MPI on NT: A Preliminary Evaluation of the

Available Environments
Mark Baker1 and Geoffrey Fox2
1Dept. of Computer Science and Mathematics

University of Portsmouth, UK

mab@sis.port.ac.uk

2Northeast Parallel Application Center

Syracuse University, NY, USA

gcf@npac.syr.edu
Thursday, November 06, 1997

Abstract
The aim of this paper is to discuss the functionality and performance of the current generation of MPI environments that are available for NT. The three environments investigated are WinMPICH[1] from the Engineering Research Center at Mississippi State University, WMPI[2] from the Instituto Supererior de Engenharia de Coimbra, Portugal and FM-MPI[3] from the Dept. of Computer Science at the University of Illinois at Urbana-Champaign.

In the first part of the paper we discuss briefly the advantages of using clusters of workstations and then move on to describe NT and the MPI environments being investigated. In the second part of the paper we describe, and then report on, our experiences of assessing the functionality of the MPI environments. In the third part of the paper we make a preliminary evaluation of the performance characteristics of the environments assessed using a number of simple, descriptive benchmarks. Finally, we summarise our findings and suggest a number of improvements that could be made to the environments assessed.

1. Introduction
The use of workstation clusters to prototype, debug and run parallel applications is becoming an increasingly popular alternative to using specialised, typically expensive, parallel computing platforms such as the Cray T3E or the IBM SP2. An important factor that has made the usage of workstations a practical proposition is the standardisation of many of the tools and utilities used by parallel applications. Examples of these standards are the message passing library MPI[4] and data-parallel language HPF[5]. Standardisation in this context enables applications to be developed, tested and even run on workstation clusters and then at a later stage be ported, with little modification, onto dedicated parallel platforms where CPU-time is accounted and charged for.

The following list highlights some of the reasons why workstation clusters are preferred to specialised parallel computers[6][7][8][9]:

· Individual workstations are becoming increasingly powerful.

· The communications bandwidth between workstations is increasing as new networking technologies and protocols are implemented in Local Area Networks (LAN).

· Workstation clusters are easier to integrate into existing networks than special parallel computers.

· Typical low user utilisation of “personal workstations”.

· The development tools for workstations are more mature than the contrasting proprietary solutions for parallel computers - mainly due to the non-standard nature of many parallel systems.

Workstation clusters are a cheap and readily available alternative to specialised high performance computing platforms.

Clearly the workstation environment is better suited to applications that are not communication intensive - typically one would see high message start-up latencies and low bandwidths. If an applications requires higher communication performance, the existing LAN architectures are not capable of providing it.

Traditionally in science and industry a workstation referred to some sort of UNIX platform and the dominant function of PC-based machines was for administrative work and word processing. There has, however, been a rapid convergence in processor performance and kernel-level functionality of UNIX workstations and PC-based machines in the last three years - this can be associated with the introduction of high-performance Pentium-based machines and the Window NT operating system. This convergence has led to an increased level of interest in utilising PC-based systems as some form of computational resource for parallel computing. This factor, coupled with the comparatively low cost of PCs and their widespread availability in both academia and industry has helped initiate a number of software projects whose primary aim is to harness these resources in some collaborative way.

Currently, the two most popular high-level message-passing systems for scientific and engineering application are the PVM - Parallel Virtual Machine - from Oak Ridge National Laboratory[10] and MPI -Message Passing Interface[4]. PVM is both an environment and a message passing library which can be used to run parallel applications on systems ranging from high-end supercomputers through to clusters of workstations. The MPI standard[11] is the amalgamation of what were considered the best aspects of the most popular message-passing systems at the time of its conception. The standard only defines a message passing library and leaves, amongst other things, the initialisation and control of processes to individual developers to define. Like PVM, MPI is available on a wide range of platforms. The choice of whether to use PVM or MPI to develop a parallel application is beyond the scope of this paper, but generally application developers choose MPI as it is fast becoming the de facto standard for message passing. MPI and PVM libraries are available for FORTRAN 90 and ANSI C. There also exist interfaces to other languages - one such examples is Java[12] .

Microsoft Corp.[13] is the dominant provider of software in the personal computing market place. Microsoft provides two basic operating systems: Windows 95 (soon to become Windows 98) and Windows NT 4 (soon to become Windows NT 5)[14] . NT and Windows 95 had approximately 66% of desktop operating systems market share in 1996[15] - IBM OS/2, UNIX, Mac OS and DOS comprise the remainder of the market share.

2. NT Overview

Windows NT (both the Workstation and Server) is a 32-bit Operating System [16][17][18][19]. It is a pre-emptive, multi-tasking, multi-user operating system from Microsoft Corp. NT supports multiple CPU's and provides multi-tasking, using symmetrical multiprocessing. NT is a fault tolerant - each 32bit application operates in its own virtual memory address space. Unlike earlier version of Windows (such as Windows for Workgroups and Windows 95), NT is a complete operating system, and not an addition to DOS. NT supports different CPUs: Intel x86, IBM PowerPC, MIPS and DEC Alpha. NT has object-based security model and its own special file system (NTFS) that allows permissions to be set on a file and directory basis.

A schematic of the NT architecture is show in Figure 1. Windows NT has the network protocols and services integrated in with the base operating system.

