
PROJECT DESCRIPTION

1 Introduction

In the last �ve years we have seen a tremendous increase in network-based computing on the

Internet. The popularity of the Internet as a source of dynamic information accounts for most

of the increase in search-based systems using text-based information retrieval techniques for

matching and indexing information sources. As the need grows for more on-line services for

scienti�c computing on the Internet, the use of a persistent data representation for scienti�c

applications on the Web becomes vital.

To enable the exchange of data between disparate systems on the Internet, a universal

data representation is necessary. This has been recognized as one of the key problems by

many groups working on protocols and data formats (see e.g. [12, 2, 1]). The choice will ulti-

mately a�ect the overall development of scienti�c applications, because the implementation

of scienti�c applications is very much constrained to the type of data structures employed.

The Internet is also used as a network in small-scale distributed computing experiments.

Ambitious plans are materializing making global distributed computing on the Internet fea-

sible (Globus [9] and the Grid [10]). These component-based systems provide infrastructures

for building distributed scienti�c applications from separate components.

Despite the e�orts, there are still two major hurdles to be overcome in application de-

velopment for (distributed) scienti�c computing such as large-scale numerical applications:

uniform model development (algorithmic functionality) and data interoperability (persistent

data representations).

Large-scale numerical applications are often build from separate modules. Since these

modules are integrated, their degree of sophistication has to be high in terms of data structure

compatibility and algorithmic selection. Therefore, uniform model development is a primary

concern of numerical application integration in general. A recent article in Science titled

\Research Council Says US Climate Models Can't Keep Up" [3] addresses this problem. US

climate models have problems with regard to both hardware and software: there is a lack

of supercomputing power and the absence of a coordinated strategy for building models.

This results in a delay of integrating model components such as atmosphere, oceans, and

chemistry, because of model incompatibility.

Even in the presence of a paradigm for uniform model development, data representation

is important because it is a complementary problem. A persistent data representation would

allow integrated computing environments to be extensible and compatible. Scienti�c data

comes in many di�erent forms, and numerical data formats and data structures are often

application dependent. Also the units of numerical computation often di�ers between ap-

plications on spatial and temporal scales. For example, in climate models the ocean and

atmosphere models di�er in discretization, spatial scales, and time evolution rates. This

severely hampers to interchangeability of data between these disparate systems.

Component-based systems are powerful tools for solving scienti�c problems using dis-

tributed computing, but the paradigm lacks the most important element the Internet o�ers:

resource discovery and dynamic data.

1



The potential of data and resource discovery on the Web for scienti�c computing is

huge. Consider the possibilities one could exploit in creating simulations based on dynamic

data available from Web services. Current simulations often operate on static datasets and

data sources. Many simulations would produce more accurate results if they could access

dynamically changing data from other sources. The discovery of new sources of information

and the use of dynamic data on the Web is not exploited in scienti�c computing.

The proposed paradigm for distributed scienti�c computation de�nes a set of tools

(problem-solving environments, compilers) that relieve application developers from data

structure design issues and setting up a distributed system. More speci�cally, the proposed

research addresses the following issues:

� The problems associated with representing scienti�c data in XML (extensible markup

language). As an object representation, XML is a promising new avenue toward e�ec-

tive data interchange. This requires the use of DTDs (document type de�nitions) to

be used as data structure speci�cations in the context of scienti�c applications;

� The design of a problem-solving environment for the automatic synthesis of XML

application programming interfaces (APIs) and DTDs for scienti�c applications;

� The adaptation of D'Agents [22, 8] to itinerative agents that can be programmed to

move to resources identi�ed by a \functional signature" thereby acting as XML-based

object request brokers between scienti�c applications;

� The use of a lambda-calculus like language for de�ning the semantics of services as

\functional signatures";

� The symbolic processing necessary for a problem-solving environment to generate APIs

and DTDs for XML data interchange, and the symbolic processing of lambda-calculus

like expressions required in searching, indexing, and matching services identi�ed by

functional signatures,

� The development of data and functional proxy servers. Data proxy servers main-

tain connections established by mobile agents between applications and optimize the

network tra�c. Functional proxy servers forward agents to the sources described by

functional signatures.

