MPI on NT: A preliminary evaluation of the available systems

Mark Baker (University of Portsmouth) and

Geoffrey Fox (Syracuse University)

September 1997

Abstract

The aim of this paper is to discuss the functionality and performance of the current generation of MPI environments that are available for NT. The three environments investigated are WinMPICH [20] from the Engineering Research Center at Mississippi State University, WMPI [22] from the Instituto Supererior de Engenharia de Coimbra, Portugal and FM-MPI [25] from the Dept. of Computer Science at the University of Illinois at Urbana-Champaign.

In the first part of the paper we discuss briefly the advantages of using clusters of workstations and then move on to describe NT and the MPI environments being investigated. In the second part of the paper we describe, and then report on our experiences of assessing the functionality of the MPI environments. In the third part of the paper we make a preliminary evaluation of the performance characteristics of the environments assesses using the ParkBench benchmark suite. Finally, we summarise our finding and suggest a number of improvement that could be made to the environments assessed.

Introduction

The use of workstation clusters to prototype, debug and run parallel applications is becoming an increasingly popular alternative to using specialised, typically expensive, parallel computing platforms such as the Cray T3E or the IBM SP2. An important factor that has made the usage of workstation a practical proposition is the standardisation of many of the tools and utilities used by parallel applications. Examples of these standards are the message passing library MPI [16] and data-parallel language HPF [31]. Standardisation in this context enables applications to be developed, tested and even run on workstation clusters and then at a later stage be ported, with little modification, onto dedicated parallel platforms were CPU-time is accounted and charged for.

The following list highlights some of the reasons why workstation clusters are preferred to specialised parallel computers [1, 2, 3 & 4]:

Individual workstations are becoming increasingly powerful.

The communications bandwidth between workstations is increasing as new networking technologies and protocols are implemented in Local Area Networks (LAN).

Workstation clusters are easier to integrate into existing networks than special parallel computers.

Typical low user utilisation of “personal workstations”.

The development tools for workstations are more mature than the contrasting proprietary solutions for parallel computers - mainly due to the non-standard nature of many parallel systems.

Workstation clusters are a cheap and readily available alternative to specialised high performance computing platforms.

Clearly the workstation environment is better suited to applications that are not communication intensive - typically one would see high message start-up latencies and low bandwidths. If an applications requires higher communication performance, the existing LAN architectures are not capable of providing it.

Traditionally in science and industry a workstation referred to some sort of UNIX platform and the dominant function of PC-based machines for administrative work and word processing. There has, however, been a rapid convergence in processor performance and kernel-level functionality of UNIX workstations and PC-based machines in the last three years - this can be associated with the introduction of high-performance Pentium-based machines and the window NT operating system. This convergence has led to an increased level of interest in utilising PC-based systems as some form of computational resource for parallel computing. This factor, coupled with the comparatively low cost of PCs and their widespread availability in both academia and industry has helped initiate a number of software projects whose primary aim is to harness these resources in some collaborative way.

Microsoft Corp. [5] are the dominant provider of software in the personal computing market place. Microsoft provides two basic operating systems; Windows 95 (soon to become Windows 98!?) and Windows NT 4 (soon to become Windows NT 5). These operating systems can be found on XX% of PCs [6] - IBM OS/2 and Linux make up the rest of this market.

NT Overview

Windows NT (both the Workstation and Server) is a 32-bit Operating System [7, 8, 9 & 10]. It is a pre-emptive, multi-tasking, multi-user operating system from Microsoft Corp. NT supports multiple CPU's and provides multi-tasking, using symmetrical multiprocessing. NT is a fault tolerant - each 32bit application operates in its own virtual memory address space. Unlike earlier version of Windows (such as Windows for Workgroups and Windows 95), NT is a complete operating system, and not an addition to DOS. NT supports different CPU's: Intel x86, IBM PowerPC, MIPS and DEC Alpha. NT has object-based security model and its own special file system (NTFS) that allows permissions to be set on a file and directory basis.

A schematic of the NT architecture is show in Figure 1. Windows NT has the network protocols and services integrated in with the base operating system.

�

Packaged with Windows NT are several built-in networking protocols and APIs, these include IPX/SPX, TCP/IP, and NetBEUI protocols. The networking APIs supported include NetBIOS, DCE RPC (Distributed Computing Environment remote procedure call), and Windows Sockets (WinSock). TCP/IP applications use WinSock to communicate over a TCP/IP network - see Figure 2.

