Appendix F. CIV C2 Application Design Architecture Document

Table of Contents and Revision Levels

Section
Revision
Date

F.1 Object Interface to the NPAC Collaborative Environment
0.2
12/16/96

F.2 Message Object Behavior in the C2 Application
0.3
12/16/96

F.3 Applet Integration Standards for the C2 Application
0.3
12/16/96

F.4 C2Monitor Function
0.2
12/16/96

F.5 Granite Sentry Applet Architecture
0.2
12/16/96

F.6 Simulation Architecture
0.3
12/16/96

F.1 Object Interface to the NPAC Collaborative Environment
F.1.1 Purpose
This appendix describes the implementation requirements for all objects that are passed via the NPAC Collaborative Application (CA) message facility.

It is assumed that all message that are passed via the CA are derived from the base class C2Message. This class provides concrete classes that implement much of the required functionality. Additionally, the current code in C2Object assumes that all messages arriving are of this class. It would be possible to extend this approach and treat these interfaces as an implementable interface, however, this would require replicating common implementations in multiple base classes that might use the interface.

F.1.2 Approach

The CA provides a facility to pass byte[] strings between Applets. To provides common behavior among all aspects of the C2 Application, we want to have this “flat” message structure made as invisible as possible. For this reason, we are implementing a common set of methods whose operation is almost invisible to the Applets. An Applet can send an object to another Applet. Upon receipt at the remote Applet, the object will be reconstituted, and can be manipulated and its behavior used, the same as a local object. To perform this function, each object will have a class that can “dump” instance variables and contained objects to a linear byte stream, and reassemble the object from that stream. Each subclass will implement this process for its own instance variables, and will rely on the superclass to write its variables. The base class (C2Message) will perform unique requirements at the root level. These include writing the name of the object onto the byte stream.

Upon receipt of a message, C2MonObject will have a receive method that creates a new instance of the object, and calls the mutation methods to load the contents from the stream to the object variables in the exact manner in which the primitives were initially written.

A small test Applet (TestToFromStream) is under development that will verify the functioning of these processes for any derivative of C2Message. This Applet should be used to verify each class before introduction into the C2 Application.

Note that the Class Methods will also have to be implemented in several of the primitive objects (DEFCON, vector, position, etc.) so that these objects can be placed in the stream when they are contained in the C2Message objects.

F.1.3 Streaming Conventions

The following conventions should be implemented within each of the methods.

1. Call the super class method first. This order is mandatory to have the base class always write out the object name first in the byte stream. It should be followed as a convention in all classes for consistency.

2. Stream the count of any repeating groups immediately before the groups themselves. This will make the code more readable, as the index will be logically associated with the data it is controlling.

3. Use only the primitive streaming methods. Do not convert values to string representations as this is not symmetric.

4. Where non-C2Message objects are contained within C2Message object instances, do not use the access methods to obtain and stream the instance variables, but have the object stream/read itself. Instances of objects must be created by the C2Message object and a constructor called for the object, using the byte stream. As it is implemented now, the instance object must be the same type as defined in the new.

F.1.4 Class Methods (C2Message)

void
StreamInstances (StreamedOutputObject theStream)

This method writes the instance variables to the output stream. It first calls its super() method to write any inherited values to the stream.

void
LoadInstances (StreamedInputObject theStream)

This method reads the instance values from the stream and loads the instance variables as each value is read.

F.1.5 Base Class Implementation in C2Message

void
StreamInstances (StreamedOutputObject theStream)

This method writes the instance variables to the output stream, as performed by any of its subclasses. It first writes the class name to the Stream as a string that can be used in the new instance function to initially create the object.

void
LoadInstances (StreamedInputObject theStream)

This method reads the instance values from the stream and loads the instance variables as each value is read. It first skips over the object name that is present in the stream.

F.1.6 Class Methods (non-C2Message objects)

 void
StreamInstances (StreamedOutputObject theStream)

This method writes the instance variables to the output stream. Whether a super class is used for inherited data is open to the implementer.

void
LoadInstances (StreamedInputObject theStream)

This method reads the instance values from the stream and loads the instance variables as each value is read. Whether a super class is used for inherited data is open to the implementer.