� Security problems associated with distributed computing on the Internet in general.

The technical details of each of these issues will be described in the following sections.

1.1 Related Work

Component-based systems are powerful tools, but the current approaches to creating these

type of distributed computing environments require a central form of control. Although not

always viewed that way, the central control is necessary to

2



� enable applications in distributed systems to be continuously aware of (or connected

to) the other applications in the environment, for example through table lookup in a

centralized registry;

� manage and broadcast the data structure de�nitions to the applications involved in

exchanging information;

� employ a form of transaction control to roll back the state of a distributed application

when links and/or machines go down.

For example, the component-based distributed computing environments [19] consist of col-

lections of tools that use the Internet to exchange information. These systems are extensible,

but only by registering new services explicitly. These systems are comparable to distributed

computing environments, except that they use the Internet instead of proprietary networks.

In e�ect, they provide a cheap solution to network-based computing. Network tra�c in

the environment is restricted to access the registered applications only. Unrelated network

activity can impact the performance of the distributed system.

Once these component-based systems are operational, it is not expected that data formats

change over time. The problem is that distributed systems build from applications written

in di�erent programming languages use object request brokers or Java wrappers for data

interoperability. The data structures are basically hardcoded in the applications.

Well known examples of component-based projects in the context of scienti�c computing

are the component project [11], Globus [9], the Grid [10], Information Power Grid (IPG at

Nasa) [18]. Systems that o�er mobile agent systems for distributed computing are IKinet-

ics [14], Java Voyager [16], Java Enterprise beans, IBM Aglets [7]. The component-based

systems and agent systems adopt a centralized approach.

Java-based agent systems typically adopt Java RMI. Transaction control is an important

issue when using Java-RMI based agents. When network connections go down, the system

needs to be able to roll back. Java Voyager is exceptional as it enables other means of

communication (e.g. CORBA). Java Voyager also uses proxies to forward messages from

agents to other mobile agents that moved. The forwarding of messages allows agents to

move without interrupting inter-agent messages.

Mobile agent systems that do not rely on RPC of Java RMI are for example D'Agents:

secure mobile agents [8] and Java-to-go: mobile agents and agent-based applications for

itinerative computing [17].

Another approach is used in Mstreams [4]. In this system agents are attached to an

Mstream (Mobile Stream) that acts like a channel or bus to exchange messages between

the agents. Agents are event handlers. An Mstream can move, and agents can detach and

attach themselves to Mstreams dynamically. Mstreams supports the \mobile-server" model

of mobility in contrast to the \mobile thread" model where migration can happen anywhere.

However, the placement of an Mstream is performed from a central point of control.

3



2 Proposed Research

A centralized approach is not exible in that it cannot easily cope with change of services

provided on the network. New network services may become available that o�er data using

di�erent representations. The proposed decentralized mobile agent system cannot rely on

RPC methods or the representation of data by Java objects. Data exchange using Java

objects assumes a centralized approach, because the corresponding Java classes have to

be distributed among the collaborating applications. With mobile agents for itinerative

computing, connections may close anytime or the network bandwidth may dramatically

change over time. Itinerative mobile agents are less vulnerable to network hazards and do

not necessarily need transaction control.

Also the element of resource discovery has to be supported in a exible environment

for distributed scienti�c computing. This requires the matching and indexing of semantic

information represented by \functional signatures" describing the behavior of the application.

These signatures can be searched for and matched by itinerative agents looking for speci�c

services to solve a problem.

2.1 Resource Discovery and Data Interoperability

Search engines are the means of choice for Internet users to �nd new information by discov-

ering and navigating new sites. Web crawlers and mobile agents can navigate the Internet

to collect, combine, index, and discover new sources of information. As such, Web-based

\computing" di�ers from distributed computing in that the environment allows for the dis-

covery of new sources. This important feature of the Web distinguishes it from ordinary local

network-based computing in which applications and data are managed from a centralized

approach.

To enable resource discovery in scienti�c computing, a uniform persistent data represen-

tation and a formal speci�cation of the provided services are required. Symbolic processing

techniques are required for matching and indexing services. A text-based search and index-

ing mechanism based on ontologies and keywords is insu�cient for matching searches for

functions and algorithms.