�WinSock

Originally Windows [11] had one built-in interface - Netbios, which allowed applications to communicate via the Netbeui protocol. Users who wanted a different protocol (IPX/SPX, DECnet, or TCP/IP) either had to write their own protocol stacks or purchase then from vendors such as Digital or Novell.

In 1991 a group of vendors established the WinSock Forum with the express purpose of addressing this situation. The forum finished its work on WinSock 1.1 in 1993 and this soon became the de facto standard - it supported in all versions of Windows and by nearly every TCP/IP stack vendor.

WinSock 1.1 is based largely on the Berkeley UNIX sockets model, which uses sockets as the basic building blocks for application-to-application communication. WinSock includes a core set of routines derived directly from Berkeley UNIX sockets- including connect, which establishes a socket connection; accept, which processes an incoming request for a socket connection; send and receive, for transporting data; and shutdown, for disabling the socket before it is closed.

WinSock 2 has a number of enhancements, including. protocol independence, support for multiple name and service resolution mechanisms, performance enhancements, and support for a variety of additional services (like multi-point and multi-cast communications and security).

�

C and FORTRAN Environments

There are two C environments that can be used with the MPI for NT environments; Microsoft Visual Studio C++ version [12] and the Borland C++ Development Suite [13]. Both of these environments run under Windows 95 and NT.

Digital Visual FORTRAN (DVF) [14] is based on Digital FORTRAN 90 compiler for Digital UNIX and OpenVMS Alpha, first released in 1994. DVF was the only readily commercial FORTRAN environment for Windows 95 and NT available at the time that this project was undertaken. DVF which is compatible, and can be integrated, with Microsoft Visual Studio. DVF is compliant with ANSI F77 and F90.

MPI Overview

The Message Passing Interface (MPI) [15 & 16] is a portable message-passing standard that facilitates the development of parallel applications and libraries. MPI is available in both C and in FORTRAN 77. It is the result of work undertaken by the MPI Forum, a committee composed of vendors and users formed at the Supercomputing ‘92 conference with the aim of defining a message passing standard. The goals of the MPI design were portability, efficiency and functionality. Commercial and public-domain implementations of MPI exist. These run on a range of system from tightly-coupled, massively-parallel machines (MPPs), through to Networks Of Workstations (NOWs).

MPI has range of features, including; point-to-point, with synchronous and asynchronous communication modes, and collective communication (barrier, broadcast, reduce). MPI supports features for grouping communicating processes and isolating unrelated communication contexts. Groups are used to define processes involved in collective communication. The MPI standard is rapidly gaining support since the initial introduction. One of its attractions is the number of free implementations that have been made available.

MPICH

MPICH [17 & 18], developed by Argonne National Laboratory and Mississippi State is, probably, the most popular of the current, free, implementations of MPI. MPICH is a version of MPI built on top of Chameleon [19]. The portability of MPICH derives from being built atop a restricted number of hardware-independent low-level functions, collectively forming an Abstract Device Interface (ADI). The ADI contains approximately 25 functions and the rest of MPI approximately 125 functions. Implementing the ADI functions is all that is required to run MPICH on a new platform - see Fig 3.

�

The ADI encapsulates the details and complexity of the underlying communication hardware into a separate module. By restricting the services provided to basic point-to-point message passing, it offers the minimum required to build a complete MPI implementation as well as a very general and portable interface. On top of the ADI, the remaining MPICH code implements the rest of the MPI standard, including the management of communicators, derived data types, and collective operations.

�WinMPICH

Introduction

WinMPICH [20 & 21] from the Engineering Research Center at Mississippi State University is a port of MPICH for Microsoft Windows NT platforms. WinMPICH allows processes to communicate with each other via either shared memory or over a network.

The WinMPICH libraries were originally written to explore threads in the device layer for communication, TCP/IP support was added later. TCP/IP support was added by means of a proxy process that runs when a process requires TCP/IP services. In this model everything that is sent via TCP/IP gets sent via shared memory to the proxy process which then sends it to remote proxy process that then sends it to the destination process. This methodology is not optimal is currently being work on.

The WinMPICH release consists of source and binaries for a set of libraries and servers configured to be complied and linked using Microsoft Visual C++ 4.51. WinMPICH is under development and is freely available.

