, M. Broadie, and P. Glasserman. Monte carlo methods for security pricing. Journal of Economic Dynamics and Control,
pages 1267-1321, 1997.

M. Calzarossa, L. Massari, A. Merlo, M. Pantano, and D. Tessera. Medea: A tool for workload characterization of parallel systems.
IEEE parallel and distributed technology: systemsand applications, 3(4):72-80, Winter 1995.

M. Calzarossa, L. Massari, A. Merlo, M. Pantano, and D. Tessera. Integration of a compilation system and a performance tool: the
hpf+ approach. In Proc. of the International Conferenceon High-Performance Computing and Networking (HPCN'’ 98), Amsterdam,
The Netherlands, pages 809-815. L ecture Notesin Computer Science, Springer Verlag, 1998.

B. Carpenter. Adlib: A Distributed Array Library to Support HPF Tranglation. In Proc. of the 5th Workshop on Compilersfor Parallel
Computers, Malaga, Spain, June 1995.

L. Clelow and C. Strickland. Implementing derivative Models. John Wiley & Sons, 1998.

L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-memory programming. |EEE Computational Science and
Engineering, 5(1):46-55, Jan./Mar. 1998.

E. Dockner and H. Moritsch. Pricing Constant Maturity Floaters with Embeeded Options Using Monte Carlo Simulation. Technical
Report AUR_99-04, AURORA Technical Reports, University of Vienna, January 1999.

J. Fabozzi and T. Fabozzi. The Handbook of Fixed Income Securities. Fourth Edition. Irwin Professiona Publishing, 1995.

T. Fahringer. Automatic Performance Prediction of Parallel Programs. Kluwer Academic Publishers, Boston, USA, ISBN 0-7923-
9708-8, March 1996.

T. Fahringer. Efficient Symbolic Analysis for Parallelizing Compilers and Performance Estimators. Journal of Supercomputing,
Kluwer Academic Publishers, 12(3):227-252, May 1998.

T. Fahringer. Javasymphony: A system for development of locality-oriented distributed and parallel java applications. In Proceedings
of the IEEE International Conference on Cluster Computing (CLUSTER 2000), Chemnitz, Germany, Nov. 2000. IEEE Computer
Society.

18

[17]
[18]
[19]

[20]
[21]

[22]
(23]

[24]

[29]
[26]

[27]
(28]

[29]
(30]

(31]

(32]
(33]

[34]
(39]

[36]
(37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]

T. Fahringer, M. Gerndt, G. Riley, and J. L. Tré&ff. Specification of performance problemsin MPI programswith ASL. In Proceedings
of the 2000 International Conferenceon Parallel Processing (ICPP’ 00), pages51-58, Montreal, CA, August 2000.

T. Fahringer and E. Mehofer. Buffer-Safe and Cost-Driven Communication Optimization. Journal of Parallel and Distributed
Computing, Academic Press, 57(1):33-63, April 1999.

T. Fahringer, B. Scholz, and M. Pantano. Execution-Driven Performance Analysisfor Distributed and Parallel Systems. Technical

Report, Institute for Software Technology and Parallel Systems, University of Vienna, Liechtensteinstr. 22, A-1090 Wien, June 1999.

M. P. 1. Forum. Document for a Sandard Message Passing Interface, draft edition, Nov. 1993.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D Language Specification. Technical

Report TR90-141, Dept. of Computer Science, Rice University, December 1990.

Grace User’s Guide VO0.2. http://plasma-gate.weizmann.ac.il/Grace/doc/UsersGuide.html, March 1999.

V. Herrarte and E. Lusk. Study parallel program behavior with Upshot. Technical Report ANL-91/15, Mathematics and Computer
ScienceDivision, Argonne National Laboratory, Aug. 1991.

A. Hossinger, M. Radi, B. Scholz, T. Fahringer, E.Langer, and S. Selberherr. Parallelization of aMonte-Carlo lon Implantation Sim-
ulator for Three-Dimensional Crystalline Structures. In Proceedingsof the International Conference on Smulation of Semiconductor

Processesand Devices (S SPAD99), Springer, Kyoto, Japan, Sept. 1999.