Packaged with Windows NT are several built-in networking protocols, such as - IPX/SPX, TCP/IP, and NetBEUI) and APIs, such as - NetBIOS, DCE RPC, and Windows Sockets (WinSock). TCP/IP applications use WinSock to communicate over a TCP/IP network - see Figure 2.
2.1 WinSock
Originally Windows[20] had one built-in interface - Netbios, which allowed applications to communicate via the Netbeui protocol. Users who wanted a different protocol (IPX/SPX, DECnet, or TCP/IP) either had to write their own protocol stacks or purchase them from vendors such as Digital or Novell.

In 1991 a group of vendors established the WinSock Forum with the express purpose of addressing this situation. The forum finished its work on WinSock 1.1 in 1993 and this soon became the de facto standard - it is supported in all versions of Windows and by nearly every TCP/IP stack vendor.

WinSock 1.1 is based largely on the Berkeley UNIX sockets model, which uses sockets as the basic building blocks for application-to-application communication. WinSock includes a core set of routines derived directly from Berkeley UNIX sockets - including connect, which establishes a socket connection; accept, which processes an incoming request for a socket connection; send and receive, for transporting data; and shutdown, for disabling the socket before it is closed.

WinSock 2 has a number of enhancements, including: protocol independence, support for multiple name and service resolution mechanisms, performance enhancements, and support for a variety of additional services (like multi-point and multi-cast communications and security).

2.2 C and FORTRAN Environments

There are two C environments that can be used with the MPI for NT environments: Microsoft Development Studio Visual C++[21] and the Borland C++ Development Suite[22]. Both of these environments run under Windows 95 and NT.

Digital Visual FORTRAN (DVF)[23] is based on Digital FORTRAN 90 compiler for Digital UNIX and OpenVMS Alpha, first released in 1994. DVF was the only readily commercial FORTRAN environment for Windows 95 and NT available at the time that this project was undertaken. DVF is compatible with and can be integrated into Microsoft Development Studio. DVF is compliant with ANSI F77 and F90.

3. MPI Overview

The Message Passing Interface (MPI[4][11] is a portable message-passing standard that facilitates the development of parallel applications and libraries. MPI is available in both C and in FORTRAN 77. It is the result of work undertaken by the MPI Forum, a committee composed of vendors and users formed at the Supercomputing ‘92 conference with the aim of defining a message passing standard. The goals of the MPI design were portability, efficiency and functionality. Commercial and public-domain implementations of MPI exist. These run on a range of systems from tightly-coupled, massively-parallel machines (MPPs), through to Networks Of Workstations (NOWs).

MPI has a range of features including: point-to-point, with synchronous and asynchronous communication modes; and collective communication (barrier, broadcast, reduce). MPI supports features for grouping communicating processes and isolating unrelated communication contexts. Groups are used to define processes involved in collective communication. The MPI standard is rapidly gaining support since the initial introduction. One of its attractions is the number of free implementations that have been made available.

3.1 MPICH

MPICH[24][25], developed by Argonne National Laboratory and Mississippi State, is probably the most popular of the current, free, implementations of MPI. MPICH is a version of MPI built on top of Chameleon[26]. The portability of MPICH derives from being built on top of a restricted number of hardware-independent low-level functions, collectively forming an Abstract Device Interface (ADI). The ADI contains approximately 25 functions and the rest of MPI approximately 125 functions. Implementing the ADI functions is all that is required to run MPICH on a new platform - see Fig 3.

The ADI encapsulates the details and complexity of the underlying communication hardware into a separate module. By restricting the services provided to basic point-to-point message passing, it offers the minimum required to build a complete MPI implementation as well as a very general and portable interface. On top of the ADI, the remaining MPICH code implements the rest of the MPI standard, including the management of communicators, derived data types, and collective operations.

3.2 WinMPICH

3.2.1 Introduction

WinMPICH[1] [27] from the Engineering Research Center at Mississippi State University is a port of MPICH for Microsoft Windows NT platforms. WinMPICH allows processes to communicate with each other via either shared memory or over a network.

The WinMPICH libraries were originally written to explore threads in the device layer for communication, TCP/IP support was added later. TCP/IP support was added by means of a proxy process that runs when a process requires TCP/IP services. In this model everything that is sent via TCP/IP gets sent via shared memory to the proxy process, which then sends it to remote proxy process, that then sends it to the destination process. This methodology is not optimal and so the code is currently being written by the developers.

The WinMPICH release consists of source and binaries for a set of libraries and servers configured to be compiled and linked using Microsoft Visual C++ 4.51. WinMPICH is under development and is freely available.

3.2.2 The WinMPICH Environment

MPIrun is a tool used to start up MPI processes in an MPI job. This program parses the command line given to it to determine how and where it should start up the processes in the MPI job. Two major command line parameters are supported: -np (no processes) and -f (configuration file). These flags are used in conjunction with other command line parameters to start up the MPI job.

MPIServe is an NT service that handles process startup on machines other than the one that the user is logged into. MPIserve is installed by the administrator of the Windows NT network and given a port number on which to listen. When MPIserve is started, the port number is retrieved from the registry and a socket is opened and listened to.

When a connection occurs from MPIrun, a packet of information containing all the locations of all the necessary information about the MPI job is received. MPIserve then performs the process of creating the shared memory regions and the objects therein for all the processes that are required to run in this job.

If more than one machine is in the MPI job, a MPItcpproc process is started as well and it is given the information needed to connect to all the other machines in the MPI job. Once this is complete, the thread in the service that created all the MPI processes then waits on all the processes that were created to exit and then cleans up the resources that it allocated during startup.