In contrast to most of the searches done on the Web by non-scienti�c applications, a

search for a scienti�c computing service is very much determined by its exact matching of

data structures and algorithmic functionality provided by the service. Web technology for

locating, indexing, and retrieving static text-based documents is well developed, although

certainly not ideal. Object request brokers, as de�ned by CORBA for example, can in

principle broker sessions between distributed components but the matching mechanisms

are based on ontologies and keyword constructs that appear to be fragile when scaled to

large heterogeneous networks [22]. Discovery can only be made possible when services have

a speci�c and detailed functional description that can be searched for and matched. A

functional description consists of a collection of Abstract Data Type speci�cations (ADTs)

that encapsulate data types and algorithmic functionality, much like class speci�cations in

object-oriented systems.

The handling of the same data by di�erent systems requires the de�nition of persistent

4



representations for that data, and corresponding interfaces to access and use that data. A

representation of persistent data must inevitably inter-operate with humans or mechanisms

that use other persistent representations [14].

� Syntactic Data Interoperability: Implemented by a translator. Data is simply trans-

formed from one persistent representation to another, typically in discrete (or batch)

operations.

� Semantic Data Interoperability: This transforms data from one persistent represen-

tation into an implementation of an interface. This requires both transformation of

the data into a new representation and the representation's interface implements the

semantic behavior corresponding to the new persistent form of the data.

Achieving semantic data interoperability is often described as \legacy integration", or \legacy

wrapping" and is a universal recurring problem which up to now has typically been solved by

ad-hoc means. In true semantic data interoperability, an object's representation is translated

into another representation depending on the intended use of the object. For example, a

satellite image's representation is translated into a set of parameters describing the percent-

ages of land use reecting agricultural development. Clearly, the data is the same (although

information may be lost in the translation process) but its intended use di�ers.

The interface of the data representation in the form of an application programming

interface (API) determines the semantics of the communicated objects for semantic data

interoperability. Current component-based systems mainly use Java RMI to communicate

serialized objects remotely between applications on the Internet. The communicated objects

have a Java interface that de�nes the semantic data interoperability. To move data from a

non-Java application to Java (as in syntactic data interoperability), Java wrappers have to

be written for each application that translate data into Java objects.

Java class de�nitions (or Java interfaces) of an application have to be published and made

available to all the other applications that need to communicate. The class de�nitions are

necessary to write the Java wrappers that handle the objects. In this respect, component-

based systems lacks extensibility as the classes of the communicated objects have to be

speci�ed in each wrapper in advance.

2.2 XML

Recent Web developments have brought an important innovation in data representation for

semantic data interoperability: the XML (extensible markup language) standard. As an

object representation, XML is a promising universally understood representation. While

HTML (hypertext markup language) is primarily intended to be a generic markup language

for Web page layout, in contrast XML is content-based. XML has an important bene�t over

HTML: since it is content-based it allows inter-application data exchange while the layout

of XML by Web browsers can be done automatically through XSL. XSL is a speci�cation of

a translation of an XML object into HTML. When browsers can access the XSL, it enables

them to depict the XML object. Furthermore, XML can contain meta-data, information

about the XML object itself.

5



The use of HTML and XML is not necessarily restricted to Web pages. XML documents

can be representations of objects communicated between applications. XML separates data

from layout in a way that hides both the data source and the formatting from one another.

With XML, an application can locally consume, create, or modify data from a logical data

structure that is independent of all back-end implementation. Multiple data sources may

feed data into a single type of XML structure, allowing seamless integration of disparate

systems.

A Document Type De�nition (DTD) is a standardization of the XML object format

and it enforces rules on tag naming, attributes, and overall hierarchy of the XML object

representation, Using DTDs, applications are able to exchange objects in XML without

having the risk of failing to recognize objects. It allows to create data structures that can

be shared between and among disparate and otherwise incompatible systems. DTDs are so

powerful because DTD enable a translation of one XML object into another. This means

that objects with di�erent XML representations are interchangeable through their DTDs.