F.1.7 Streamed Object Support

The StreamedOutputObject and StreamedInputObject classes provides support for the creation and interpretation of object streams. This basic behavior is available to any Applet. They are extensions of the DataOutputStream and DataInputStream.

For an output object, the constructor is passed the object, and creates the byte stream representation, that can be passed to the CA. The constructor returns a ByteArrayInputStream as the buffer.

F.1.8 Outgoing Constructor Methods
ByteArrayOutputStream
StreamedOutputObject (C2Message theObject)

ByteArrayOutputStream
StreamedOutputObject (C2Message theObject, intMaxLength)

These creators create a byte array representation of the C2Message. They create a ByteArrayOutputStream to hold the encoded version.

F.1.9 Data PlacementMethods
void
AddObjectName
(C2Message theObject)

This method adds the name of the object to the stream. Normally this will be the first call made by the C2Message.

The primary data placement methods are the DataInputStream primitive type methods.

F.1.10 Incoming Constructor Methods
C2Message
StreamedInputObject (byte[])

This creator creates a C2Message from the byte list provided.

F.1.11 Data PlacementMethods
void
AddObjectName
(C2Message theObject)

This method adds the name of the object to the stream. Normally this will be the first call made by the C2Message.

The primary data placement methods are the DataInputStream primitive type methods.

void
WriteDate(Date date)

This method extends the primitive write operations to place a complete date and time on the output stream. It is accurate to 0.1 seconds in restoring values.

F.2 Message Object Behavior in the C2 Application

F.2.1 Purpose
This memo describes the implementation requirements for object-unique behavior that must be implemented to reflect the “meaning” of each C2Message type within the demonstration. These methods will be executed upon receipt by the C2 monitor, and by the Applets that make up the user environment. Note that the intent is to place as much of the unique behavior in the Object, so the individual Applets do not have to have object unique processing.

Note that all of these methods have concrete implementations in the base C2Message class, although these methods have only trivial behavior. Subclasses need only overwrite those methods that require unique implementation. Also note that some of these objects have assumptions regarding the operation of C2Applet and the C2MonitorObject. There behavior is only ensured when operating in this environment.

F.2.2 Object Methods (Processing Flags)
The following methods provide the object to indicate the type of processing required at the receiving Applet. These are processing conveniences so that all the objects do not have to be passed to all of the frames.

Boolean
HaveTrackData ()

Returns true if the message has track data that must update Tables, GIS, or internal data bases.

Boolean
HaveDirectiveData ()

Returns true if the message has directive data that might change behavior and the status display.

Boolean
HaveLaunchData ()

Returns true if the message is not relevant to existing Applets, but must launch a new URL or event, or browser window.

Boolean
HaveSimulationData ()

Returns true if the message has simulation control events or status that need not be passed to Applets.

Boolean
HaveAlarmData ()

Returns true if the message provides NORAD alarm information.

F.2.3 Object Methods (Application Updates)

Boolean Update (C2MonObject theMonObject)

Each object should have defined behavior for what an C2Applet should do when the object is received. The C2Applet receiving a message will invoke this method, and will expect that the object will handle all of the table changes. The base classes define null behavior, which is OK for those classes that are not planned to be sent across the CA.

The return value indicates if the C2MonObject data base was changed by the object. If it was, it may be necessary for C2MonObject to refresh other C2Applets.

String
GetMessageName ()

Each object should return a string that defines its text meaning. This is typically displayed in the directive history in an application. but can be used for event logging as well. The base class returns “Unknown” as a default.

String
SetDefaultFields (byte IntendedPart, byte OriginatingPart)

This method provides initialization of the fields that would be initialized by the default initialization method. This is for use when the object is created by the newInstance class function.

Boolean
CreateUserData (C2Applet parent)

This method provides the ability for a message object to perform a dialog with the user. It is called after the method is selected, and can open a dialog to request that data. The method should return true if the message is complete, and false if the user cancels it during the dialog. Default behavior returns true.

