
 Marc Snir

Thomas J. Watson Research Center
PO Box 218
Yorktown Heights, NY 10598

Java for High-Performance
Computing

May 1998

 Floating-Point Performance in Java

Jose Moreira, Manish Gupta, Lois Haibt,
Sam Midkiff

(C) Copyright 1997 IBM Corp. Marc Snir

Q: can Java replace C (C++, Fortran) for Numeric-Intensive Codes?

What are inherent impediments to floating point performance due to language
design?

How can those, if any, be fixed?
When will be those fixed?

What are impediments to floating-point performance due to to current state-of-the
art in Java support?

How can those, if any, be fixed?
When will be those fixed?

IBM goal: Java should become language of choice for server code, including
technical computing code.

Ongoing collaboration with Sun to make this happen.

(C) Copyright 1997 IBM Corp. Marc Snir

Because Java is increasingly used as first programming language in College.

Because Java supports well OO programming, which is goodness.
(but lacks templates, and other heavy-duty C++ features,...)

Because Java will be pervasive in the environment surrounding and driving
numeric-intensive applications (GUI, client-server code, embedded software,...)

Java interfaces well with Java ... less well with Fortran or C++

Because Java ports easily ("writes once, run everywhere")

Because distributed object frameworks that can support large, complex systems
are becoming available in Java

(e.g., San Fransisco, Enterprise Beans).

Why bother, at all?

(C) Copyright 1997 IBM Corp. Marc Snir

Simple Test-Case: Matmul

do i = 1, m
do j = 1, p

do k = 1, n
C[i][j] = C[i][j] + A[i][k]*B[k,j]

end do
end do

end do

m = n = p = 64

(C) Copyright 1997 IBM Corp. Marc Snir

Matmul Performance on RS6000 590

3.8JDK 1.1 + JIT

2.1compiler, base code

33.3compiler, no checks

33.3C, "Java rules"

44.2C, rectangular array

C, rectang array, fma 64.2

137.6C, fully optimized

old Java

new Java

205.4Fortran

253.2ESSL library

(C) Copyright 1997 IBM Corp. Marc Snir

Performance Inhibitors (1)

Run-time checks
indices have to be checked for out-of-bound exception
pointers have to be checked for NULL exception
An access to A[i][j] requires two pointer checks (A, A[i]) and two index checks (i, j)
C[i][j] = C[i][j] + A[i][k]*B[k,j]

8 pointer checks and 8 index checks per iteration, in a naive implementation!
82 machine instructions in inner loop
inhibits compiler optimizations (e.g., code motion), even if those preserve Java semantics

in normal execution (precise exception problem)
Solution:

compiler optimization
language enhancements (?)
imprecise exceptions

Prognosis:
problem largely taken care by compiler technology within 1 -- 2 years.

2.1 base code 33.3no run-time checks

(C) Copyright 1997 IBM Corp. Marc Snir

Array Index Checking Optimization

double [] a = new double[Na]
double [] b = new double[Nb]

for (i=lb, i<ub, i++) run-time checks
a[i] = b[i]

compiler transformation

for(i = lb, i<min(0, ub), i++) run-time checks
a[i] = b[i]

for(i=min(0,ub), i<min(Na,Nb,ub), i++) no run-time checks
a[i] = b[i]

for(i=min(Na,Nb,ub), i<ub, i++) run-time checks

a[i] = b[i]

(C) Copyright 1997 IBM Corp. Marc Snir

Compiler Transformation Results (PRELIMINARY)

Code version CBC
(1MB)
MB/s

MATMUL
(64x64)
Mflops

SHALLOW
(256x256)

Mflops

BSOM
(256x256)
MCUP/s

C with Java rules 1.28 33.3 34.3 10.1

Java unoptimized 0.19 2.2 3.1 0.6

Java no checks 0.95 33.3 39.2 9.2

Java optimized 0.70 30.8 39.2 7.6

Improvement x3.7 x14.0 x12.6 x12.7

(C) Copyright 1997 IBM Corp. Marc Snir

Performance Inhibitors (2)

Java arrrays
Java multidimensional arrays are organized as arrays of arrays (can be jagged); C and
Fortran support multidimensional rectangular arrays.