The Document Object Model (DOM) provides an Application Programming Interface

(API) for HTML and XML documents. DOMs are hierarchical representations of XML. An

instance of XML is purely textual and lends itself to be portable between applications, while

the corresponding DOM of an XML instance is a tree data structure that is used internally by

an application (eg. browser). With the DOM, programmers can build documents, navigate

their structure, and add, modify, or delete elements and content.

The DOM interfaces are an abstraction in that they are a means of specifying a way

to access and manipulate an application's internal representation of a document DOM is a

platform- and language-neutral interface that allows programs and scripts to dynamically

access and update the content, structure and style of documents. A \binding" of the DOM

to a particular programming language provides a concrete API. Currently, several libraries

that handle XML DOMs are being developed for a number of programming languages. This

would enable applications to manipulate XML as data structures. However, in designing an

API for XML and HTML documents using the DOM, programmers still need to implement

the concrete methods to access and manipulate document contents.

2.3 Scienti�c Computing and XML

Scienti�c computing has not yet bene�ted much from availability of Internet services and

the existence of HTML and XML. However, there is a huge potential of XML as a persistent

data representation to create software environments in which disparate scienti�c systems

running on di�erent machines are able to share many di�erent types of data.

Existing scienti�c applications are developed in non-Java programming languages, be-

cause of e�ciency considerations. For scienti�c applications written in di�erent program-

ming languages, a portable data representation between these applications is essential to

create a component-based system. Although XML is a promising new data representation,

a number of signi�cant problems have to be solved for a practical use of XML in symbolic

and numerical applications.

First, the practical use of XML for data exchange in programs is alleviated by using the

DOM. However, application developers still need to implement APIs to access the data from

6



DOMs. Tool support (compilers, generators, problem-solving environments, and libraries)

relieve programmers from the burden of API implementation.

Second, the standardization of XML tags for mathematical constructs, symbolic expres-

sions, and numerical data is necessary. In part, this needs the development of the appropriate

DTDs. From experiences in programming language design, an orthogonal set of primitives

as de�ned by DTDs and a simple set of composition XML tags should allow the construction

of arbitrarily complex data structures.

Third, it is widely known that directed acyclic graph (DAG) representations of symbolic

expressions are crucial for symbolic computing environments. Trees alone require too much

storage space and time to be manipulated. The problem is that a naive use of XML using

the DOM for symbolic expressions leads to trees instead of DAGs. Unfortunately, proposed

standards such as MathML do not take this important issue into account.

Fourth, numerical data exchange in XML requires a textual representation of numeric

values. Meta data on the precision and format should be included in XML. For example,

the Multi-Protocol (MP) library [12] for symbolic and numerical data exchange can be used

as a protocol.

Fifth, in a distributed computing environment security threats have to be taken seriously

into account. Bogus services may be set up to intercept data and unreliable data can be

created that is tampered with by intruders.

2.4 Representing Persistent Data in XML

Scienti�c data may consist of symbolic expressions and data structures or numerical data.

Care has to be taken for representing graph-like data structures in XML. For example,

computer algebra systems (CAS) rely on directed acyclic graph (DAG) representations of

symbolic expressions. For the exchange of symbolic data between scienti�c applications it is

crucial that objects have to be translated to XML in DAG form. A naive use of XML and

the DOM leads to trees, because of the hierarchical layout of XML in the DOM. Fortunately,

XML is exible enough to device a data structure that can refer to itself by using an indexing

scheme where the indices refer to the objects represented in XML.

However, it is a well-known problem that the inspection of data structure declarations

alone cannot reveal the exact usage of the data structure in question. Consider for example

the tree data structure de�ned in C:

struct Node { Value val; struct Node *left; struct Node *right; }

The data type declaration above is no exception to this rule. Although the declaration

suggest that it is a tree (because of the use of left and right �eld names), there are no

limitations for using this data structure as a graph in which a node is referred to by more

than one left or right pointer from another node.

Consider for example the following a graph data structure declaration depicted in Fig-

ure 1. A node has a value and a list of outgoing edges to nodes. An instance of this data

structure can be converted to XML by using indexing as is shown on the right. Note that

there is almost a one-to-one correspondence between the type declarations in C and the XML

tag naming conventions.

