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Fig 1:The Performance Prediction Process
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Fig2: HLAM – the Hierarchical Application Model
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Fig. 3:The Machine Model and Data Movement Primitives





2:The Performance Prediction Process


This project is built around the performance prediction process sketched in figure 1. The distinctive feature of our approach is the use of  machine and problem abstractions which although less accurate than detailed complete representations, can be expected to be more robust and further quite appropriate for the rapid prototyping needed in the design of new machines, software and algorithms. The heart of this performance prediction process are two technologies – HLAM and PETASIM. These originate in the work of the Rutgers/UCSB and Syracuse respectively but will be fully integrated in this project and it is this integration which is described here. Further the HLAM/PETASIM performance prediction system will interface to the application emulators developed at Maryland using a combination of static and runtime compilation techniques from all 3 groups. We refer generically by HLAM to the four key inputs to PETASIM which describe respectively the target machine (sec. 2.1), application (sec. 2.2), script specifying execution of application on machine (sec 2.3) and finally the cost model for basic communication, I/O and computation primitives (sec. 2.4). As indicated, we discuss these in the following four sections with the major section 2.3 describing PETASIM with basic concept and implementation.





2.1 Target Machine Specification


Note that there is deep relationship between Performance modeling and the description of applications needed to allow either the user or compiler to properly map an application onto parallel systems. In general, reliable performance estimates need the same level of machine description as is needed to specify parallel programs in a way that allows good performance to be obtained when executing on the target machine. This machine description can either be explicit (as in MPI) or implicit as in an automatic parallelizing compiler which must essentially use such a machine description to define its internal optimizations of data placement and movement. Thus to be effective in estimating performance on a target machine, PETASIM must input an architecture description at the same level needed by parallel programming environments. The PetaSoft meetings identified the need for such architectural descriptions as essential in defining future extensions to parallel languages whether they be message or data parallel. Roughly one can say that current parallel systems are described (in MPI and HPF) as a two level memory hierarchy but as shown in figure 3, this is inadequate for some current and nearly all future expected high performance systems. Thus an important product of our project will be such a machine description which we will target at both today’s (distributed shared memory) machines and the future designs typified by those examined in the PetaFlop process. The latter looked at “extrapolated conventional”, Superconducting and Processor in Memory designs and our proposed specification is appropriate for these three cases.[FoxFurm 97] As explained above, this machine description will be very helpful in developing future parallel programming environments. We expect experience from our project to drive new developments in this field  as we will determine which features of problem and machine are performance critical as we will use (reliable) models of expected complex memory hierarchies and not to wait for new hardware to be available. 


Our proposed machine description in HLAM will allow specification of number of memory hierarchies, their sizing and data movement (latency and bandwidth) times. A typical example is shown in figure 3 taken from the PetaSoft discussion. These primitive machine operations will include collective as well primitive operations and cover both data movement and data replication (as in messaging and cache operation).


2.2: HLAM -- Hierarchical Application Model


The behavior of an application includes: data access and  communication patterns, performance cost patterns,  control structures, and synchronization events.  


Data access/communication patterns identify the structure and frequency of I/O and inter-module communication. 


Synchronization events and control structures identify the execution patterns following the  control flow and dependence between modules. 


Performance patterns reveal the cost functions for an individual computation/communication unit. Cost information  assists the system to predict the performance of this unit  without actually executing the code.


We need a high level abstraction since we may not be able to  execute every part of large-scale application code using currently available computing resources. HLAM is sketched in figure 2 which shows that we first divide a general problem into basic data-parallel modules. In practice, these modules will often execute on separate nodes of a networked metacomputer. In this way, HLAM will include a wide range of applications including data-intensive applications (including I/O from remote sites) and migratory Web programs. Some key features of our proposed high level abstraction HLAM are:


Hierarchical graph representation. 


Support the symbolic specification of problems so that the high level abstraction can be used to test arbitrarily large problem instances.


Support the use of aggregates as building blocks for specifying application modules in a  hierarchical/multi-level manner which includes both task and data parallelism. 


Aggregates are chosen as the largest possible unit of data parallelism which can specify the problem at the level needed to model performance with required precision and grain size.


Model various types of data interaction (loose synchronization and other dependencies such as pipelining)  between program components. Explicit support of loosely synchronous structure present in essentially all large scale SPMD data parallel systems.


Support the modeling of dynamic relationship  for runtime  adaptive prediction/optimization.


We will provide a convenient Java user interface which will allow the user to specify all four inputs to HLAM (machine, problem, execution, cost). Further as explained later, various techniques such as static and runtime compilation and detailed simulation will “automate” parts of this specification process. 


One initial focus will be to develop a hierarchical behavior representation  for MPI-based SPMD parallel code. Previous research on  representing the parallelism from sequential code will benefit our project. For example, the control and data dependence can be  modeled through program dependence  graphs.{PDG} Hierarchical task graphs{Polychronopoulos} were developed for modeling functional parallelism and loop parallelism. Such a graphical structure has also been studied in the SISAL project for functional parallelism{SISAL}.  For modeling MPI-based parallel programs, we will abstract not only hierarchical control structures, but also important multiprocessing events such as message sending, receiving, reduction, global communication and barriers. Thus the graphical structure  of a MPI program will consist of basic computation components, communication and I/O primitives, and multi-level control over these components. A basic computation is a code segment without involving I/O and multiprocessor communication.  Basic computation blocks  are modeled in a coarse-grain level if  possible so that the performance impact of multi-level memory hierarchy can be studied in a block level.  Computation primitives from software building blocks such BLAS and  LAPACK math subroutines can be used to abstract basic computation.