Because dialog boxes are not synchronous, it is often convenient for the Dialog to handle sending the message, rather than the original C2Applet. This can be performed by returning a false at the original call, which will cause the C2Applet to not send the message. The Dialog can then send the message if the Dialog is terminated normally,using code such as shown below (the Applet is the Parent Applet, and theMessage is the message)

theApplet.GetC2MonObject().SendObject(theMessage);

String
GetCommandString ()

This method returns a directive string that includes both the directive name and any unique qualifier (such as DEFCON level). It uses the GetMessageName and GetCommandQualString methods.

String
GetCommandQualString ()

This method returns any message specific string that qualifies the message (such as a DEFCON level). Its default behavior is a “”..

boolean
IsMessageIsValid()

This method returns a flag as to whether the message that was passed for dialog processing is valid..

void
SetMessageIsValid(boolean theFlag)

This method sets the message validity flag.

F.3 Applet Integration Standards for the C2 Application

F.3.1 Purpose
This memo outlines the requirements for Applets to interact with the C2Monitor, and ultimately, the NPAC Collaborative Application. Some of this functionality is provided in the C2Applet from which all base classes should be derived. C2Applet is itself derived from the NPAC AppletBase class.

F.3.2 Discussion

One objective of this structure is to avoid requiring each Applet to have to register with the CA. Since the set of Applets form a single user environment, it is desired to send a single registration to the CA. Therefore, the C2MonObject will detect the first C2Applet that registers with it and uses this Applet as the registry for the Applet set executing in a work station window. For this reason, it is not known which Applet will be the one that is actually registered. The C2Applet provides default message handling that ensures that all traffic from the CA is sent to C2MonObject for processing and distribution among the Applets. This process should be invisible to the Applets.

F.3.3 Base Class Behavior (Default)
The base class implements the receive (Message m) method required by the AppletBase class. This method does nothing more than forwards the message to the equivalent method in C2Monitor. This ensures that messages arriving at any Applet are processed identically, and creates the appearance of a single Applet to the CA.

The following methods are defined in the C2Applet class, and are inherited by the C2Applets in the Application.

void
Receive (Message m)

This method calls the equivalent method in MonObject C2MonObject to pass the object for processing by all Applets. The Applet need not process the message object, as a C2Message object will be provided through its own interface.

void
ReceiveObject (C2Message theObjectMessage)

This method is implemented in the base class as a null procedure. Applets that will process messages should redefine this method to provide the actual behavior required.

boolean
IsItForMe (C2Message theMessage)

This method determines if a given collaborative member should respond to a message, based on its recipient code. In some cases, the Applet may wish to handle (such as log) the event.

F.3.4 Initialization
C2Applets should define the init() method and first call the super() method to execute the creation of the C2MonObject, if required. After this method has completed, the C2Applet should register with the Monitor by invoking the following:

SetApplet (this, myIndex)

MyIndex is a constant that is determined from the range of values defined in the C2MonObject Each of these codes is reserved for a specific Applet on the Granite Sentry screen. Current codes are as follows:

IndexForDirectives

IndexForGIS

IndexForTables

IndexForAlarms

IndexForStatus

F.4 C2 Monitor Functions

F.4.1 Purpose
The purpose of this memo is to outline the functionality that is provided by the Command and Control Monitor Object (C2MonObject). This class, and its instance object (theMonObject) provide a buffer between the Applets and the NPAC CA, and among the Applets. The scope of operation of C2 Monitor is a single Work Station window, as this is one class variable namespace in Java.

F.4.2 Discussion
C2Monitor provides four basic services.

1. It provides common tables and fixed values for use by Applets in building displays and related processing of fixed information, such as lists of ADOCs, Commands, Participants, etc.

2. It converts incoming messages to C2 Application objects, and then distributes these incoming messages to the appropriate Applets.

3. It converts outgoing objects to messages, and then provides them to the CA.

4. It maintains track tables for use by the GIS and the Tables display. This allows for track data use without having to support a “track query” to the central server.