7



struct Node {

Value val;

struct List *list;

};

struct List {

struct Node *head;

struct List *tail;

};

α

β

γ

<node idx=1><value>�</value><listptr>1</listptr></node>

<node idx=2><value>�</value><listptr>2</listptr></node>

<node idx=3><value></value><listptr>0</listptr></node>

<list idx=1><nodeptr>2</nodeptr><listptr>3</listptr></list>

<list idx=2><nodeptr>3</nodeptr><listptr>4</listptr></list>

<list idx=3><nodeptr>3</nodeptr><listptr>0</listptr></list>

<list idx=4><nodeptr>2</nodeptr><listptr>0</listptr></list>

Figure 1: Graph Type Declaration, Example Graph Instance, and XML Representation

In our approach we use the lowest-level data structure type de�nitions to construct an

XML representation of objects when the data structure in question is application-speci�c.

It does not matter for XML whether the data structure is a graph or a tree. But the

applications handling the data may depend on this information. In such cases, the XML has

to contain meta-data to describe properties of the data.

The intrinsic feature of XML to be able to translate one XML object into another using

their DTDs is very powerful. Even when applications use di�erent type declarations for the

same object, the objects are interchangeable through their DTDs when the overall structure

is similar. In this sense, XML truly supports semantic data interoperability.

Numerical data representation in XML can be implemented similarly to the Multi-

Protocol [12] implementation for data interchange. The numerical precision, dimensions/units,

and data structures such as the standard sparse matrix representations is included as meta-

data in XML.

The mapping of application-speci�c data structures to XML and vice verse is comparable

to object serialization in Java. Except that object serialization in Java allows for the export

of methods besides object data, which is not directly supported by XML.

2.5 Problem-Solving Support for API Development

A problem-solving environment (PSE) with a library of commonly used data types in scien-

ti�c applications is a powerful tool to support the development of an API using the DOM. A

programmer has to go through the tedious task of implementation an API for the XML data

representations discussed in the previous section. In addition, from data type declarations

alone the properties of the data structures cannot always be inferred.

The proposed PSE for API development in scienti�c computing o�ers the following fea-

tures:

� Symbolic processing of functional signatures by a built-in computer algebra system for

matching and indexing services.

� A library of APIs for common data structures used in scienti�c applications. For

example, data structures for a wide variety of sparse matrix representations are made

available in a database. The PSE o�ers the choice of data structures to be included in

newly developed applications. The DOM as an API together with the appropriate data

8



XML

DATA DATA
Application

ApiApi

XML
Func f

Web Domain

Figure 2: Abstract Functional Signature f and Concrete Application Implementation

structure declaration in a given programming language are automatically generated by

the PSE.

� A parser/compiler for Fortran, C, C++, Java data structure and class declarations in

source codes. The data structure and class declarations of an existing application are

parsed by the PSE. An internal type structure is build from the declarations and then

mapped to an XML representation. This is possible by using the DOM (implemented

in the speci�c language) and additional software synthesis necessary to implement the

access to the XML document that represents the objects. Only the input/output data

structure declarations of an application have to be compiled into APIs, because the

application data interchange will take place with these data structures.

� A generator of APIs for application XML input/output using the DOM. The genera-

tor creates code that implements the access methods to extract the application-speci�c

data structures from XML. Also, XML output code is generated. The generated API

codes can be readily hooked into the application. The mapping of internal data struc-

tures to XML was discussed in 2.4.

All of these PSE functions can be readily implemented in our problem-solving and com-

puter algebra system Ctadel [21]. Ctadel has strong capabilities for symbolic processing

by pattern matching and software generation as has been demonstrated in generating ef-

�cient parallel code for a weather forecast system [20]. Furthermore, the system includes

HTML/XML generators and parsers based on the PiLLoW library [6] enabling the manip-

ulation of HTML/XML as symbolic expressions. The system currently has a Fortran code

generator. The adaptation to C and Java code generation for application programming

interfaces will not pose major problems.

The main objective of the PSE is to relieve the programmer writing APIs for handling

XML. A user of the PSE can hook a generated API in the I/O part of an application.