A[0]

A[1]

A[2]

A[0][0] A[0][1]

A[1][0]

A[2] [2]A[2][1]A[2][0]

A[0] [2]A[0][1]A[0][0] A[1] [2]A[1][1]A[1][0] A[2] [2]A[2][1]A[2][0]

Java

C

Java generates less efficient code for dense, multidimensional arrays

(C) Copyright 1997 IBM Corp. Marc Snir

Rectangular Arrays -- Solution

Ignore problem
(dense multidimentional arrays are increasingly rare in numerical codes)

Add to Java "true" multidimentional arrays
major language change
(significant number of new opcodes)

Add to Java array classes; change compilers to "inline" special classes
part of general solution for "lightweight" object support in Java

Prognosis:
Java will add mechanisms for "special-casing" predefined classes
Compilers will take advantage of these mechanisms for efficient support of arrays --
assuming customers demand it.

33.3C, "Java rules" 44.2C, rectangular array

(C) Copyright 1997 IBM Corp. Marc Snir

Matrix Package Proposal

Fortran-like syntax for rectangular
array

float[,] zero(int n, int m) {
 float a[,] = new float[n,m];
 for (int i=0; i<n; i++)
 for (int j=0; j<m; j++)
 a[i,j] = 0;
 return a;
}

A standard package of rectangular array
classes

FloatMatrix2D zero(int n, int m) {
 FloatMatrix2D a = new FloatMatrix2D(n,m);
 for (int i=0; i<n; i++)
 for (int j=0; j<m; j++)
 a.set(i,j,0);
 return a;
}

rectangular array syntax (a[i,j], rather than a[i][j]) is syntactic sugar; two codes are
equivalent.
Byte code is generated in both cases as if right-hand code was compiled.

no new opcodes; changes in Java language nice, but not essential (for
performance); no changes in JVM
inlining of special methods (e.g., a.set(i,j,0)) is essential -- compiler technology
no templates: a different array class for each scalar class and rank

(IBM) proposal for Matrix Package is being discussed with Sun.

(C) Copyright 1997 IBM Corp. Marc Snir

Overloading

Complex[] c = new Complex[n];
c[i] <- c[i-1] + c[i+1]

same as
Complex[] c = new Complex[n];
c[i].set(add(c[i-1], c[i+1]))

no new byte codes needed -- no change in JVM.
compiler inlines assign and add methods
new assignment operator to avoid object creation.
operator overloading and assignment operator are nice syntactic sugar

how general do we expect this machinery to be? (only predefined packages, all final
methods,...)

(C) Copyright 1997 IBM Corp. Marc Snir

On the Importance of Light-Weight Objects

do i = 1, m-1
do j = 1, n-1

B[i][j] = 0.25*(A[i-1,j] + A[i+1][j] + A[i][j-1] + A[i][j+1])
end do

end do
do i = 0, m

do j = 0, n
r = r + |A[i][j] - B[i][j]|

end do
end do

n = m = 999

(i) A, B are real
(ii) A, B are complex (use user-defined Java class for complex arithmetic)

(C) Copyright 1997 IBM Corp. Marc Snir

34.3

47.7

60.9

0.5

6.2

46.8

Java (nochk) real

best C++ (real)

best F90 (real)

Java (nochk) cmplx

best C++ complex

best F90 complex

0 10 20 30 40 50 60 70

Performance on RS6000 590

One method invocation per complex operation is too expensive
... Is much more expensive in Java than in C++

IBM proposal for standard Complex package is being discussed with Sun.

(C) Copyright 1997 IBM Corp. Marc Snir

Light-weight objects (continued)

complex[] c = new complex[n]

c 0

1

2

junk real imag

junk real imag

real imag

real imag
real imagcan a compiler generate, instead ?

possible alternatives

junk real imag
junk real imag
junk real imag

0
1
2

junk
junk
junk

real imag
real imag
real imag

0
1
2

Issues: compiler analysis, run-time (garbage collection)
Helps language interoperability!

(C) Copyright 1997 IBM Corp. Marc Snir

Performance Inhibitors (3)

Fused Multiply Add (FMA) is disallowed
each intermediate result has to be rounded back to 64 (32) bits
a[i][j] = a[i][j] + b[i][k]*c[k][j]
one fma operation
one multiply, followed by one add, if fma is not used

hurts machines with fma operations
hurts Pentium (which uses 80 bit precision in FP registers)

Solution:
relaxed fp semantics: higher precision is allowed in intermediate results
(current proposal from Sun for modification of Java standard)

largely solves performance problem
introduces discrepancies between results computed on different platforms!