C2MonObject is automatically created whenever an Applet based on C2Applet is initialized. Applets then register with C2Mon. This process requires that the Applet indicate to C2MonObject which function it is performing. For simplicity, C2MonObject has a fixed set of Applet slots, each of which represents a Granite Sentry Frame. The code “understands” the scope of each Applet in terms of the information provided in each message, and passes the messages to the ReceiveObject method of each Applet. The Applet can interrogate the object to determine its class.

The following methods are provided by the Monitor Object.

F.4.3 System Control and Status Methods
int
GetAppletCount ()

Returns the number of Applets that are currently registered with the monitor.

void
SetApplet (C2Applet theApplet, int theIndex)

Mandatory call upon initiating the Applet. theIndex is a code that indicates which Monitor slot the Applet performs. A list of these codes is defined in MonObject.

C2MonObject
GetC2MonObject ()

This returns the monitor object associated with a given C2Applet. This is typically used by message objects, which do not carry the class definition.

F.4.4 User Environment Methods
 String
GetRoleName ()

Returns the string representation of this user’s role in the demonstration.

byte
GetRoleID ()

Returns the code of the user’s role in the demonstration. These are defined in MonObject.

F.4.5 Message Handling Methods

void
SendObjectToApplet (byte theAppletIndex, C2Message theMessageObject)

This method sends a C2Message object directly to another Applet for processing

void
SendObject (C2Message theMessageObject)

This method sends an C2Message object to the CA for processing. It is first converted to a byte[] representation, and then sent to the AppletBase methods for processing.

void
SendObject (C2Message theMessageObject)

This method sends an C2Message object to the CA for processing. It is first distributed to C2Applets that should process it (including its sending Applet), and then converted to a byte[] representation, and then sent to the AppletBase methods for processing.

void
ReceiveObject (C2Message theMessageObject)

This method receives and object for processing by the C2Applets supported by a given C2MonObject. It is distributed to all relaevent C2Applets.

void
DistributeObject (C2Message theMessageObject)

This method sends an C2Message object to each relevant C2Applet, based on the return values it provides for its HasContents methods. C2Applets should assume that any type of object may be passed, and so should validate the object types before processing.

F.4.6 Track Access Methods
vector
GetTrack (int theIndex)

Returns a vector containing the track data associated with the stated track index.

int
GetTrackCount ()

Returns the number of tracks in the current Track file. The added/deleted track can be determined by the track ID.

int
GetTrackChangeCounter ()

This method returns a counter of the number of times tracks have been added or deleted from the track file. This counter can be used by track processing Applets to determine if the track file has changed since the last update. When the track file has changed, the Applets must determine the current track count and re-establish synchronization. Note that changes do not imply updates to values (positions). Just the number and attributes of the tracks.

int
GetThreatCount ()

Returns the number of actual threat objects in the track file.

F.4.7 Tables and Static Data Access Methods

String
GetParticipantName (byte theParticipant)

Returns the String label representing the title of a given participant. Participant codes are defined in MonitorObject.

int
GetNumberROCCs ()

Returns the number of ROCCs that are defined in the C2 Application

String
GetROCCName (byte theROCC)

Returns the String providing the name of a given ROCC.

String
GetParticipantName (byte theParticipant)

Returns the String representation of a given participant in the demonstration. Participant codes are defined in MonObject.

F.5 Granite Sentry Applet Architecture
F.5.1 Purpose
The purpose of this memo is to define the Applet architecture that makes up the Command and Control Application. This document also provides the planned status of the Applets as of 15 December 1996, and the degree of integration with the NPAC Collaborative Application.

F.5.2 Summary

Most of the C2 Application Applets are visible on the main Granite Sentry Screen, as shown below.

[image: image1.wmf]GIS

Directives

Tables

Alarms

Date/

Time

ADOC

Status

F.5.3 Granite Sentry Applet Functions

This section outlines the functions defined in the Granite Sentry Screen Applets All of these are of class C2Applet.