The WinMPICH Environment

MPIrun is a tool used to startup MPI processes in an MPI job. This program parses the command line given to it to determine how and where it should start up the processes in the MPI job. Two major command line parameters are supported: -np (no processes) and -f (configuration file). These flags are used in conjunction with other command line parameters to start up the MPI job.

MPIServe is an NT service that handles process startup on machines other than the one that the user is logged into. MPIserve is installed by the administrator of the Windows NT network and given a port number on which to listen. When MPIserve is started, the port number is retrieved from the registry and a socket is opened to listen upon.

When a connection occurs from MPIrun, a packet of information containing all the locations of all the necessary information about the MPI job is received. MPIserve then performs the process of creating the shared memory regions and the objects therein for all the processes that are required to run in this job.

If more than one machine is in the MPI job, a MPItcpproc is started as well and it is given the information needed to connect to all the other machines in the MPI job. Once this is complete, the thread in the service that created all the MPI processes then waits on all the processes that were created to exit and then cleans up the resources that it allocated during startup.

MPItcpproc is the proxy process that handles communication between MPI processes that are running on multiple machines. If MPIserve determines that an MPItcpproc should run, it actually allocates resources for it as if it were another MPI process and all of the other MPI processes running on that machine interact with it as if it were another MPI process. Packets are exchanged between the actual MPI processes and MPItcpproc much like the way that they are exchanged between MPI processes. Once MPItcpproc receives a packet from shared memory or from a socket, it operates as a router by looking at the destination field of the packet. It then forwards that packet to either the shared memory region of its destination process that is running on the machine or it forwards it over the appropriate socket that is connected to the destination machine. As in the shared memory communication, all packets that travel over the TCP connection are segmented by the sender and reassembled by the receiver. A process-view of WinMPICH is show in Figure 4.

�

�

WMPI

Introduction

WMPI [22] from the Instituto Supererior de Engenharia de Coimbra, Portugal is a full implementation of MPI for Microsoft Win32 platforms. WMPI is based on MPICH and includes a P4 [23 & 24] device standard. P4 provides the communication internals and a startup mechanism (that are not specified in the MPI standard). For this reason, WMPI also supports the P4 API.

The WMPI package is a set of libraries (for Borland C++, Microsoft Visual C++ and Digital Visual Fortran). The release of WMPI provides libraries, header files, examples and daemons for remote starting. WMPI can co-exist and interact with MPICH/ch_p4 in a cluster of mixed Win32 (Windows 95 and NT) and UNIX workstations over a TCP/IP network. WMPI is still under development and is freely available.

Internal Details

The communication between different WMPI daemons and between daemons and user processes is made through UDP and TCP sockets, respectively. WMPI uses the WinSock 2 standard.

Each daemon maintains a task table of all tasks under its management. UDP sockets are used to communicate between daemons, this communication is via an unreliable delivery service, where packets can be lost, duplicated and delivered out-of-order. WMPI uses an acknowledgment and retry mechanism to overcome this problem. The utilisation of UDP sockets to communicate between remote daemons provides WMPI with good scalability - see Figure 5 for a schematic of WMPI processes.

A task communicates with its local daemon through TCP sockets. TCP is used because it delivers data reliably and means that tasks do not have to be interrupted to handle communication faults.

�

WMPI Set up

To set up WMPI, a daemon needs to be installed as an NT service. This service can be configured to log on to the system account (by default) or to a user. The first option that processes started will inherit administrator permissions (i.e., full control over all the system). The second option gives process started only the permissions defined for the specified user account and groups that it belongs to.

GUI WMPI/p4 applications

Under Win32 some standard I/O functions (printf(), scanf(), gets() and puts()) need to be emulated, WMPI provides the libraries shell.lib and vshell.lib for this purpose. stdin, stdout and stderr are not emulated.

Under WMPI slave processes automatically terminate with ExitProcess(), the originating process then waits for the user to close the window and then automatically terminates with an ExitProcess() call.

Running a WMPI application

WMPI and Wp4 programs start the same way. Both use the startup and configuration mechanisms of the underlying p4 communication subsystem. This is described in the p4 user's guide [X]. The option -p4dialog can be set in the command line of a WMPI/p4 program (GUI and CONSOLE modes) to display a dialog box that enables the user to choose some startup options.

When a WMPI/Wp4 program is called it looks for a well-known file where all the processes that belong to the parallel application are statically specified. This first process, then starts the other processes (slaves) and configures the virtual parallel machine. For MPI programs this is done by the MPI_init() routine (that must be the first in an MPI program). The process group file is either called a default name or specified explicitly via a command-line flag.