MPItcpproc is the proxy process that handles communication between MPI processes that are running on multiple machines. If MPIserve determines that an MPItcpproc should run, it actually allocates resources for it as if it were another MPI process and all of the other MPI processes running on that machine interact with it as if it were another MPI process. Packets are exchanged between the actual MPI processes and MPItcpproc in much the same that they are exchanged between MPI processes. Once MPItcpproc receives a packet from shared memory or from a socket, it operates as a router by looking at the destination field of the packet. It then forwards that packet to either the shared memory region of its destination process that is running on the machine or it forwards it over the appropriate socket that is connected to the destination machine. As in the shared memory communication, all packets that travel over the TCP connection are segmented by the sender and reassembled by the receiver. A process-view of WinMPICH is show in Figure 4.

WinMPIch provides a homogeneous environment which is only capable of inter-operating with Win32 platforms.
3.3 WMPI

3.3.1 Introduction

WMPI[2] from the Instituto Supererior de Engenharia de Coimbra, Portugal is a full implementation of MPI for Microsoft Win32 platforms. WMPI is based on MPICH and includes a P4[28][29] device standard. P4 provides the communication internals and a startup mechanism (that are not specified in the MPI standard). For this reason WMPI also supports the P4 API.

The WMPI package is a set of libraries (for Borland C++, Microsoft Visual C++ and Microsoft Visual FORTRAN). The release of WMPI provides libraries, header files, examples and daemons for remote starting.

3.3.2 WMPI Environment

The communication between different WMPI daemons and between daemons and user processes is made through UDP and TCP sockets, respectively. WMPI uses the WinSock 2 standard.

Each daemon maintains a task table of all tasks under its management. UDP sockets are used to communicate between daemons: this communication is via an unreliable delivery service, where packets can be lost, duplicated and delivered out-of-order. WMPI uses an acknowledgment and retry mechanism to overcome this problem. The utilisation of UDP sockets to communicate between remote daemons provides WMPI with good scalability - see Figure 5 for a schematic of WMPI processes.

A task communicates with its local daemon through TCP sockets. TCP is used because it delivers data reliably and this means that tasks do not have to be interrupted to handle communication faults.

To set up WMPI, a daemon needs to be installed as an NT service. By default the service is configured to be owned by a system account - here processes inherit administrator permissions (i.e., full control over all the system). Alternatively the service can be configured to be owned by a normal user - here the processes started will only inherit the permissions defined for that specified user account. The second method is the safest way to configure the WMPI daemon as an NT service.

3.3.3 WMPI Set up - WMPI/p4 applications

Under Win32 some standard I/O functions (printf(), scanf(), gets() and puts()) need to be emulated: WMPI provides the libraries shell.lib and vshell.lib for this purpose. stdin, stdout and stderr are not emulated. Under WMPI slave processes automatically terminate with ExitProcess(), the originating process then waits for the user to close the window and then automatically terminates with an ExitProcess() call.

3.3.4 Running a WMPI application

WMPI and Wp4 programs start the same way. Both use the startup and configuration mechanisms of the underlying p4 communication subsystem. This is described in the p4 user's guide[28][29]. The option -p4dialog can be set in the command line of a WMPI/p4 program to display a dialog box that enables the user to choose some startup options.

When a WMPI/Wp4 program is run a configuration file is looked for and read-in. This first process then starts the other processes and configures the virtual parallel machine. The configuration (or in WMPI parlance the process group file) is either called a default name or specified explicitly via a command-line flag. WMPI can co-exist and interact with MPICH/ch_p4 in a cluster of mixed Win32 (Windows 95 and NT) and UNIX workstations over a TCP/IP network. WMPI is still under development and is freely available.
3.4 Illinois Fast Messages (FM)

3.4.1 Introduction

FM-MP[3]30][31] is from the Dept. of Computer Science at the University of Illinois at Urbana-Champaign. FM-MPI is a version of MPICH built on top of Fast Messages. The FM interface is based on Berkeley Active Messages[32]. FM, unlike other messaging layers, is not the surface API, but the underlying semantics. FM contains functions for sending long and short messages and for extracting messages from the network. The services provided by FM guarantees and controls the memory hierarchy that FM provides to software built atop FM. FM guarantees:

· Reliable delivery

· Ordered delivery

· Control over scheduling of communication work (decoupling).

The FM interface was originally developed on a Cray T3D and a cluster of SPARCstations connected by Myrinet (a programmable network interface card capable of providing 160 MByte/sec links). The latency and bandwidth achieved by FM was better than the vendor-supplied messaging layers on each system. A number of valuable lessons were learnt from early releases: these have been fed into the latest releases of the software.

FM has a low-level software interface that delivers hardware communication performance; however, higher-level layers interface offer greater functionality, application portability and ease of use.

The problem is that high level interface abstractions add overhead to communication and generally degrade overall performance significantly. For this reason a number of high-level APIs have been developed on top of FM: these include MPI, SHMEM and Global Arrays.

To run MPI on FM, the MPICH's ADI was adapted to communicate with FM calls. FM-MPI was first developed in October 1995 and was designed to run via Myrinet-connected systems. Recently, a variant of FM-MPI that runs on top of WinSock 2 was released as part of the High-Performance Virtual Machines (HPVM) project[33][34] being undertaken by the Concurrent System Architecture Group (CSAG) - see Figure 6.

4. Functionality Tests

4.1 Test Environments

A heterogeneous Windows NT cluster consisting of six machines was used to test the three MPI environments. The systems were running either NT 4 Server or Workstation and had either FAT or NTFS filesystems. Each machine had from 32 - 64 Mbytes of memory and all machines had harddisks of greater than a GByte.