APPLET
Functions and Behavior

GIS
This Applet provides a 2 Dimensional track display of the selected ADOC sector, the US, or North America. It includes tracks for both the bogey and the blue interceptor. The GIS can also be replaced by a 3 D VR display with the same track data. The GIS uses the MonitorObject to provide it current track information. This allows the GIS to “catch up” with events, even if the GIS was not loaded at the time of scenario initiation. The GIS panel is controlled via the ADOCStatus Applet, which (via the MonitorObject) sends the GIS user display selections (via the button controls).

Alarms
This Applet displays any Alarm messages generated by a NORAD player. This is currently a single message wired into the script that is keyed to threat detection. The default (initial) status of this display is “No Alarms.” Upon receipt of an Alarm class message, this text is replaced with the message text. Additional Alarms can be received, which will appear in descending order on the panel. Currently, only a single Alarm is generated. For the current scenario, no ability to clear alarms is required.

Tables
The Tables Applet implements a number of the Granite Sentry Table displays. These include static status, as well as dynamic track information. The Tables Applet can set itself in an update mode to periodically request track information from the C2MonObject The C2Monitor Object informs the Tables Applet when track file contents have changed and require screen update.

Directives
The directives Applet provides the ability to enter Command and Control Directives, and to report the attainment of DEFCON status. It also provides a scrollable area where the directive history is displayed. Directives are passed to the Monitor Object for transmission to the CA. The display of the scrollable message indicates that the message has completed the journey.

ADOCStatus
This Applet displays the current DEFCON records for each of the ADOCs. These are initially obtained from the Monitor Object. Changes in DEFCON are proceeded by the Monitor to the Applet via ChangeDEFCON and ReportDEFCON messages. These are displayed as received.

This Applet also provides controls for user selection of the current GIS display. The ADOC buttons control the selection of GIS map areas. Pressing an ADOC button generates a message to the Monitor that is then passed to the GIS Applet.

SelectionStatus
This Applet displays the current GIS selection. It displays a message text that was sent to it via the GIS.

Date/Time
This Applet displays the current date and time. It is not derived from C2Applet

F.5.4 Granite Sentry Applet Status (As Planned for 15 December 1996)

This section outlines the planned status of the Granite Sentry Screen Applets.

APPLET
Functions and Behavior

GIS
TBD

Alarms
This Applet displays any Alarm messages generated by a NORAD player. This is currently a single message wired into the script that is keyed to threat detection. The default (initial) status of this display is “No Alarms”. Upon receipt of an Alarm class message, this text is replaced with the message text. Additional Alarms can be received, which will appear in descending order on the panel. Currently, only a single Alarm is generated. For the current scenario, no ability to clear alarms is required.

Tables
Most static displays will be implemented. All track display functions will be implemented. This Applet will have essentially complete functionality.

Directives
All defined directives will be implemented.

ADOCStatus
The ADOC status is currently integrated into the same Applet as the GIS. We plan to separate these Applets as described above. This is a low priority task for the demonstration.

SelectionStatus
Not implemented.

Date/Time
This Applet is complete

F.6 Simulation Application

F.6.1 Purpose
The purpose of this memo is to outline the Simulation Application, and to describe the technical aspects of scenario generation.

F.6.2 Overview
The simulation Application executes in any environment that can support interaction with the NPAC CA. It is one of the interacting clients of this environment and need not execute in a “server” mode. The simulation object can also execute within a single workstation and be linked directly to the C2 Monitor Object in a single work station mode. In this case, messages will be he passed directly between the simulation and the Monitor, with the intervening CA functions not present for debugging purposes.

The Simulation scenario is a Java program that executes upon initial load. This creates lists of events that are then processed in time sequence to create the dynamic and interactive scenario behavior. The scenario programming can use all features of the Java language, but can not directly interact (e.g. make decisions regarding outcomes) since the object creation is performed prior to the execution of the simulation.