Illinois Fast Messages (FM)

Introduction

FM-MPI [25] is from the Dept. of Computer Science at the University of Illinois at Urbana-Champaign. FM-MPI is a version of MPICH built on top of Fast Messages. The FM interface based on Berkeley Active Messages [26]. FM, unlike other messaging layers, is not the surface API, but the underlying semantics. FM contains functions for sending long and short messages and for extracting messages from the network. The services provided by FM guarantees and controls the memory hierarchy that FM provides to software built atop FM. FM guarantees:

Reliable delivery

Ordered delivery

Control over scheduling of communication work (decoupling).

The FM interface was originally developed on a Cray T3D and a cluster of SPARCstations connected by Myrinet (a programmable network interface card capable of providing 160MByte/sec links). The latency and bandwidth achieved by FM was better than the vendor-supplied messaging layers on each system. A number of valuable lessons were learnt from early releases, these have been fed into the latest releases of the software.

FM has a low-level software interface that deliver hardware communication performance, however, higher-level layers interface offer greater functionality, application portability, and ease of use. The problem is that high level interface abstractions add overhead to communication and generally degrade overall performance significantly. For this reason a number of high-level APIs have been developed on top of FM; these include MPI, SHMEM and Global Arrays.

To run MPI on FM, the MPICH's ADI was adapted to communicate with FM calls. FM-MPI was first developed in October 1995 and was designed to run via Myrinet-connected systems. Recently, a variant of FM-MPI that runs on top of WinSock 2 was released as part of the High-Performance Virtual Machines (HPVM) project [27 and 28] being undertaken by the Concurrent System Architecture Group (CSAG) - see Figure 6.

�

�

�

�Functionality Tests

Test Environments

A heterogeneous Windows NT cluster consisting of six machines was used to test the three MPI environments. The systems were running either NT 4 Server and Workstation and had either FAT or NTFS filesystems. Each machine had from 32 - 64 Mbytes of memory and all machines had harddisks of greater than a Gbyte.

The MPI binaries, libraries and header file were put in the following directories on each machine:

c:\bin

c:\Libs

c:\Include

The files associated with each environment were installed in sub-directories of the aforementioned based directories.

Deamons that provided the socket servers were installed via the NT Control Panel and the Services Icon. The services were set up to start up automatically and interact with the desktop. These deamons had to be set up on each machine used in the test workstation cluster.

Comments on the Set up of the MPI Environments

Deamons: if these are set up under the administrators account the MPI programs inherits administrators privileges.

The services had to be individually set up on each workstation - cannot be done remotely.

Test Suites

There a several test suites available to test the functionality of MPI ports - see [X]. Each MPI environment being assessed in this project is based on MPICH and so the test suites designed to test this implementation were chosen. Each program included the following MPI calls (or equivalent FORTRAN calls).

�

C Test Suite

The C test suite used was a suite developed by IBM [] that had been modified by Gropp of ANL to comply fully to the MPI standard and also compatible with the MPICH. The suite consists of eighty-seven C programs that tests the following MPI calls and data types:

Collective operations

Communicators

Data types

Environmental inquiries

Groups

Point to point

Virtual topologies

FORTRAN Test Suite

The FORTRAN test suite used was a mixture of a suite originally developed by ANL to test MPICH [1]. This suite only included 12 codes that tested the following MPI calls:

Collective operations

Communicators

Environment inquiries

Virtual Topologies

Point to point

Functionality Test Results

Introduction

To test the functionality of the various version of MPI on NT all the C and FORTRAN programs from the test suites were compiled and run. The actual runs were configured to run in shared, distributed or mixed memory modes on a small cluster of NT 4 systems running the server or workstation kernels.

WMPICH

All the C programs were compiled successfully. When run under SM all the programs ran to completion on up to the, predefined, maximum eight processes per processor. When run in DM mode the follow codes would not run to completion:

At the time of testing the FORTRAN wrapper for WINMPICH were not available. The authors have been promised early access to the wrapper in late September ‘97.

WMPI

All the C programs were compiled successfully. The codes ran to completion in both SM and DM modes.

At the time of testing the FORTRAN wrapper for WMPI were not available but the author identified a “hard wired” system dependency which meant that FORTRAN codes could not be compiled. The authors have been promised early access to the wrapper in late September ‘97.

