
CRPC

Languages, Compilers and Run-Time
Libraries for Computational Grids

Ken Kennedy
Center for Research on Parallel Computation

Rice University

 1. Problem Definition and Goals
 2. Available Technologies
 3. Three Paradigms for Application Development

 Task Composition
 Global Shared Memory
 Mixed Programming Environment

 4. Key Technologies



CRPC

Challenges of Computational Grids

• Heterogeneity
- node power
- architecture
- implementation

• Latencies
- long
- variable

• Bandwidths
- different for different links
- different based on traffic



CRPC

Goals of Application Development Support

• Applications should
- be easy to develop
- be portable
- achieve high performance

 close to what is possible by hand

• Application Developer
- should be able to concentrate on problem analysis and decomposition

• System
- should handle details of mapping abstract decomposition onto

computing configuration

• Developer and System
- should work together to debug and tune the program



CRPC

Dimensions of Parallelism

• Among nodes
- typically task or object parallelism

• Within a node
- parallel computing today
- data parallelism typical

• Within a single processor
- overlap of computing data access
- overlap instructions with one another



CRPC

Available Technologies I

• Autoparallelization
- dependence analysis
- program transformation
- coarse grain parallelism detection
- interprocedural analysis and optimization
- disadvantage

 feasibility

• Explicit Communication
- PVM, MPI, Globus/Nexus, Active Messages
- disadvantage

 programming burden



CRPC

Available Technologies II

• Distributed Shared Memory
- hardware and software
- disadvantage

 performance with fine-grained parallelism

• Data Parallel Languages
- HPF, HPC++, ...
- ease of use
- disadvantage

 performance of compiled code

• Task Parallelism
- extensions to HPF
- object parallelism
- disadvantage:

 limited parallelism



CRPC

Available Technologies III

• Libraries
- ScaLAPACK, DAGH, P++,...
- disadvantage:

 restricted to objects and functions covered in library

• Programming Tools
- Pablo, Gist, Upshot, ...
- essential for use with languages
- disadvantage

 not enough of them

• Others
- latency tolerance and management
- load balancing
- run-time compilation



CRPC

Paradigm 1: Task Composition

• Composition of applications from components
- graphical interface or scripting language
- implementation:

 construction of task graph
 restructuring for better parallelism and load balance
 assignments of components

• Disadvantage
- performance inhibited at intertask interfaces

• Key technologies
- compilation of scripting languages
- interprocedural analysis and optimization



CRPC

Paradigm 2: Grid Shared Memory

• Extension of Software DSM
- permits threading and parallel loops
- user or automatic computation assignment

• Disadvantages
- performance for finer-grained parallelism
- requires significant programmer and compiler assistance
- feasible for distributed computing?

• Key technologies
- software DSM
- compiler assistance for communication performance
- performance estimation



CRPC

Paradigm 3: Compilation for Grid

• Extension of Languages like HPF
- Nexus/Globus communication layer as target
- differences from HPF

 nonuniform loads in some dimensions
 advanced data structure representations
 mixture of parallelism styles

• Strategy
- data structure decomposition

 decompositions attached to data structures
 whole program analysis required

- functional (task) decomposition
- adaptivity: migration of work
- latency management
- performance estimation
- integration of libraries

• Disadvantage
- like HPF may not be efficient early
- feasible?



CRPC

Key Technologies

• Performance Estimation
- whole program
- including run-time issues

• Whole-Program Compilation
- compile, link, and run time

• Run-Time Compilation
- irregular and adaptive

• Libraries
- data structures and functional
- integration by compiler

• Programming Support Tools
- debugging
- performance display and tuning



CRPC

Summary

• Distributed Heterogeneous Computing Support Is Hard
- differing node powers and architectures
- long and variable latencies
- differing bandwidths

• Existing Technologies Promising But Inadequate
- extensions will be needed

• Three Paradigms
- task composition
- global shared memory
- compilation for grid


	Languages, Compilers and Run-Time Libraries for Computational Grids
	1. Problem Definition and Goals
	2. Available Technologies
	3. Three Paradigms for Application Development
	Task Composition
	Global Shared Memory
	Mixed Programming Environment

	4. Key Technologies

	Challenges of Computational Grids
	Heterogeneity
	node power
	architecture
	implementation

	Latencies
	long
	variable

	Bandwidths
	different for different links
	different based on traffic


	Goals of Application Development Support
	Applications should
	be easy to develop
	be portable
	achieve high performance
	close to what is possible by hand


	Application Developer
	should be able to concentrate on problem analysis and decomposition

	System
	should handle details of mapping abstract decomposition onto computing configuration

	Developer and System
	should work together to debug and tune the program


	Dimensions of Parallelism
	Among nodes
	typically task or object parallelism

	Within a node
	parallel computing today
	data parallelism typical

	Within a single processor
	overlap of computing data access
	overlap instructions with one another


	Available Technologies I
	Autoparallelization
	dependence analysis
	program transformation
	coarse grain parallelism detection
	interprocedural analysis and optimization
	disadvantage
	feasibility


	Explicit Communication
	PVM, MPI, Globus/Nexus, Active Messages
	disadvantage
	programming burden



	Available Technologies II
	Distributed Shared Memory
	hardware and software
	disadvantage
	performance with fine-grained parallelism


	Data Parallel Languages
	HPF, HPC++, ...
	ease of use
	disadvantage
	performance of compiled code


	Task Parallelism
	extensions to HPF
	object parallelism
	disadvantage:
	limited parallelism



	Available Technologies III
	Libraries
	ScaLAPACK, DAGH, P++,...
	disadvantage:
	restricted to objects and functions covered in library


	Programming Tools
	Pablo, Gist, Upshot, ...
	essential for use with languages
	disadvantage
	not enough of them


	Others
	latency tolerance and management
	load balancing
	run-time compilation


	Paradigm 1: Task Composition
	Composition of applications from components
	graphical interface or scripting language
	implementation:
	construction of task graph
	restructuring for better parallelism and load balance
	assignments of components


	Disadvantage
	performance inhibited at intertask interfaces

	Key technologies
	compilation of scripting languages
	interprocedural analysis and optimization


	Paradigm 2: Grid Shared Memory
	Extension of Software DSM
	permits threading and parallel loops
	user or automatic computation assignment

	Disadvantages
	performance for finer-grained parallelism
	requires significant programmer and compiler assistance
	feasible for distributed computing?

	Key technologies
	software DSM
	compiler assistance for communication performance
	performance estimation


	Paradigm 3: Compilation for Grid
	Extension of Languages like HPF
	Nexus/Globus communication layer as target
	differences from HPF
	nonuniform loads in some dimensions
	advanced data structure representations
	mixture of parallelism styles


	Strategy
	data structure decomposition
	decompositions attached to data structures
	whole program analysis required

	functional \(task\) decomposition
	adaptivity: migration of work
	latency management
	performance estimation
	integration of libraries

	Disadvantage
	like HPF may not be efficient early
	feasible?


	Key Technologies
	Performance Estimation
	whole program
	including run-time issues

	Whole-Program Compilation
	compile, link, and run time

	Run-Time Compilation
	irregular and adaptive

	Libraries
	data structures and functional
	integration by compiler

	Programming Support Tools
	debugging
	performance display and tuning


	Summary
	Distributed Heterogeneous Computing Support Is Hard
	differing node powers and architectures
	long and variable latencies
	differing bandwidths

	Existing Technologies Promising But Inadequate
	extensions will be needed

	Three Paradigms
	task composition
	global shared memory
	compilation for grid



