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Abstract

Earthquakes have been recognized as resulting from a stick-slip frictional
instability along the faults between deformable rocks. An arbitrarily shaped
contact element strategy, named as node-to-point contact element strategy is
proposed to handle the friction contact between deformable bodies with stick
and finite frictional slip and extended to simulate the active faults in the crust
with a more general nonlinear friction law. Also introduced is an efficient
contact search algorithm for contact problems among multiple small and finite
deformation bodies. Moreover, the efficiency of the parallel sparse solver for
the nonlinear friction contact problem is investigated. Finally, a model for the
plate movement in the northeast zone of Japan under gravitation is taken as an
example to be analyzed with different friction behaviors.

1. INTRODUCTION

Japan is located in one of the world’s most earthquake-prone zones and has suffered the loss of
many valuable human lives in the earthquake history. To further investigate the occurrence of
earthquake and to predict it in the future, as a part of the Earth Simulator Project of Japan, a finite
element software system for large-scale computation of the earthquake process is being developed
in our laboratory, including CAD and mesh generation, static analysis and dynamic analysis. Only
the static analysis is introduced here, which aims to calculate the accumulation of stress around
active faults induced by a subduction of plates in a long time span and to further predict the
earthquake occurrence.
    The earthquakes can be regarded as a contact between deformable rocks with a special friction
law along the active faults (e.g. Marone C. 1998), it includes three kinds of main nonlinearities: the
material, the geometrical and the contact along the faults. Contact problems are characterized by
contact constraints, which are imposed on contacting boundaries. In the current FEM analysis, both
the dynamic-explicit FEM and the static-implicit FEM are available corresponding to the different
problems. However, convergence is still a problem in implicit analysis, especially when three-
dimensional large deformation contact problems with sliding friction are encountered. This is
partly due to the iteration solution method and its corresponding serious requirement, such as no
drastic change of the contact state and the deformation state, more smooth contact surface
definition (e.g. Nagtegaal & Taylor 1991, Ling et al 1997). Although many efforts have been made
as above, there still exist problems to be overcome (e.g. Parisch 1997, Zhong 1993). Thus
dynamic-explicit FEM seems to be used increasely, even for problems, which are characterized as
static or quasi-static ones, but it is also well known that it is quite time consuming and also difficult
for dynamic-explicit FEM to predict the stress distribution with a high accuracy. Thus, an
arbitrarily shaped isoparametric contact element strategy with the static-explicit integration
algorithm, named as node-to-point contact element strategy, was proposed by the authors to handle



the static or quasi-static friction contact between deformable bodies with stick and finite frictional
slip (Xing and Makinouchi et al 1998).  Moreover, the friction behaviour in the practical
engineering and the active faults is quite complicated, it depends on the slip velocity, the state, the
contact pressure, the material property and so on. This paper will focus on how to extend our
algorithm to simulate it. In addition, to meet the practical requirement of a large-scale calculation,
the parallel solver is also investigated for the nonlinear friction contact problem and applied to
simulate the active faults. Finally, a model for the plate movement in the northeast zone of Japan
under gravitation is taken as an example to be analyzed with different friction behaviors to show
the efficiency, stability and usefulness of this algorithm.

2.GENERAL CONSIDERATION AND NOTATION

2.1 Kinematics

Consider two bodies B1 and B2 with surfaces S1and S2, respectively, to contact on an interface
Sc , and S S Sc = ∩1 2, S S Sc c

α α= ∩ , where superscript α = 1 2,  refers to body Bα (as shown in

Fig. 1). Let the union of the two bodies be denoted by B: B B B= ∪1 2 , n be the unit normal vector
of the contact surface, s be the unit tangential vector along the relative sliding direction on the
contact surface, and t n s= × . Thus s  and t  form a tangent plane to the contact surface. When
contact occurs, the following conditions should be satisfied for unilateral contact

gn = 0 , ˙ u̇ n u̇ ngn = ⋅ + ⋅ =1 1 2 2 0     on Sc                                    (1)

f nα α⋅ ≤ 0 , f f1 2 0+ =       on Sc                                    (2)

where gn  is the gap normal to the contact surface and f α  is the contact stress on Sc
α .

     The so-called slave-master concept is widely used for the implementation of contact analysis.
Assume that one of the bodies, B1, is the slave and the material points on its contact surface are
called slave nodes; and the other body B2 is the master and the material points on its contact
surface are called master nodes. Contact (master) segments that span master nodes cover the
contact surface of the master body. Therefore, the above problem can be regarded as a contact
between a slave node and  a point of a master segment. And a slave node makes contact with only
one point on the master segments, but one master segment can make contact with one or more slave
nodes at the same time. This is the basic assumption of the node-to-point contact element strategy.

2. 2 Constitutive Equation for Friction Contact

2.2.1 Normal contact stress
We choose the penalty method to treat the normal constraints when contact occurs. For a slave
node,

f E sign g g E gn n n n n n= = −( ) .                                           (3)

HereEn  is the penalty parameter to penalize the penetration (gap) in the normal direction, and
gn s c= ⋅ −n (x x ), here xs  and xc are the position coordinates of a slave node s and its

corresponding contact point c (as shown in Fig.2), respectively.

2.2.2 Friction Stress
Friction is by nature a path-dependent dissipative phenomenon that requires the integration of the
constitutive relation. The analogy to plasticity can be founded in Michalowski & Mroz’s work
(Michalowski & Mroz 1978). In this study, a standard Coulomb friction model, with an additional



limit on the allowable shear forces, is applied in an analogous way to the flow plasticity rule. The
basic formulations are summarized below. (Note: A variable with ~ on top stands for a relative
component between slave and master bodies, and l, m=1,2; i,j, k=1,3 in this paper.)
    Based on experimental observations, an increment decomposition is assumed

∆ ∆ ∆˜ ˜ ˜u u um m
e

m
p= + ,                                                  (4)

where ∆ũm
e  and ∆ũm

p  represent the sticking (reversible) and the sliding (irreversible) part of ∆ũm ,
respectively. In addition, the slip is governed by the yield condition

F f f Fm m= − ,                                                    (5)

where F , the critical frictional stress, has three choices: F fn= µ , F Flimit=  and
F min f Fn limit= ( , )µ ; Flimit  is an allowable value of shear stress; µ  is the friction coefficient, it

may depends on the normal contact pressure fn , the equivalent slip velocity ̃u̇eq
sl  and the state

variable ϕ , i.e. µ µ ϕ= ( , ˜̇ , )f un eq
sl .

    If F<0, contact is in the sticking state, and

f E um t m
e= ˜ = ∑E ut m

e∆ ˜ ,                                           (6)

where Et  is a constant in the tangential direction.
    When F=0, the friction changes its character from sticking to sliding, and

∆ ∆ũ u f Fm
p p

m= ,                                                   (7)

where ∆u p is the ‘equivalent relative slip increment’.
    From Eqs. (4) and (6),

 f E u um t m m
p= −( ˜ ˜ ) = −f E um

e
t m

p∆ ˜  .                                        (8)

wheref E u um
e

t m m
p= −( ˜ ˜ )

0
, and ̃um

p

0
 is the value of ̃um

p  at the beginning of this step.

    From the last two equations,

f Fm m= η   and   ηm m
e

l
e

l
ef f f=  .                                          (9)

The linearized form of the Eq. (9) can be rewritten as

df
FE

f f
du df
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df f

u
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dul
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e lm l m m= −( )δ η η ˜                                                                                (ifF F= limit) .   (10)

    In summary, from Eqs.(3), (6) and (10), the contact stress acting on a slave node can be
described as



˙ ˜̇ ˙f G u fi ij j i= + ϕ  ,                                                             (11)

where G  is the frictional contact matrix; ḟ iϕ  is from the contribution of the terms related with ϕ ,

when it is not a function of ̇̃u; If dϕ  only is the function of the unknown variable d ũ, ḟ iϕ = 0, i.e.
all its contribution can be included in G at current state.

3. FINITE ELEMENT FORMULATION

3.1 Variational Principle

The updated Lagrangian rate formulation is employed to describe the nonlinear problem. The rate
type equilibrium equation and the boundary at the current configuration are equivalently expressed
by a principle of virtual velocity of the form (Xing and Makinouchi 1998)

( )σ σ δ σ δij
J

ik kj ij jk ik ijV D D L L dV− +{ }∫ 2 = ∫ + ∫ + ∫˙ ˙ ˙F v dS f v dS f v dSi iS iSc i iSc iδ δ δ
Γ

1
1

2
2 ,         (12)

where V and S denote respectively the domain occupied by the total body B and its boundary at
time t; SΓ  is a part of the boundary of S on which the rate of traction Ḟi  is prescribed; δ v  is the
virtual velocity field which satisfies the boundary δ v 0=  on the velocity boundary; L  is the
velocity gradient tensor, L v/ x= ∂ ∂ ; D  and W  are the symmetric and antisymmetric parts of L,
respectively.
    The small strain linear elasticity and large strain rate-independent work-hardening plasticity are
assumed, from which the elasto-plastic tangent constitutive tensor Cijkl

ep  is derived

σ ij
J

ijkl
ep

kl ijkl
ep

klC D C L= = .                                              (13)

Substitution of Eq.(13) into Eq.(12) reads to the final form of the virtual velocity principle

∑ =∫ ijkl kl ijV L L dVδ Ḟ v dSi iS δ
Γ∫ + ˙ ˙f v dS f v dSi iSc i iSc

1
1

2
2δ δ∫ + ∫ ,                (14)

where ∑ = + − − −ijkl ijkl
ep

jl ik ik jl il jk jk ilC ( )σ δ σ δ σ δ σ δ 2.

3.2 Contact Stress on A Slave Node

Assume that contact segment surfaces are described by x x( )= ξm , a slave node s has made contact
with a master segment on point c (as shown in Fig. 2), and the contact stress acting on it in Eq.(14)
can be described in the local contact coordinate system as follows

ḟ ˙ e ė= +f fi i i i .                                                       (15)

Here ei, the base vector on the contact segment,  is specified by

e e ( ) e ( )i i i m= =ξ η ξ,  and ̇e
e ˙ e ˙

i
i

m
m ijm j mE= =∂

∂ξ
ξ ξ ,                              (16)

in which    Eijm i m j= ⋅e e, .

    From Eqs. (15) and (16),



ḟ ˙ e e ˙= +f fi i i ijm j mE ξ .                                                (17)

    Assuming that the tangential surface is spanned by the tangents to the parameter lines,

e
x

m
i

m
= ∂

∂ξ
,  e e e3 1 2= ×    and  Cml m l= ⋅e e  .                                  (18)

    Considering the normal projection of the slave node onto the tangential plane, the coordinates of
the contact point xc should satisfy

e (x x )m s c⋅ − = 0 .                                                        (19)

    Linearize the above equation with the unknowns, and note that x x (u ),c c c m= ξ , we have

ė (x x ) e (̇x ẋ )m s c m s c⋅ − + ⋅ − = 0 ,                                            (20)

where ̇x u̇s s= ,  ẋ u̇ e ˙
c c m m= + ξ , ė e ˙ u̇, ,m m l l c m= +ξ .

    Solving the above system yields

˙ n e e ˜̇uξm n m m ll m ml lg D D C C h= + + −( ) ⋅{ }0    (no sum on m, l) ,                 (21)

where C C gml ml n m l= − ⋅0 n e ,  , h  is the determinant of Cml , gn
0  is the penetration of the previous

increment step; D C Cm ll c m ml c l= ⋅ − ⋅u̇ n u̇ n, , ; ˜̇u u̇ u̇= −s c, while u̇c  is the velocity of material

position c on the segment, u̇ u̇c N= γ γ , and u̇γ  is the nodal velocity on the segment, where Nγ  is

the shape function of the segment.
    Finally, from Eqs. (11), (17) and (21), we have

ḟ e e ˜̇ ˙ e e= +( ) + +G Q u f f E D g hik i jk j k i i i ijm m n jϕ
0 .                                        (22)

Here, Q f E D C C hjk i ijm m ll m ml l k= + −( ) ⋅n e e ê ; êk  is the unit vector of local Cartesian coordinate

system on the contact interface.

3.3 Reverse Contact Stress to Master Segment

From Eq. (2), the reverse contact stress acting on a node γ  of a master segment is

ḟ ḟγ γ
2 = − N = − +( ) + +{ }N G Q u f f E D g hik i jk j k i i i ijm m n jγ ϕe e ˜̇ ˙ e e0 .                            (23)

3.4 Time Integration Algorithm

The time integration method is one of key issues to formulate a nonlinear finite element method. It
is well known that the fully implicit method is often subjected to bad convergence problems,
mostly due to changes of contact and friction states. In order to avoid this, we employ an explicit
time integration procedure as follows. It is assumed that under a sufficiently small time increment
all rates in Eq. (14) can be considered constant within the increment from t to t t+ ∆  as long as



there is no drastic change of states (for example, elastic to plastic at an integration point, contact to
discontact or discontact to contact on the contact interface, stick to slide or slide to stick in friction
on the contact interface) takes place. The R-minimum method (Yamada, 1968) is extended and
used here to limit the step size in order to avoid such drastic change in state within an incremental
step.
    Thus all the rate quantities used to derive Eq. (14) are simply replaced by incremental quantities
as

∆ ∆u v= t ,  ∆ ∆σσ σσ= J t   and    ∆ ∆L L= t .                              (24)

Finally, in combination with Eqs. (22)-(24), Eq.(14) can be rewritten as

(K K ) u F F+ = +f f∆ ∆ ∆  .                                           (25)

Here K is the standard stiffness matrix corresponding to body B; K f , stiffness matrix of the contact

elements, comes from the contribution of the terms related with ˜̇uk  in Eqs. (22) and (23); ∆u is the
nodal displacement increment; ∆ F  is the external force increment subjected to body B on SF ;

∆ Ff  comes from the contribution of all the terms except those related with ˜̇uk  in Eqs. (22) and

(23). Note K f  is unsymmetrical due to the nonlinear friction and the geometry curvature, thus the

total stiffness matrix (K K )+ f  is also unsymmetrical.

4. CONTACT SEARCHING

In cases that two or more bodies come in contact with each other, the search algorithms are
normally split into a global and a local search. For the global search, several methods have been
proposed, such as the regular cell algorithm (e.g. Santos & Makinouchi 1993), the Hierarchy-
Territory (HITA) algorithm (Zhong 1993), the position code algorithm (Oldenburg & Nilsson
1994), the bucket sorting algorithm (Benson & Hallquist 1990 and Belyschko & Lin 1987), the
spherical sorting algorithm (Papadopoulos & Taylor 1993), etc. The last three methods are mainly
subjected to the finite-element-type mesh description of the contact surface, and the HITA and the
position code algorithms are recommended in terms of the computational efficiency. In this study,
the position code algorithm is employed for the global contact search between deformable bodies.
For the local search, several algorithms have also been proposed, such as the pinball algorithm
(Belyschko & Neal 1991), the node-to-segment algorithm (Benson & Hallquist 1990), the inside-
outside algorithm (Wang & Nakamachi 1997), etc. The latter two methods are combined and
applied in this study to avoid the ‘deadzone’ problem and to obtain the precise contact position of a
slave node on the segment, as shown in Fig.3. If all the Vi  (in Fig.3) keep the same or the reverse
direction as ns , point c will locate on this segment. Then the distance between the slave node s and
point c is calculated and compared with a prescribed accuracy sector. If within the prescribed zone,
the slave node s is in contact with this master segment on c, and the exact location of point c and
the penetration of the slave node s will be obtained and saved for further computation.
    The following measures are also taken for contact search:
    1). Contact candidates. The candidates of contact segments and slave nodes are marked during
the pre-processing, then only these marked elements are considered during the contact searching
and the calculation to save the computation cost.
   2). Automatic extensions of master surfaces. To meet the requirement of the contact territory, the
master surfaces can be extended automatically along the surface perimeter after one or some
increment steps.



5. PARALLEL SOLVER

In the analysis of the practical engineering and the active faults in the crust, complex geometry has
to be taken into account, thus a large-scale calculation is necessary. Recently, the parallel sparse
solver is widely used in the engineering analysis for a large scale computing due to its stability, but
no results on nonlinear frictional contact analysis reported. Thus, the efficiency of the parallel
sparse solver for nonlinear frictional contact analysis is investigated here.
    A tube and tubesheet assembling is one of the most important processes for a heat exchanger.
The assembling process of 37 tubes to a tubesheet using hydraulic expansion is taken as an
example to be computed.  All the tubes are fixed to the tubesheet with welding at the bottom; this is
modeled with  ‘tied’  (or stick) algorithm in our code  (as shown in Fig. 4).  Due to symmetry, only
one-twelfth of the structure has been considered, being discretized into 30024 nodes (90072 DOF)
and 21247 elements. The tubesheet is only supported along the central line direction of the tubes at
the outside nodes of the bottom edge; the tube is restrained along the central direction at the
position D (see Fig.4). The case that all the tubes are hydraulically bulged at the same time and to
be gradually contacted with the tubesheet is investigated here using the parallel unsymmetrical
sparse solver PSLDU on the SGI Onyx2 computer. In which multiple CPUs are used to solve the
linear equations, but only one of them is used also for other works, such as contact search and
stiffness matrix assembling. Fig. 5 shows the relationship between the average time of this CPU per
step and the numbers of contact nodes when 4 CPUs are used to calculate the assembling process.
From this, the parallel sparse solver is powerful for such a scale calculation, but it is very sensitive
to contact node numbers, and the time cost rises rapidly with the increase of contact node numbers.
This needs further related research in the future.

6. APPLICATION TO ACTIVE FAULTS

A part of Northeast fault model with the subducting Pacific plate around Japan (Kanai, 2000) is
taken as an example to be computed here with a scale of 1:100,000, as shown in Fig.6. The
displacement constraints used are also shown in the above figure except that the plate is fixed along
the x direction at the position A and B (see Fig. 6). As for the loading condition, the combined
action of the self-gravity and the hydraulic pressure of water is investigated. And the widely
accepted rate and state dependent friction law proposed by Dieterich (1978,1979) and Ruina(1983)
is applied here to describe the complex phonomnea along the interface between the active faults.
The calculated results (as shown in Fig.7) demonstrate that the friction coefficient along the active
fault interface has obvious influences on their relative movement. The bigger the friction
coefficient is, the less the relative movement along the interface is. Also this is affected by the
distribution of different friction coefficients due to the relative slip velocity along the interface.

7. CONCLUSIONS

A static-explicit FEM code has been developed to simulate the static or the quasi-static 3-
dimensional friction contact between multi-elasto-plastic bodies and extended to extended to
simulate the active faults in the crust with a more general nonlinear friction law. An arbitrarily
shaped contact element strategy, named as node-to-point contact element strategy is proposed and
applied according to the static-explicit characters, which overcomes the main convergence
problems existing in the implicit treatment of contact. Meanwhile, an efficient contact-searching
algorithm for the multi-deformation-body contact problem has been implemented in our code.
Moreover, the parallel sparse solver is very powerful for the nonlinear friction contact problem, but
its efficiency decreases much with the increase of the contact node numbers, this may need further
research. Finally, a model for the plate movement in the northeast zone of Japan under gravitation
is taken as an example to be analyzed with different friction behaviors, which demonstrate the
stability, efficiency and usefulness of this algorithm.
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