FM

Performance Tests

Introduction

There are several suites of distributed benchmark codes including EuroBen [1], NAS Parallel Benchmarks [2], and Parkbench [3]. The aim of the performance tests undertaken within this project are restricted to running a set of codes that produce sample results to help indicate the low-level performance of MPI on NT. Investigating the performance of “real” applications running using MPI on NT will be left to a later time when the NT environments are more mature.

For this reason the Parkbench suite of benchmark codes was chosen. The PARKBENCH (PARallel Kernels and BENCHmarks) committee, originally called the Parallel Benchmark Working Group (PBWG) was founded at Supercomputing '92 in Minneapolis.

The initial focus of the parallel benchmarks is on the new generation of scalable distributed memory message-passing architectures for which there is a notable lack of existing benchmarks. For this reason the initial benchmark release concentrates on Fortran77 message-passing codes using the widely-available PVM message-passing interface for portability. The releases 2.0 of the benchmark suite adopted the MPI interface. Future releases will include F90, HPF and benchmarks capable of measuring the performance of I/O. The benchmarks are divided into three categories according to their level of complexity/realism as follows:

Low-level - These are a set of synthetic benchmarks contrived to measure theoretical parameters that describe the severity of some overhead or potential bottleneck, or the properties of some item of hardware.

A representative subset of the Parkbench low-level suite was chosen.

Single-processor - whose aim to measure performance parameters that characterise the basic architecture of the computer, and the compiler software through which it is used.

RINF1 Measurement of vectorisation parameters

Multi-processor - whose aim is to provide low-level performance metrics to characterise the basic communication properties of distributed-memory systems.

COMMS1 Ping-Pong benchmark

COMMS2 Message exchange benchmark

SYNCH1 Barrier synchronisation cost

POLY3 Communication bottleneck benchmark

Kernel and Compact Applications

The Kernels are larger, more complex codes that represent the computationally intensive kernels common to a variety of different applications. Analysis of the benchmark performance is generally possible in terms of the basic machine parameters. They provide valuable insight into the likely behaviour of full applications.

The Compact Applications are typical of medium-sized research codes where effects due to non-parallelisable sections of code, and memory or I/O bottlenecks may become important. As mentioned earlier, we are interested, at this stage, in the low-level performance of the performance of MPI on NT.

Performance Results

Introduction

Low-level

Conclusions

Introduction

Usability and Functionality

Performance

�References

[1] M.A. Baker, G.C. Fox and H.W. Yau, Review of Cluster Management Software, NHSE Review, May 1996, URL http://nhse.cs.rice.edu/NHSEreview/CMS/

[2] Turcotte, L.H. "A Survey of Software Environments for Exploiting Networked Computing Resources.", Engineering Research Center for Computational Field Simulation, Mississippi State, 1993

[3] G.F. Pfister, “In Search of Clusters”. Prentice Hall PTR, 1995, ISBN 0-13-437625-0

[4] Thomas E. Anderson, David E. Culler, and David A. Patterson. A Case for NOW (Network of Workstations). IEEE Micro, 15(1):54-64, February 1995.

[5] Microsoft Corporation - http://www.microsoft.com

[6] Microsoft Fact and Figures (See Wayne Burns for details).

[7] H. Custer, “Inside Windows NT”, Microsoft Press, 1993, ISBN 1-55615-481-X

[8] K.L. Spenser, “NT Server: Management and Control”, Prentice Hall PTR, 1996, ISBN 0-13-107046-0

[9] E. Pearce, “ Windows NT In a Nutshell”, O’Reilly and Associates, Inc, 1997, ISBN 1-56592-251-4

[10] Windows NT Server - http://www.microsoft.com/ntserver/

[11] WinSock Resources - http://www.stardust.com/wsresource/wsresrce.html

[12]Visual Studio and Visual C++ - http://www.microsoft.com/visualtools/

[13] Borland C++ - http://www.borland.com/bcppbuilder/

[14] Digital FORTRAN - http://www.digital.com/fortran/

[15] Message Passing Interface Forum, "MPI: A Message-Passing Interface Standard", May 5, 1994, University of Tennessee, Knoxville, Report No. CS-94-230

[16] MPI The Complete Reference; Snir, Otto, Huss-Lederman, Walker, and Dongarra; MIT Press; 1996

[17] MPICH - http://www.mcs.anl.gov/mpi/mpich/

[18] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable implementation of the MPI message passing interface standard. Available from http://www.mcs.anl.gov/mpi/ mpicharticle/paper.html or ftp://ftp.mcs.anl.gov/pub/mpi/mpicharticle.ps.