Most scenario generation activity is performed using constructors for the scenario events and the message classes. Typically, a scenario event transmits a message. Therefore, the script must create a message, such as threat detection, and then include that message in a simulation event (send a message) that is keyed to a particular time in the demonstration.

F.6.3 Roles and Participants
The scenario used to demonstrate the NPAC collaborative environment has to address a wide range of demonstration scenarios, ranging from single player demonstrations, to truly collaborative “games” in which up to a dozen players could participate. Since the demonstration is interactive and the player roles are representative of the scope and authority of “real” civil and military participants, the scenario provides simulated actions for all required participants. Each scenario event is defined in terms of the participant that would perform it. If that participant is actually enrolled in the game, the event is not processed, and the players actual performance is what drives the simulation. On the other hand, if the player is not present, then a “surrogate” action is generated by the simulation that will represent reasonable actions on the part of that functional role. For example, if no player is representing CINC NORAD, the CINC NORAD decisions to raise DEFCON and authorize engagement will be conducted automatically.

F.6.4 Event Structure
Simulation events are organized into event lists. Event lists are sequences of events that are triggered by the environment or by player actions. The wide range of interactions of these events allows for a wide range of outcomes, even with a relatively simple event framework. The simulation events are defined as follows:

Event
How Triggered
Definition

RelativeToDemoStart
Initiated at Demo Start
These are the events that will occur at all connected work stations upon initiating the demo sequence.

RelativeToDetection
Triggered by Script
This event represents the first sensor detection of the threat. It typically will generate a text, audio and data message.

RelativeToInterceptorLaunch
Triggered by Script or Player
This event sequence represents the actions that would occur after the ADOC authorizes the launch of an interceptor.

RelativeToClosing
Computed by Simulation
This event is generated by the simulation and represents the interceptor achieving an engageable position and a fire control solution.

RelativeToVisualID
Computed by Simulation
This event is computed by the simulation and represents the interceptor achieving a position in which a visual ID can be provided to NORAD.

RelativeToInterception
Based on Intercept Authorization
This event represents actions that would occur after weapons release was provided to the interceptor.

RelativeToWaterImpact
Computed by Simulation (based on location)
This event and the next one are exclusive outcomes of the intercept process, and are based on whether the impact point would be on Water or land.

RelativeToLandImpact
Computed by Simulation (based on location)
This event and the last one are exclusive outcomes of the intercept process, and are based on whether the impact point would be on land or water.

TBD
Computed by Simulation
Civil emergency response actions are not yet defined.

The “How triggered” column is for use in simulation development. In fact, all events can be triggered through script entries.

A typical script sequence code fragment is shown below:

public void
Execute
() {
 String BaseURL = "xxx/";

 String AudioBaseURL = BaseURL+"audio/";

//
Event list for the start of the simulation

DefineScenario theScenarioEvent = new DefineScenario (RelativeToDemoStart, 0, "Sample NPAC Scenario #1");

SetURL theURL = new SetURL (RelativeToDemoStart, 5, SendToAllPlayers , BaseURL + "index.html");

//
No documentation available on how to trigger other multimedia events

//
Trigger the detection sequence

 Trigger theTrigger = new Trigger (RelativeToDemoStart, 1200, RelativeToDetection);
// Kick event for detection

//
Event list for detection

float velocity = 260;

position intialPosition = new position (41, 73, 100);
//
Off New York coast

position finalPosition = new position (41, 73, 100);
//
Fort Drum\

vector theThreatVector = new vector (intialPosition, finalPosition, 0, velocity);

SetTrajectory trajectory = new SetTrajectory (RelativeToDetection, 0, intialPosition, finalPosition, velocity);

MultimediaEvent AudioReport = new MultimediaEvent (RelativeToDetection, 45, AudioBaseURL+"AWACSWarning.wav");

ReportContact firstReport = new ReportContact (SendToAllNORAD, participantIsAWACS, "Likely bogey just detected, heading New York at 250knots, altitude 400 feet");

SendPlayerMessage DetectionReport = new SendPlayerMessage (RelativeToDetection, 45, firstReport);

}

Appendix F-16