The MPI binaries, libraries and header file were put in the following directories on each machine:

c:\bin

c:\Libs

c:\Include

The files associated with each environment were installed in sub-directories of the aforementioned directories. The appropriate directory paths were added to the PATH, LIBS and INCLUDE environmental variables.

Under WinMPIch and WMPI deamons provide services to configure and run MPI programs. These daemons were installed via the NT Control Panel and the Services Icon. As an NT service the servers were set up to start up automatically (at boot time) and interact with the desktop. Currently there are no native tools under NT to set up services on remote machines, so it was necessary to login at the console of each machine and set up the services.

Under HPVM it was necessary to open a DOS window on each machine and run a Context Manager (CM). In addition one machine in the cluster had to run, via a DOS window, the Global Resource Manager (GRM). This was necessary because both the CM and GRM had not been released in a form that could be set up to run as an NT service.

4.1.1 Comments on the Set up of the MPI Environments

· Deamons - if these are set up under a system account the MPI job will inherit administrators’ privileges.

· The services had to be individually set up on each workstation - Currently there are no native tools for setting up remote services. However, commercial tools do exist under NT, but none were available on the systems used.

· WinMPICH provides source code and the associated Development Studio C++ project files so that the libraries and servers could be debugged and recompiled locally. Source code is not currently provided as part of the WMPI and HPVM release.

· In both WinMPICH and WMPI each program had its own configuration file. To run a program it was only necessary to type the programs name followed by a flag and the configuration file name at the DOS prompt. Under HPVM the configuration file specified the complete virtual machine. To run a parallel program it was necessary to start the program running on every machine by entering the program’s name, the number of processes that would be running and a common key string value for all the processes that would be co-operating together.

· Each environment included test codes and binaries that could be used to test the configuration and functionality of the installed environments.

4.2 Test Suites

There are several suites available to test the functionality of MPI[35] ports. Each MPI environment being assessed in this project is based on MPICH and a suite designed to test this implementation was chosen.

4.2.1 C Test Suite

The C test suite used is one that has been developed by IBM[36], has been modified by Gropp of ANL to comply fully to the MPI standard and is compatible with the MPICH. The suite consists of eighty-seven C programs that test the following MPI calls and data types:

· Collective operations

· Communicators

· Data types

· Environmental inquiries

· Groups

· Point to point

· Virtual topologies

Each program included the following MPI calls:

Figure 9 - MPI calls used in each test Code

4.3 Functionality Test Results

4.3.1 Compilation, Linking and Test Runs

All the codes from the test suite were successfully compiled and linked for each of the three environments. The codes were run in three basic configurations:

· Shared memory - here up to eight processes were run on one processor.

· Distributed memory - here each process ran on a separate processor - up to six processors were used.

· Mixed - here both shared and distributed memory modes were used together.

4.3.2 WinMPICH
All the codes ran to completion in shared memory mode. In distributed memory mode, apart from one code, each program ran to completion successfully. The code, which used non-blocking sends and receives (ISend/IRevc), failed to run. The problem was reported to the developers.

4.3.3 WMPI

All the codes ran to completion in both shared memory and distributed memory modes. The main problem initially encountered with WMPI was memory allocation. By default the amount of global memory used by WMPI is set to 1 MByte. It was necessary to change this variable from 10 - 15 MBytes to ensure all the tests codes ran successfully to completion.

4.3.4 FM

A range of run-time error occurred when running HPVM. All the test codes started to run, but several failed during run-time - it seemed that most of the errors reported were associated with memory problems. In all about ten of the codes from the test suite failed. The problems encountered were reported to the HPVM developers and are too many to report here.

4.4 FORTRAN Tests

FORTRAN wrappers for WMPI and FM-MPI existed at the time that this paper was written. However, the libraries had both been produced with the Microsoft Visual FORTRAN version 4. This FORTRAN system and its libraries were found to be incompatible with Digital Visual FORTRAN used within this project. In addition, as the source code for the libraries was unavailable, the authors could not recompile the libraries with DVF compiler. The FORTRAN wrappers for WinMPIch where still being developed at the time that this paper was submitted for publication in October 1997.
4.5 Typical Problems Encountered - Summary

The majority of errors encountered were memory-related problems. Test programs generally failed by hanging indefinitely, reporting no error or by displaying Assert messages on the console - reporting an application error which generally indicated that the program had referenced memory that it could not read.

To run an HPVM program the user needs to log into each machine that is going to be used, start a DOS window, run the CM, open another DOS window and start the application up. This was obviously very tedious when using more than one workstation.

Currently WinMPIch programs are compiled as Console-Applications. Consequently when an application is run, a DOS window will pop-up for each process in the MPI job. In addition, when running distributed memory MPI jobs a further DOS window will pop-up - this window is produced by the socket-server process running on each workstation (mpitcpproc). The overall effect of these DOS windows appearing is annoying when running MPI jobs in shared memory but can cause problems when using distributed memory as windows pop-up on remote workstations which may be in use by other users - irritating for the remote workstation user, but disastrous if that same user kills the DOS windows as the application will hang and no warning will be relayed to the user running the MPI job. According to the developers this problem will cease when they implement piping of standard I/O from remote workstations to a designated destination (file or console).

A further problem encountered with WinMPIch was that of application initilisation. Often, when an application was started from the command line, console windows popped up on the appropriate workstations and then hung; on other occasions the application would run successfully. To kill the application it was necessary to interrupt the command-line by typing CTRL-C and then close all the DOS windows, including all those on remote machines. Experience showed that an application would not initialise itself and run to completion approximately once in three times. This problem was reported to the developers.

It should be noted that at no stage did any application bring about the failure or crash of one of the NT workstations.

5. Performance Tests

5.1 Introduction

There are several suites of distributed benchmark codes including EuroBen[37][38][39], NAS Parallel Benchmarks[40], and Parkbench[41]. These popular and well known standard benchmarks are written in FORTRAN and so, due to the FORTRAN problems (mentioned in Section 4.4) could not be used. Alternative C variants were used for preliminary performance purposes in this paper.

The aim of these initial performance tests is restricted to gathering data that will help indicate the low-level performance of MPI on NT. Investigating the performance of “real” applications running using MPI on NT will be left to a later time when the NT environments are more mature and FORTRAN wrappers are available. Two codes were chosen for performance evaluation of the three MPI environments: one to indicate the single processor performance and the other to show the inter-processor communications performance.

5.2 Performance Results

Two systems were used to provide a representative demonstration of the typical performance of NT systems in both shared and distributed memory modes - Table 1 shows NT configuration details.

NT Server 4
NT Workstation 4

Processor
150 MHz Pentium Pro
75 MHz Pentium Pro

L2 Cache
256 KB
256 KB

Memory
48 Mbytes
24 Mbytes

Disk
2.1 Gbytes
0.81 Gbytes

Network
Ethernet (10bT)
Ethernet (10bT)

Table 1 - NT System Configuration.

5.2.1 Single Process Results
5.3 Rinf1

Rinf1 tests basic arithmetic operations by running a set of common FORTRAN DO-loops and analysing their time of execution in terms of the two parameters, Rinf and n1/2. Rinf is the asymptotic performance rate in Mflop/s which is approached as the loop (or vector) length, n, becomes longer. n1/2 (the half-performance length) expresses how rapidly, in terms of increasing vector length, the actual performance approaches Rinf. It is defined as the vector length required to achieve a performance of one half of Rinf.

Rinf1

Loop
Vector

Operation
NT Server (Mflop/s)
NT Workstation

(Mflop/s)

Min
Max
Min
Max

Contiguous dyads
A(I)=B(I)*C(I)
4.174
20.000
1.163
6.250

Dyads, stride=8
A(I)=B(I)*C(I)
1.279
20.000
0.475
6.250

Contiguous triads
A(I)=B(I)*C(I)+D(I)
6.323
33.333
2.273
12.500

Triads, stride=8
A(I)=B(I)*C(I)+D(I)
1.866
28.571
0.654
12.500

Random scatter/gather

4.455
10.000
2.296
5.865

Contiguous 4-op
A(I)=B(I)*C(I)+D(I)*E(I)+F(I)
7.821
30.769
2.602
16.000

Inner product:
S=S+B(I)*C(I)
10.421
50.000
3.692
22.220

First order recurrence:
A(I)=B(I)*A(I-1)+D(I)
5.189
28.571
1.937
15.385

Charge assignment
A(J(I))=A(J(I))+S
6.250
14.286
3.333
7.692

Transposition:
B(I,J)=A(J,I)
2.538
4.348
0.978
3.571

Matrix mult by inner product
-
4.435
28.571
2.169
13.245

Matrix mult by middle product
-
3.766
20.000
1.802
9.600

Matrix mult by outer product
-
2.646
10.526
1.374
5.263

Dyads, stride=128:
A(I)=B(I)*C(I)
1.189
14.286
0.378
5.556

Dyads, stride=1024
A(I)=B(I)*C(I)
0.908
8.403
0.225
4.545

Contiguous daxpy
A(I)=S*B(I)+C(I)
7.920
33.333
3.246
11.765

Indirect daxpy
A(J(I))=S*B(K(I))+C(L(I))
3.120
25.000
1.156
11.050

Total

4.371
22.353
1.750
9.956

Table 2 - Rinf1 Results

5.3.1 Comments on the Results

These results show that one can expect a peak performance of approximately 10 Mflop/s on the 75 MHz NT Workstation and just over double the performance (22 Mflop/s) on the 150 MHz NT server. The slightly greater than two-times performance of the NT server is assumed to be due to the additional memory available on the NT Server (48 Mbytes).
5.4 Multi-processor Benchmark - PingPong

In this program increasing sized messages are sent back and forth between processes - this is commonly called PingPong. This benchmark is based on standard blocking MPI_Send/MPI_Recv. PingPong provides information about latency of MPI_Send/MPI_Recv and uni-directional bandwidth. To ensure that anomalies in message timings do not occur the PingPong is repeated 1000 times for messages sizes 64K and smaller.

5.4.1 Shared Memory Results

Figure 10 - Message Time versus Size
5.4.2 Shared Memory Performance Comments

The message start-up latencies for WMPI and WinMPIch are 175 and 300 sec respectively. Both show a similar small increase in message communications time up until 4K: at this point the communications times increase almost exponentially. At 128K there is a large step in WMPI communications, thereafter time to send 512K -> 4M messages decreases. This step in performance was reported to the WMPI developers. The reason for the step was given as being the boundary where the largest packet size (128K) started to be used in WMPI.

The performance of HPVM in shared memory is poor throughout. Communications times between 0 and 64K are constant at approximately 121msec. Thereafter communications time increases almost exponentially. The reasons for the very poor performance is explained by the developers as being due to the fact that their implementation of MPI-WinSock was designed to be used in a distributed environment and is not optimised for processes running on one process and consequently incurs the large performance hit.

Figure 21 - Communications Bandwidth versus Message Size
5.4.3 Shared Memory Performance Comments

The message peak bandwidth for WMPI and WinMPIch are 80 and 25 Mbytes/s respectively. Bandwidth approximately doubles at each discrete new message size up until 4K: thereafter the bandwidth decreases. WinMPIch peaks at 64K and WMPI at 256K. The performance of WinMPIch remains approximately constant. After 256K, WMPI exhibits a sharp decrease and bandwidth falls to about 3 Mbytes/s, thereafter the performance rapidly rises.

The performance of HPVM in shared memory is poor throughout. The bandwidth peaks at 64K and remains approximately constant thereafter. Communications times between 0 bytes and 64K bytes are constant at approximately 121 msec.

Figure 13 - Communications Time versus Message Size
5.5 Distributed Memory Performance Comments

The message start-up latencies for WMPI, HPVM and WinMPIch are 3.4, 5.7 and 9.9 msec respectively. For HPVM and WMP messages the time decreases slightly thereafter. HPVM is approximately 2 - 3 msec slower than WMPI up until 4K, thereafter the times for HPVM and WMPI are approximately equivalent.

The performance of WinMPIch in distributed memory is poor throughout. The start-up latency of almost 10 msec is at lease twice that which would be expected and can be explained by the extra memory copies that occur between MPI processes and the mpitcpproc on each machine (see Figures 4).

5.5.1 Distributed Memory Performance Comments

The message peak bandwidth for WMPI, HPVM and WinMPIch are 2.8, 3.0 and 0.9 Mbytes/s respectively. The performance curves of WMPI and HPVM are approximately equivalent.

The performance of WinMPIch in distributed memory is poor throughout - a maximum 80K bytes/s bandwidth is low compared with the almost 3 Mbytes/s peak achieved by WinMPIch/WMPI. This behaviour is believed to be caused by additional memory copies that occur between MPI processes and the mpitcpproc on each machine (see Figures 4).

It should be noted that system used for the distributed memory PingPong is two NT systems connected by PCMCIA cards and a dedicated Ethernet cable. It is believed that the achieved peak bandwidth of nearly 3 Mbytes/s compared with the normal 1.25 Mbyte/s is due fact that the PCMCIA cards are capable of driving the Ethernet at this higher speed.

Figure 14 - Communications Bandwidth versus Message Size
6. Conclusions

6.1 Introduction

Within this paper we have discussed our experiences testing the usability, set up, functionality and performance of the three main MPI environments for NT. It should be noted that all three environments are either still in beta or at a very early stage of release. Needless to say the authors have had frequent discussions with all the developers via email since this project’s inception and hope that their feedback will influence in the future development of all three environments. Originally, it was hoped that the authors would be able to investigate the FORTRAN interfaces to MPI. However, these interfaces are either not available or not configured for the current release of FORTRAN compilers available. Our experiences with FORTRAN and comparative tests between NT and workstations running UNIX-based versions of MPI will follow. The following sections summarise our findings so far.

6.2 Usability and Functionality

Administration - The set up and configuration of WinMPIch and WMPI is similar to that which would be required to do the equivalent of MPICH in a UNIX environment. The main difference being that remote administration of workstations under NT is more difficult. Either third-party tools need to be purchased and installed, or each machine needs to be administrated by logging on locally. Under HPVM the GRM and the CM need to be run each time a parallel (MPI) job needs to be started - due to the fact that neither the GRM or CM has been released as a NT service. Consequently, unlike WinMPIch and WMPI where the services are set up just once, HPVM requires the GRM and CM to be set up again and again.

Running applications - WinMPIch and WMPI provide a command-line interface with which a user of MPICH on a UNIX workstation would be familiar - mpirun or p4 switches. In addition WMPI provides a “friendly” VC++ dialog-box pop-up. The usability of HPVM is more problematic. There are two means of starting MPI jobs, via a Java Applet (which was not tested) or via a DOS window and its command-line - here the user cannot use a MPI configuration file but rather has to enter command-line options on each of the machines used for the MPI job.

Compilation and linking - All three environments provide fully functional C interfaces to MPI. At this stage the functionality of the FORTRAN interface to MPI has not been tested due to the reasons mentioned earlier in this paper (see section 4.4).

Heterogeneity - WMPI provides support for a heterogeneous environment (Win32 and UNIX), WinMPIch provides a homogeneous environment (Win32). HPVM can support a heterogeneous environment - this ability is dependent on the machines being used having the same byte-ordering, but according to the developers it has not been rigorously tested.

6.3 Performance

6.3.1 Shared Memory

Both WinMPIch and WMPI provide fully functional, fast and reliable MPI environments in shared memory. WMPI is faster than WinMPIch by approximately a factor of two up to 32K and then by a factor of four up to 256K. WMPI does, however, exhibit a very large performance degradation when messages sizes go beyond 256K. It suddenly plummets to 3 Mbytes/s at 512K before recovering to near 30 Mbytes/s at 4M. In comparison WinMPIch peaks at approximately 25 Mbytes/s and is thereafter relatively steady - remaining at around the 22 Mbytes/s.

The performance of HPVM is very poor throughout, In fact message communications times decrease steadily from 124 msec (0) to 121 msec (64K). Thereafter times approximately double at each new discrete message size. Even though the communications bandwidth steadily increases as message size increases, a peak bandwidth of 0.4 Mbytes/s is poor.

6.3.2 Distributed Memory

The performance of WMPI and HPVM is fairly similar throughout the range of message sizes used. The start-up latency of HPVM is approximately 60% greater than WMPI. This difference in times to communicate a message is nearly constant until 4K, thereafter the times and bandwidths are almost the same. Both WMPI and HPVM reach the peak bandwidth achievable on the test system of 3 Mbytes/s. The start-up latency of between 3.5 and 6 msec is similar to that which would be expected between UNIX workstations.

The performance of WinMPIch is relatively poor compared to WMPI and HPVM. The start-up latency of 10 msec is double that which would normally be expected. In addition, even though the communications bandwidth increases steadily, a peak of around 100 Kbytes/s is 300% down on the actual peak achievable.
6.3.3 Overall Conclusions

In terms of functionality and performance WMPI is clearly the best environment of the three investigated for running MPI jobs on NT. However, WMPI falls down somewhat, in the authors’ opinion, if user support, documentation and the availability of source code is also taken into consideration.

WinMPIch, which was originally designed purely to investigate threads in a shared-memory environment, performs well in shared memory. Its functionality is good and its performance almost matches that of WMPI in shared memory. However, in distributed memory, WinMPIch has problems with reliability, functionality and performance The problems encountered with non-blocking send/receive is an area of concern, but Isend/Irecv is known to have been a problem in MPICH in the past and the problem may disappear when the latest version of MPICH is used with WinMPIch. There is an obvious structural problem with WinMPIch - the fact that there is a need for mpitcpproc process highlights this fact. The current structure produces a large performance impact (many additional memory copies needed) and is a probable cause of the problem of MPI jobs not starting up every time (mentioned in section 3.2.2). WinMPIch is fairly well documented and user support is good and responsive.

The HPVM environment has been designed around using Myrinet networks and Fast-Message protocols. The fact that there are several high-level interfaces (MPI, SHMEM and Global-Arrays) and a WinSock interface makes HPVM a potentially very desirable environment. Within this project we have been assessing the WinSock interface to HPVM - which is obviously not the target originally chosen by the developers and consequently can only be considered an early prototype. In shared memory HPVM performance is very poor and virtually unusable. In distributed memory, the performance of HPVM is very close to WMPI, and with further work could match or out-perform it. Approximately 10% of the test suite codes failed when run in distributed memory under HPVM - most of these failures were thought to be due to a lack of memory. Currently, memory buffer size cannot be increased in HPVM so this could be a problem for some applications. HPVM documentation is fairly comprehensive but is directed toward the Myrinet version of the environment. User support is fairly responsive, but not always helpful.

Finally, it is clear that an MPI implementation should be inter-operable over a heterogeneous computing environment. For example an MPI job should be capable of running and co-exist on NT, Linux, UNIX and any other platform where MPI has been ported. Of the environments investigated only WMPI has such a capability. HPVM requires that the CM be ported to each environment and then is only capable of providing heterogeneous support if the byte-ordering is the same on all machine. WinMPIch currently only on Win32 platforms.

6.4 Suggested Improvement

· Application Initialisation - A simple Java Applet would provide a good alternative graphical interface for starting MPI jobs running.

· Application Configuration - Both WinMPIch and WMPI allow applications to be run via configuration files (this is not possible via the command-line with HPVM). The syntax used for application configuration within these files is very basic (machine name, processor number and executable path and name). It would be highly desirable that a simple configuration language be developed in conjunction with these environments which would include features like macros and recursion.

· Job configuration files - This would be a useful added feature for HPVM.

· Console Application - WinMPIch applications and servers need to be developed as Win32 applications - popping-up console windows is in convenient and unnecessary.

· I/O - WinMPIch I/O needs to be redirected back to process 0 or by default written to a common file on the local machine.

· Security implications - The privileges of the Service daemons needs to be addressed.

· NT Services - HPVM deamons need to be urgently developed so that they can be configured as NT services.

· Heterogeneous Support - MPI should be capable of providing heterogeneous computing support.

6.5 Future Work

The authors intend to continue investigating the MPI environments for NT, in particular the next stage of work to be undertaken will be that of testing the functionality and performance of the FORTRAN interfaces to the three environments. Thereafter, the authors wish to take a broader look at the performance of MPI on NT against other MPI environments - such as UNIX workstation clusters. In the longer term the authors will be looking at new technology alternatives, such as Java and Corba, for providing MPI services on NT workstation clusters.

Acknowledgments

The authors wish to thank the developers of WinMPIch at MsState, WMPI at Coimbra and HPVM at UIUC for help in providing information and support that enabled this work to be undertaken. The authors would also like to thank Rose Rayner for her time and patience proof reading this paper.
References

Applications

Protected Subsystems

(e.g. POSIX, OS/2)

Security monitor, process manager

virtual memory manager

I/O

Graphics

Hardware

Figure 1 - Windows NT 4.0 Architecture

Hardware

Abstraction Layer

Winsock

applications

Winsock API

TCP/IP Stack

Device Driver

Network

interface card

Internet

Figure 2 - Windows 95/NT: Network Layers

under WinSock

Figure 3 - Conceptual Layered Model of MPI [24]

API (MPI Calls)

ADI

The Channel Device Interface

WinNT Device

mpiserve

Computer 1

mpitcpproc

mpiserve

mpirun

MPI Process

MPI Process

MPI Process

MPI Process

Fig 4 - WinMPICH - Process View

Computer 2

mpirun

mpitcpproc

TCP

TCP

UDP

WinSock (Host 1) 1)

TCP

TCP

UDP

WinSock (Host 2)

Daemon

Daemon

MPI

Process

MPI

Process

MPI

Process

MPI

Process

Fig 5 Communications Between Deamons and MPI Processes

Fast Messages

Sockets

Ethernet or other

Myrinet

Fast messages

MPI

SHMEM

Global Arrays

Applications

Figure 6 - HPVM Layered Architecture

GRM

CM

CM

CM

CM

User

Process

User

Process

Front-end

Server

Front-end

Client

User

Process

Internet

Figure 7 - HPVM Process View

Context

Manager

Global

Resource

Manager

void main(int argc, char* argv) {

 …

 MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&myself);

 MPI_Comm_size(MPI_COMM_WORLD,&tasks);

 …

 …

 MPI_Finalize();

}

[1] WinMPICh - http://www.erc.msstate.edu/mpi/mpiNT.html

[2] WMPI - http://alentejo.dei.uc.pt/w32mpi/

[3] FM-MPI - http://www-csag.cs.uiuc.edu/projects/comm/mpi-fm.html

[4] Snir, Otto, Huss-Lederman, D. Walker, and J. Dongarra, MPI The Complete Reference, MIT Press; 1996

[5] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel, The High Performance Fortran Handbook, The MIT Press, 1994.

[6] M. Baker, G. Fox and H. Yau, Review of Cluster Management Software, NHSE Review, May 1996, - http://nhse.cs.rice.edu/NHSEreview/CMS/

[7] L. Turcotte, A Survey of Software Environments for Exploiting Networked Computing Resources, Engineering Research Center for Computational Field Simulation, Mississippi State, 1993

[8] G.F. Pfister, In Search of Clusters, Prentice Hall PTR, 1995, ISBN 0-13-437625-0

[9] T. Anderson, D. Culler, and D. Patterson. A Case for NOW (Network of Workstations). IEEE Micro, 15(1):54-64, February 1995.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM - Parallel Virtual Machine - a User’s Guide and Tutorial for Networked Parallel Computing, The MIT Press, 1995 - ISBN 0-262-5710-0.

[11] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, May 5, 1994, University of Tennessee, Knoxville, Report No. CS-94-230

[12] MPI Java Wrapper - http://www.npac.syr.edu/users/yjchang/javaMPI/index.html, November 1997.

[13] Microsoft Corporation - http://www.microsoft.com

[14] A. Watts, High Command, PC Direct, December 97

[15] The Microsoft Market Share - http://newsport.sfsu.edu/ms/markets.html

[16] H. Custer, Inside Windows NT, Microsoft Press, 1993, ISBN 1-55615-481-X

[17] K. Spenser, NT Server: Management and Control, Prentice Hall PTR, 1996, ISBN 0-13-107046-0

[18] E. Pearce, Windows NT In a Nutshell, O’Reilly and Associates, Inc, 1997, ISBN 1-56592-251-4

[19] Windows NT Server - http://www.microsoft.com/ntserver/

[20] WinSock Resources - http://www.stardust.com/wsresource/wsresrce.html

[21] Visual Studio and Visual C++ - http://www.microsoft.com/visualtools/

[22] Borland C++ - http://www.borland.com/bcppbuilder/

[23] Digital Visual FORTRAN - http://www.digital.com/fortran/

[24] MPICH - http://www.mcs.anl.gov/mpi/mpich/

[25] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable implementation of the MPI message passing interface standard - http://www.mcs.anl.gov/mpi/ mpicharticle/paper.html

[26] W. Gropp and B. Smith, Chameleon parallel programming tools users manual. Technical

Report ANL-93/23, Argonne National Laboratory, March 1993.

[27] MPI Implementation for NT, B. Protopopov, Mississippi State University, 22nd May 1996 - http://www.erc.msstate.edu/mpi/NTfiles/winMPICHpresent.ps

[28] R. Buttler and E. Lusk, User's Guide to the p4 Parallel Programming System. ANL-92/17, Argonne National Laboratory, October 1992.

[29] R. Butler and E. Lusk, Monitors, messages, and clusters: The p4 parallel programming system. Parallel Computing, 20:547--564, April 1994.

[31] S. Parkin, V. Karamcheti and A. Chein, Fast-Message (FM): Efficient, Portable Communication for Workstation Clusters and Massively-Parallel Processors, IEEE Microprocessor Operating Systems, April - June, 1997, pp 60 -73.

[32] T. von Eicken, D. Culler, S. Goldstein and K. Schauser, Active Messages: a mechanism for integrated communication and computation, Procs. of International Symposium on Computer Architects, 1992.

[33] HPVM - http://www-csag.cs.uiuc.edu/projects/clusters.html

[34] S. Parkin, M. Lauria, A. Chien, et. al, High Performance Virtual Machines (HPVM): Clusters with Supercomputing APIs and Performance. Eighth SIAM Conference on Parallel Processing for Scientific Computing (PP97); March, 1997.

[35] MPI Test Suites - http://ww.mcs.anl.gov/Projects/mpi/mip-test/tsute.html

[36] MPI test case assortment from IBM - ftp://info.mcs.anl.gov/pub/mpi/mpi-test/ibmtsuite.tar

[37] W, Hockney, The Science of Computer Benchmarking, SIAM Publication, Philadelphia, 1996, ISBN 0-89871-363-3

[38] A. .van der Steen, The Benchmark of the EuroBen Group, Parallel Computing, 17, (1991) 1211 - 1221

[39] Euroben - http://www.fys.ruu.nl/~steen/

[40] NAS Parallel Benchmarks - http://science.nas.nasa.gov/Software/NPB/

[41] ParkBench - http://www.netlib.org/parkbench.html

16
1

_939991236.bin

_939991366.bin

_940340936.bin

_939991060.bin