[19] William D. Gropp and Barry Smith. Chameleon parallel programming tools users manual. Technical

Report ANL-93/23, Argonne National Laboratory, March 1993.

[20] WinMPICh - http://www.erc.msstate.edu/mpi/mpiNT.html

[21] http://www.erc.msstate.edu/mpi/NTfiles/winMPICHpresent.ps - MPI Implementation for NT, Boris Protopopov, Mississippi State University, 22nd May 1996

[22] W32MPI - http://alentejo.dei.uc.pt/w32mpi/

[23] Ralph Buttler and Ewing Lusk. User's Guide to the p4 Parallel Programming System. ANL-92/17, Argonne National Laboratory, October 1992.

[24] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel programming system. Parallel Computing, 20:547--564, April 1994.

[25] FM-MPI - http://www-csag.cs.uiuc.edu/projects/comm/mpi-fm.html

[26] M. Lauria and Chien A., MPI-FM: High Performance MPI on Workstation Clusters Journal of Parallel and Distributed Computing, Jan 1997.

[27] Pakin S., Karamcheti V. and Chien, A.A., Fast Messages (FM): Efficient, Portable Communication for Workstation Clusters and Massively-Parallel Processors. IEEE Multiprocessor Operating Systems, April-June 1997, pp 60 -73

[28] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser, Active Messages: a mechanism for integrated communication and computation, in Proceedings of the International Symposium on Computer Architecture, 1992.

[29] HPVM - http://www-csag.cs.uiuc.edu/projects/clusters.html

[30] Pakin S., Lauria M, Chien A.A., et. al, High Performance Virtual Machines (HPVM): Clusters with Supercomputing APIs and Performance. Eighth SIAM Conference on Parallel Processing for Scientific Computing (PP97); March, 1997.

[31] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel. The High Performance Fortran Handbook. The MIT Press, 1994.

[32]Parkbench - http://www.netlib.org/parkbench/html/

[33]Euroben - http://www.fys.ruu.nl/~steen/

[34]A.J .van der Steen, The Benchmark of the EuroBen Group, Parallel Computing, 17, (1991) 1211 - 1221

[35]NAS - http://science.nas.nasa.gov/Software/NPB/

[36] D. Clark, V. Jacobson, J Romkey, and H. Salwen. An analysis of TCP processing overhead. IEEE Communication Magazine, 27(6):23--29, June 1989.

[37] Boggs, D.R.; Mogul, J.C.; Kent, C.A.: "Measured Capacity of an Ethernet: Myths and Reality." Research Report 88/4. Digital Equipment Corporation, Western Research Laboratory.

�PAGE �16�

�PAGE �12�

Applications

Protected Subsystems

(e.g. POSIX, OS/2)

Security monitor, process manager

virtual memory manager

Hardware

Abstraction Layer

I/O

Graphics

Hardware

Figure 1 - Windows NT 4.0 Architecture

Winsock

applications

Winsock

API

TCP/IP

Stack

Device Driver

Network

interface card

Internet

Figure 2 - Windows 95/NT: Network Layers under WinSock

Figure 3 - Conceptual Layered Model of MPI [21]

API (MPI Calls)

ADI

The Channel Device Interface

WinNT Device

Computer 1

Computer 2

mpitcpproc

mpitcpproc

mpiserve

mpiserve

mpirun

mpirun

MPI Process

MPI Process

MPI Process

MPI Process

Fig 4 - WinMPICH - Process View

Computer 2

TCP

TCP

UDP

WinSock (Host 1) 1)

TCP

TCP

UDP

WinSock (Host 2)

Daemon

Daemon

MPI

Process

MPI

Process

MPI

Process

MPI

Process

Fig 5 Communications Between Deamons and MPI Processes

Fast Messages

Sockets

Ethernet or other

Myrinet

Fast messages

MPI

SHMEM

Global Arrays

Applications

Figure 6 - HPVM Layered Architecture

GRM

CM

CM

CM

CM

User

Process

User

Process

User

Process

User

Process

Front-end

Server

Front-end

Client

User

Process

Internet

Figure 7 - HPVM Process View

Connection Manager

Global

Resource

Manager

void main(int argc, char* argv) {

 …

 MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&myself);

 MPI_Comm_size(MPI_COMM_WORLD,&tasks);

 …

 …

 MPI_Finalize();

}