Through this interface, the application becomes a server. Application data \lives" in the

Web domain, as is illustrated in Figure 2. The API converts XML input to the native data

structures of the application and application output data is converted back to XML.

The PSE technology in this project di�ers from PDE-based PSE research e�orts e.g.

PSEware [13], Ellpack [15], and SciNapse [5] in that the PSE tasks are speci�cally targeted

towards data integration.

9



To identify the service provided by the application, a functional signature Func f speci�es

the functionality of the application. The diagram in Figure 2 depicts the isomorphism rela-

tion resulting from a virtual operation on XML but actually implemented by the application

and its API.

2.6 Mobile Agents for Itinerative Computing

Agents are software systems that can act autonomously and at high \semantic levels". These

high semantic levels suggest human-like functionality in information processing tasks. Mobile

agent systems such as D'Agents [22, 8] and Java-to-go [17] are agent-based applications for

itinerative computing. Mobile agent technology permits dynamic, decentralized creation and

execution of modules that can execute on remote machines and spawn clones for parallel

computation.

In an itinerative application, a series of hosts are traversed in sequence by a single mobile

agent or in parallel by a group of agents attempting to \solve" a problem by processing

information at or supplying information to the local agent-handling entity [17]. Itinerant

mobile agents are persistent in space and time. They can migrate within a network, docking

on remove nodes should network conditions be unstable. This functionality is most valuable

in volatile environments. An itinerant agent is given the freedom to transport and perform a

variety of active computations at one or more remote agent servers, where an agent server is

a networked process that provides the resources a agent needs to complete its goal. This is

in contrast of a message-based transaction, where a message is limited to data or a directive

(in the styles of RPC and Java RMI). The Java RMI toolkit adopts stub-based interface

generation, similar to that of Remote Procedural Call (RPC) programming, to provide the

appearance of objects being executed remotely. However, it su�ers from client-server prob-

lems (for example, the client interface needs to be continuously connected to the server

object).

In itinerative computing a series of hosts is traversed in sequence by a single mobile agent

or in parallel by a group of agents attempting to solve a problem, applications should not

only create data structures (objects) but also a set of commands to operate on the object.

These commands de�ne a scenario for solving a problem.

2.7 Object Request Brokerage With Mobile Agents and Proxy

Servers

In a distributed computing environment object request brokers (as de�ned by CORBA for

example) provide syntactic data interoperability. In contrast, the use of mobile agents as ob-

ject request brokers exploits three important advantages compared to existing object request

broker systems:

� Mobile agents can move to a large data resource as an alternative to moving the large

data sets to a client [22]. The mobile agent performs a remote computation on the

data and sends back only the relevant data products.

10



� Mobile agents are dynamic and can make decisions based on the properties of the

current environment. For example, an agent can decide to establish connections to

servers that have lower process loads among the servers that o�er the same applications.

This enhances scalability.

� Mobile agents can carry objects along for itinerative computing. Connections can be

disconnected after agents have moved.

Mobile agents must be small-sized programs in order to be e�cient. Since mobile agents for

object request brokerage have very speci�c tasks to perform, their code size is limited. They

do not have to carry global network and server information. This type of information is

maintained by proxy servers that are assumed to reside on each machine an agent moves to.

Data proxy servers have updated network information and maintain connections between

applications and agents. Together, mobile agents and proxy servers act as object request

brokers.

2.8 Functional Validation

Mobile agents for itinerative computing solve problems by traversing a sequence of hosts

that o�er speci�c services. The mobile agents establish the connections and the data proxy

servers maintain the connections. To �nd a speci�c service, an agent must search for the

functional behavior of the service. Functional proxy servers keep information related to the

available services in tables using \functional signatures". Functional signatures provide the

means of matching mechanism necessary to execute commands that represent services.

Current text-based search and indexing mechanisms are based on ontologies and key-

words. This is insu�cient for matching searches for functions and algorithms. A functional

speci�cation of the semantics of an algorithm using prede�ned constructs provides a solution

to this problem. For symbolic and numerical applications, standard mathematical constructs

and a functional notation borrowed from a strongly typed functional language is su�cient

to de�ne functional signatures.

Lambda calculus normal forms guarantee uniqueness of representation. A computer

algebra system for symbolic computations (part of the PSE for designing APIs) can translate

a lambda expression into a normal form. For example, suppose solve(M;x) = y implements

a solver x = My. An anonymous functional signature can be written in lambda calculus

and may look something like �(M;x):(M�1x). Since M and x are formal arguments of

the lambda abstraction, their names are irrelevant in matching a search for a solver (eg.

�(A; b):(A�1b)).

Besides lambda applications, operator properties have to be exploited to guarantee

uniqueness of representation. For example, the functional signature �(A; b; x):(Ab+x) should

be normalized be reordering the operands of the addition Ab + x if necessary, since addi-

tion is commutative in this case. Normalization of functional signatures using associativity,

commutativity, and the distributive rule is legal, although the application of these rules in

codes actually changes the output. Functional signatures specify the semantics, not the

implementation.

11



The OpenMath [2] standard can be used instead of lambda calculus to describe func-

tional signatures. Recently, the \binding" concept was added to OpenMath. A binding in

OpenMath is similar to a lambda abstraction in which the name of the formal argument used

is immaterial to the meaning of the construct. This property of lambda abstractions and

OpenMath constructs will prove to be very powerful in matching functions and algorithms

by abstracting away naming details.

Data type information associated with formal arguments of a function and result object

of the function provides an abstract interface. Suppose a solver only solves with sparse tri-

diagonal real matrixes and real-typed vectors. The speci�cation of the functional signature

in lambda calculus is insu�cient, as this function only operates on a subset of possible data

types. This type information is provided by the DTD of tri-diagonal real matrices that are

represented in XML. The DTD de�nes the valid XML representations of the data structures.

A complete functional signature uses a lambda-calculus like notation with additional type

information given by DTDs. DTDs are associated with the formal arguments and result

of the operation. In this way, a service can be matched and indexed by matching lambda-

calculus normal forms and checking for DTD compatibility.

Using lambda-calculus, a numerical computation service can be described in terms of

its mathematical semantics as expressed in a lambda calculus like language (or OpenMath).

However, some type of services cannot easily be described by mathematical constructs alone.

Some types of services can only be distinguished by using some universally understood

reference (eg. a satellite image provider). This requires a name space with global names

identifying the services. For example, the satellite image provider can be referred to simply

by satellite. In this respect, the function name is used instead of an anonymous lambda

abstraction.

Functional signatures do not have to be written by users. Instead, a problem-solving

environment can translate a user-de�ned scenario into a set of commands, each command

being a functional signature of a service. The problem-solving environment adopts a library

that is shared between multiple platforms so additions and to the library are immediately

available.

A sequence of functional signatures can describe a process in which objects are trans-

formed. As such, this sequence when given to a mobile agent leads to purely itinerative

computing using mobile agents where agents move to resources (described by the functional

signatures) to solve a given problem.

The lambda-calculus notation for functional signatures also supports higher-order pro-

gramming, such as mapping and �ltering of data by functions. For example, a matrix object

may contain a command to apply a function on the matrix elements. Some higher-order

functions can be prede�ned by agents, so agents are able to map functions, �lter, and apply

selections on data structures.

2.9 Security

Two security problems have to be addressed: bogus services and data manipulation by

intruders. A digital signature can be embedded within the XML representation of an object

to authenticate it source. The digital signature tells the source of the information and allows

12



the veri�cation of the reliability of the data in terms of �ltering out bogus services.

The API can optionally encode the data using a public-private key system (eg. RSA).

The digital signature can be used both to encode the data en verify its source.

3 Example Application

In this section we present an example application of the proposed services for distributed sci-

enti�c computing. We envision the following scenario in which multiple applications written

in di�erent programming languages share data on the Web. The objective of this example

scenario is to predict the impact of pollution of a river on the environment. A simulation is

performed by using accurate dynamic data generated by di�erent applications on the Web.

To solve this problem, the scenario is as follows: �rst the geometric data of the river

location has to be obtained from a geographical information system (GIS). Then a simulator

with the geometric information and the sources of the pollution creates simulation results.