A. Hossinger and S. Selberherr. Accurate Three-Dimensiona Simulation of Damage Caused by lon Implantation . In Proc. 2nd Int.

Conf. on Modeling and Smulation of Microsystems, pages 363—-366, April 1999.

High Performance Fortran Forum, High Performance Fortran Language Specification. Version 1.1.4, Technical Report, Rice Univer-

sity, Houston, TX, November 1994.

J. C. Hull. Options, Futures, and Other Derivatives. Prentice Hall, April 1997.

J. C. Hull and A. White. One factor interest rate models and the valuation of interest rate derivative securities. Journal of Financial

and Quantitative Analysis, (28):235-254, 1993.

J. Hutchinson and S. Zenios. Financial simulations on a massively paralel connection machine. The International Journal of

Supercomputer Applications, 5(2):27-45, 1991.

E. Johnson, D. Gannon, and P. Beckman. HPC++: Experiments with the parallel standard template library. In Proceedings of the
11th International Conferenceon Supercomputing (ICS-97), pages 124-131, New York, July 7-11 1997. ACM Press.

D. Kimelman, P. Mittal, E. Schonberg, P. F. Sweeney, K.-Y. Wang, and D. Zernik. Visualizing the execution of High Performance
Fortran (HPF) programs. In IEEE, editor, IPPS’95: 9th International parallel processing symposium— April 25-28, 1995, Santa
Barbara, CA, International Parallel Processing Symposium, pages 750-759. | EEE Computer Society Press, 1995.

J. M. Levesque. FORGE90 and High Performance Fortran (HPF). In J. S. Kowalik and L. Grandinetti, editors, Software for Parallel

Computation, volume 106 of NATO ASl SeriesF, pages 111-119. Springer-Verlag, 1993.

S.-W. Liao, A. Diwan, R. P. Bosch, A. Ghuloum, and M. S. Lam. SUIF Explorer: an interactive and interprocedural parallelizer.
ACM SIGPLAN Notices, 34(8):37-48, Aug. 1999.

M. Metcalf and J. Reid. Fortran 90/95 explained. Oxfor Science Publications, 1996.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn
Parallel Performance Measurement Tool. |EEE Computer, 28(11):37 — 46, November 1995.

B. Mohr, D. Brown, and A. Malony. TAU: A portable parallel program analysis environment for pC++. In CONPAR, Linz, Austria,
9.

H. Moritsch and E. Dockner. Numerical proceduresfor pricing interest rate dependent securitiesand their parallel implementations.
Technical Report TR2000-??, Special Research Program SFB FO11 AURORA, 2000.

T. Nakata, Y. Kanoh, K. Tatsukawa, S. Yanagida, N. Nishi, and H. Takayama. Architecture and the Software Environment of Parallel

Computer Cenju-4. NEC Research and Devel opment Journal, 39:385-390, October 1998.

D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F. Tavera. Scalable Performance Analysis:
The Pablo Performance Analysis Environment. In Proc. Scalable Parallel Libraries Conf., pages 104-113. IEEE Computer Society,

1993.

K. Schwarz and P. Blaha. Description of an LAPW DF Program (Wien95). Lec.Notesin Chemistry, pages 67:139-153, 1996.

X.-H. Sun, M. Pantano, and T. Fahringer. Integrated Range Comparison for Data-Parallel Compilation Systems. Technical Report
97-004, Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803-4020, April 1997.

X.-H. Sun, M. Pantano, and T. Fahringer. Performance Range Comparison for Restructuring Compilation. In 1998 International
Conferenceon Parallel Processing, Minneapolis, Minnesota, August 1998. IEEE Computer Society Press.

X.-H. Sun, M. Pantano, and T. Fahringer. Integrated Range Comparison for Data-Parallel Compilation Systems. |EEE Transactions
on Parallel and Distributed Systems, 10(5), May 1999.

Sun Microsystems. Java RMI.

W. Williams, T. Hoel, and D. Pase. The MPP Apprentice Performance Tool: Delivering the Performance of the Cray T3D, 1994.

S. A. Zenios. Parallel Monte Carlo simulation of mortgage-backed securities. Cambridge University Press, 1993.

19

