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Challenges of Computational Grids

• Heterogeneity
- node power
- architecture
- implementation

• Latencies
- long
- variable

• Bandwidths
- different for different links
- different based on traffic
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Goals of Application Development Support

• Applications should
- be easy to develop
- be portable
- achieve high performance

 close to what is possible by hand

• Application Developer
- should be able to concentrate on problem analysis and decomposition

• System
- should handle details of mapping abstract decomposition onto

computing configuration

• Developer and System
- should work together to debug and tune the program
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Dimensions of Parallelism

• Among nodes
- typically task or object parallelism

• Within a node
- parallel computing today
- data parallelism typical

• Within a single processor
- overlap of computing data access
- overlap instructions with one another
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Available Technologies I

• Autoparallelization
- dependence analysis
- program transformation
- coarse grain parallelism detection
- interprocedural analysis and optimization
- disadvantage

 feasibility

• Explicit Communication
- PVM, MPI, Globus/Nexus, Active Messages
- disadvantage

 programming burden
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Available Technologies II

• Distributed Shared Memory
- hardware and software
- disadvantage

 performance with fine-grained parallelism

• Data Parallel Languages
- HPF, HPC++, ...
- ease of use
- disadvantage

 performance of compiled code

• Task Parallelism
- extensions to HPF
- object parallelism
- disadvantage:

 limited parallelism
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Available Technologies III

• Libraries
- ScaLAPACK, DAGH, P++,...
- disadvantage:

 restricted to objects and functions covered in library

• Programming Tools
- Pablo, Gist, Upshot, ...
- essential for use with languages
- disadvantage

 not enough of them

• Others
- latency tolerance and management
- load balancing
- run-time compilation
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Paradigm 1: Task Composition

• Composition of applications from components
- graphical interface or scripting language
- implementation:

 construction of task graph
 restructuring for better parallelism and load balance
 assignments of components

• Disadvantage
- performance inhibited at intertask interfaces

• Key technologies
- compilation of scripting languages
- interprocedural analysis and optimization
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Paradigm 2: Grid Shared Memory

• Extension of Software DSM
- permits threading and parallel loops
- user or automatic computation assignment

• Disadvantages
- performance for finer-grained parallelism
- requires significant programmer and compiler assistance
- feasible for distributed computing?

• Key technologies
- software DSM
- compiler assistance for communication performance
- performance estimation
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Paradigm 3: Compilation for Grid

• Extension of Languages like HPF
- Nexus/Globus communication layer as target
- differences from HPF

 nonuniform loads in some dimensions
 advanced data structure representations
 mixture of parallelism styles

• Strategy
- data structure decomposition

 decompositions attached to data structures
 whole program analysis required

- functional (task) decomposition
- adaptivity: migration of work
- latency management
- performance estimation
- integration of libraries

• Disadvantage
- like HPF may not be efficient early
- feasible?
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Key Technologies

• Performance Estimation
- whole program
- including run-time issues

• Whole-Program Compilation
- compile, link, and run time

• Run-Time Compilation
- irregular and adaptive

• Libraries
- data structures and functional
- integration by compiler

• Programming Support Tools
- debugging
- performance display and tuning
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Summary

• Distributed Heterogeneous Computing Support Is Hard
- differing node powers and architectures
- long and variable latencies
- differing bandwidths

• Existing Technologies Promising But Inadequate
- extensions will be needed

• Three Paradigms
- task composition
- global shared memory
- compilation for grid
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