Finally, the simulation results have to be visualized and results are updated when new

information about the pollution is available.

In this example, the sequence of commands described by the scenario is translated into a

functional signature. An itinerative mobile agent takes the functional signature and commu-

nicates with a functional proxy server on the machine on which the agent currently resides.

The functional proxy servers match the speci�cations of the commands to servers on the

network. With this information, the agent can move to the appropriate service resources to

execute the command.

The movements of the mobile agent and data exchanged by the applications involved in

the example is shown in Figure 3. The component-based PSE on machine A helped a user

to de�ne a scenario to solve the pollution modeling problem. The scenario is translated by

the PSE on the machine into a functional signature. The PSE translates this scenario into

the following functional signature:

visualize(A; simulate(transport; geometry(river; area)))

where area describes the a�ected river location represented in XML.

From machine A the PSE sends out an agent with the functional scenario. No XML

objects are communicated at this point. The agent's responsibility is to seek out the services

and establish the connections between the services.

The agent engages the functional proxy server on machine A to �nd a server that can

supply the geometry for the speci�ed area adapted to river streams. The functional proxy

forwards the agent to machine B. The agents docks with the XML API of the GIS applica-

tion and retrieves the river geometry and current pollution levels. The next function is the

simulation by a transport model for the pollution. The functional proxy server of machine B

forwards the agent to machine C. Meanwhile, the data proxy servers maintain the commu-

nication channel with the GIS, that transports XML (and possibly functional signatures).

The APIs translate XML into internal data structures. In this way, updated data from the

GIS can be retrieved by the simulator. The data proxy servers take care of network problems

such as nodes that go down and possible network congestion by keeping current tables with

13



API

Agent

Proxy Server

PSE
Component

API

GIS

Agent

docksend

Proxy Server

move

API

Proxy Server

Simulator

API

Proxy Server

PSE
Component

API

GIS

Proxy Server

API

Proxy Server

PSE
Component

API

GIS

Agent

data

Proxy Server

move

API

Agent

Proxy Server

Simulator

dock

API

Agent

Proxy Server

Simulator

dock

move

Visualization

API

Visualization

API

Visualization

API

Agent

dock

Machine A

Machine A

Machine A Machine B

Machine B

Machine B

Machine C

Machine C

Machine C

Figure 3: An Itinerant Mobile Agent Solving a Pollution Modeling Problem

network pro�les. Proxy servers de�ne a virtual network by recording machines that provide

well-de�ned services. The actual topology of the network is unimportant to the distributed

application and mobile agents do not have to \know" how to locate a service and move.

Proxy servers create a virtual topology and maintain the data streams between applications

and agents.

After docking to the simulator on machine C, the agent looks for a visualization tool

on machine A (as speci�ed in the functional signature). The reason for using machine A is

that it is more e�cient to visualize data using the same machine on which the software (and

hardware) runs. Again, the functional proxy servers forward the agent to machine A and

maintain the information streams between machines A, B, and C.

14



4 Summary

In this proposal we described a new paradigm for the development of distributed scienti�c

applications by enabling resource discovery and dynamic data to be exploited in scienti�c

computing. By exploiting dynamic data, simulations can produce more accurate results. To

enable resource discovery, systems cannot be composed of �xed collections of components.

Instead, dynamic con�gurations of components for scienti�c computing can be formed in

which new services can be added and removed without severely a�ecting the environment.

Existing component-based systems have a central point of control. This central control

makes distributed system development easier, but denies a dynamic environment capable of

changing data representations, services, and resource discovery. The paradigm combines the

use of XML as a persistent data representation, functional signatures to de�ne the semantics

if applications, mobile agents and proxy servers as object request brokers, and itinerant

mobile agents that solve problems by moving between host to establish connections.

5 Results From Prior Support

Robert van Engelen is a Co-PI on the NSF CISE CCR grant \Automatic Validation of Code

Improving Transformations and Related Applications" awarded Summer 1999. Since this is

a recent award, no results have been reported yet.

15



References

[1] MathML. the World-Wide Web Consortium. Available from http://www.w3.org/Math.

[2] OpenMath. the OpenMath Consortium. