HotSpot Compiler -
The Core IR

Clitt Click

A

[T

Agenda

" HotSpot VM - Optimizex Context
® The Core IR - Small is Beautiful
= Data Nodes

= Control Nodes

= More Engineering

= Building SSA Fast

= Some Optimization

=

[T

HotSpot VM

" Interpreter
= Profiling

> Code patching o

=

[T

Optimizey Context

m Fast, fast, 125t

" C++ quality code

= Inputs:
> Bytecodes, type analysis, proiile
» Inline decision tree

= Outputs:
» Machine code, GC annotations
» exception walkback tables, safepoints

m | =

Ij The Core IR:

Small is Beautiful

® Smallis Fast
= Small is Simple
= Small can get the job done
> ...but little room 1lor design errors

= Small requires Engineering
» some Small from Recycle & Reuse
> ...but to get really Small requires

Reengineering!

[T

Graph & SSA IR

" Nodes
> Primitive operations
> Control ops (aka Basic Blocks) | =
> Phi, conditionals, memory, calls, ...
= Edges
» Data flow/data dependencies
» Control flow/control dependencies

m Explicit Use-Def chains!

=

i
class Node

12 bytes +4 pex edge +slop
® yvtable is opcode

> (e.g., add, phi, if)
® extensible edge array

= dense integer index
> into side arrays

® use-detf edges
> ...but not def-use!’

[T

class RegionNode -
Basic Blocks

® No different than otherxr Nodes!
= Data Nodes point to Region

add ‘ ‘ mul

bbl be

bb3 sub

Before

[T

A simple Loop

= Iy
loop:

I++:

] =1*3;

If I < xX+y

goto loop

A

loop back
control

loop exit control

[T

Sea of Nodes

m Zap the control input

= Data Node does not belong to any
basic block

= Enables Global Value Numbering

= Filled in by Global Code Motion

|
R
L

[T

A simple Loop
- \

lim = x+y; .
loop:

I++:

ifi <Ilim
cofens
loop exit control r

goto loop
] = 1+3; T

loop back
control

J

[T

MultiNode & ProjNode

m [abels an Edge!
® MultiNode produces a tuple
= ProjNode slices out one field

[T

Memory.

me Y val
" Just anotherx Value g\? /
= Input to LoadNode

® Result of StoreNode /‘

® Break into disjoint pieces

® [/O is treated same as memory
> Read also outputs new I/0 Value

[T

Deoptimize, Debug

" DebugNode captures JVM state

= Optimizerx honors dependencies
= Low ireq branch

® No machine code

] Safep Oillt locall\loc?lz st ack

[T

Phases

m Use a side-array
" Index by Node::idx
= Analysis lifetime is controlled

= Faster to re-analyze than to keep
analysis correct atter transform

> conservative approximation
> subtle bugs

m E.g., build def-use in 230 cycles/Node
| |

[T

" Arena-based
» Overload new, delete is a no-op

= Copy live Nodes to new arena
> Programmer speciiied GC

= Not DCE - already happens "for iree"

old Arena new Arena

Tl

Allocation

[T

Peephole Optimization

® Graph rewrite rules

m Virtual functions

»class AddINode::lIdentity () {
return (in[2]==zero) ? in[1] : this; }

[T

Global Value Numbering

m V-call to constant told
» Dead control folds also!

m V-call to find identities
m V-call to "idealize"

= V-call to hash/compare
» Combine Nodes from different blocks
» Global Code Motion will fixup later

i

[T

Parsing bytecodes

®] pass to lind merge points
» cache ftull type into

= 2nd pass builds it all
» Build CFG (aka Region/If Node)
» Walk in Reverse Post Order
— No useless Phis except at loops
» Build data Nodes, PhiNodes
> Peephole optimize as you go

=

[T

Straightline Code

= Parser maps VM state to Nodes
= Example: x = y+1

TN W LT

)Y
Locals Stack Locals Stack Locals Stack

.E.I«I ll

ol ¢ i .

Locals Stack Locals Stack

=

| =

Control Flow & SSA

= Asymptotically slower
= Really fast in practice
= At merge points: . .

» Compare maps,
insext Phis

|

Locals

J

[T

Summary

 Small!

> E.g., One big method has 4890 BCs,
5000 Nodes, around 120K bytes

» Small allows Fast
® High Quality Code

» GVN, GCM

> SSA form

» plus BURS instruction selection,
_ Briggs-Chaitin allocator, etc... =
= =