2.3: PETASIM -- A Performance Simulator for parallel hierarchical memory computers 


2.3.1: Introduction and Motivation


Central to this proposal is a performance simulator PETASIM which is aimed at supporting the (conceptual and detailed) design phases of parallel algorithms, systems software and hardware architecture. Originally this was designed as a result of the two week long workshops – PAWS and PetaSoft – aimed at understanding hardware and software architectures ten years from now when Petaflop (1015) scale computing can be expected. It was clear from these meetings that the community needed better aids for performance estimation as the 8 groups (and 8 different machine designs) present found it difficult to compare designs and in particular differed by a factor of million (PAWS report) in estimating performance of even a set of extremely simple algorithms – the PetaKernels  -- on their new designs. The most sophisticated PetaKernel was a regular finite difference problem solved by simple Jacobi iteration which is of course well understood. These workshops emphasized the need for tools to allow one to describe complex memory hierarchies (present in all future and most current machine designs) and the mapping of problems onto them in a way that allows reliable (if high level) performance estimates in the initial design and rapid prototyping stages.


PETASIM is aimed at a middle ground – half way between detailed instruction level machine simulation and simple “back of the envelope” performance estimates. It takes care of the complexity – memory hierarchy, latencies, adaptivity and multiple program components which make even high level performance estimates hard. It uses a crucial simplification – dealing with data in the natural blocks (called aggregates in HLAM) suggested by memory systems – which both speeds up the performance simulation and in many cases will lead to greater insight as to the essential issues governing performance. We motivate and illustrate the design of PETASIM by the well known formulae for parallel performance of simple regular applications on nodes without significant memory hierarchy. Then (chapter 3 of PCW) one finds,


	Speed Up = Number of Nodes/(1 + Overhead)


	where the Overhead is proportional to (Grain Size)-g (tcomm / tcalc )


where in this case natural data block size is the Grain Size or number of data points in each node. The power g measures edge over area effects and is 1/d for a system of geometric dimension d.  (tcomm / tcalc ) represents a ratio of communication to compute performance of the hardware. Such a formula shows the importance of identifying natural data block and how such high level analysis allows one to understand the relation of performance to memory sizing, I/O and compute capabilities of the hardware. PETASIM generalizes this “back of the envelope” estimate to more complex problems and machines. It also includes not just primitive messaging performance (node to node as used in above estimate) but also collective (such as multicast) mechanisms which are present in most applications but ignored in many simple analyses. Note that the simple performance estimate above is valid (with straightforward generalizations) on machines with the simple two level distributed memory hierarchy – namely memory is either on or off processor – which is essentially model built into the current generation of parallel programming systems as typified by HPF or MPI. As we described in section 2.1, it is essential to generalize this machine model whether we want to provide input to either parallel programming tools or to performance estimation systems. Thus we believe our experience with HLAM and PETASIM will be very valuable in helping designing the new generation of parallel programming environments needed for the increasing complex high performance systems coming online.


Fortunately we have good evidence that we can generalize this naïve analysis to more complex problems and machines for indeed the Rutgers/UCSB group has studied granularity issues  {cluster,dsc} to identify the natural data block sizes and computation clusters based on computatation/communication ratios in more general hierarchical memories. They have developed preliminary performance prediction and optimization tools (PYRROS {PYRROS}, D-PYRROS {jjiao},RAPID {RAPID}) based on task graphs in which the impact of single-processor memory hierarchy is addressed in the intra-task level and the impact of inter-processor communication delay is identified in the inter-task level. These techniques have been shown effective for a number of adaptive and static applications {Iter-2,ship,Fernandez,SparseLU} and it will be naturally integrated into PETASIM as this Rutgers/UCSB technology is the basis of HLAM described in section 2.2.


As well as a machine description, PETASIM requires a problem description where we will use the HLAM described in sec 2.2 above. Note also that application emulators also use the same “aggregate” description of applications needed by PETASIM and these will be used as input. It is not clear yet if we will convert these directly to the HLAM or allow a separate API for this style of program description.


2.3.2: Operation of PETASIM  


As described above PETASIM defines a general framework in which the user specifies the computer and problem architectures and the primitive costs of I/O, communication and computation. The computer and problem can in principle be expressed at any level of granularity - typically the problem is divided into aggregates which fit into the lowest interesting level of the memory hierarchy which is exposed in the user specified computer model. Note the user is responsible for deciding on the “lowest interesting level” and the same problem/machine mapping can be studied at different levels depending on what part of the memory is exposed for user(PETASIM) control and which (lower) parts are assumed under automatic (cache) machine control. The computer and problem can both be hierarchical and PETASIM will support both numeric and data intensive applications. Further both distributed and shared memory architectures a