44.2C, no fma 64.2C, fma

(C) Copyright 1997 IBM Corp. Marc Snir

LooseNumerics

Sun current (?) proposal (based on Intel input): allow unrestricted use of extended
precision for intermediary results.
Problems:

no way for user to disallow extended precision (e.g., for testing purposes)
must round back to 64 (32) bits whenever Java variable is assigned.

Alternative (IBM proposal, Gosling draft,...):
methods can be tagged with LooseNumerics attribute.
user can specify strict or loose numeric environment for JVM.
compiler can freely use extended precision if method is tagged loose numerics and if
user specified loose numeric environment.
extended precision used only when both code writer and user agree to it!
LooseNumerics attribute is passed in byte code (with other method attributes)

Some issues:
granularity of attribute (per class, per method, per block,...)
smaller granularity looks nice, but may inhibit compiler optimizations

does attribute affect standard (Matrix, Complex) methods invoked within the scope of
tagged methods?
if not, need two version of library.

(C) Copyright 1997 IBM Corp. Marc Snir

Extended Precision Arithmetic

How important is strict bit-by-bit reproducibility of floating point results across
platforms?

 Not significant, from a numerical viewpoint
well-behaved numerical codes should not misbehave if higher precision is used.

Significant, for testing
strict repeatability facilitates testing and validation

Opinion: use of relaxed floating point semantics should be optional
codes are always tested with strict IEEE 754 arithmetic
user can always require strict IEEE 754 arithmetic

Prognosis:
Use of higher-precision arithmetic will be soon legitimized in Java

(C) Copyright 1997 IBM Corp. Marc Snir

Performance Inhibitors (4)

Operation reordering is disallowed, for two reasons
precise exception
nonassociativity of floating point operations
standard compiler optimizations, such as loop unrolling, are prohibited.

cannot take advantage of multiple floating point pipelines per CPU
cannot hide memory latency by software prefetching
cannot parallelize Java code

Solution:
compiler optimization takes care of precise exception problem
language relaxation needed to allow for optimizations that take advantage of
associativity

Prognosis:
Java will provide support for code reordering

64.2C, no reordering

137.6C, fully optimized

(C) Copyright 1997 IBM Corp. Marc Snir

Code Reordering

Example of optimization for dot-product

Solution (IBM proposal, Gosling draft,...)
IdealizedNumerics attribute. Code reordering using associativity allowed for methods
tagged, with this attribute if the JVM environment allows this.
must preserve exception behavior!
same syntax, same implementation as for LooseNumerics

problems (as for LooseNumerics, only more important here):
repeatability (solved by 2-way contract design)
numeric instability (solved by restrictive use)
granularity of attribute (block, method, class)
does attribute apply to standard packages invoked within tagged scope.

extreme example of IdealizedNumerics optimization: can replace MATMULT code with
Strassen's algorithm!
 (idiom recognition :-)

(C) Copyright 1997 IBM Corp. Marc Snir

Why Fortran still faster than C (or Java)?

Nothing inherent: more aggressive high-level optimizations.
will be fixed in future product releases.

library:
manual blocking
and unrolling of
MATMULT

(C) Copyright 1997 IBM Corp. Marc Snir

Parallelizing MATMUL

305

576

845

1105

200

388

571

747

145

283

420

553

1 2 3 4

Number of Thread

JAVA
JFMA
C++

MATMUL on 4w SMP (Mflops)

(parallel ESSL: 1183 Mflops)

(C) Copyright 1997 IBM Corp. Marc Snir

Math Library

What is "right" definition of transcendental functions?
current: not precise
1st option: operational definition
same outcome as reference implementation
within given error bound of reference implementation

problems:
reference implementation is arbitrary (current one is not good quality)
error bound is not sufficient information (unbiased, exact results when possible,...)

2nd option:
"optimal result": answer is correct answer in infinite precision arithmetic, rounded to

nearest value.
potential problem: performance
It seems possible to have optimal result with modest overhead!
Ongoing implementation effort (IBM Haifa) to demonstrate performance.

(C) Copyright 1997 IBM Corp. Marc Snir

Summary

Following enhancements are important for Java floating point performance:
LooseNumerics and IdealizedNumerics
with overide option

Standard packages (Matrix, Complex)
with compiler technology for inlining

Compiler optimizations
Compiler optimizations
Compiler optimizations

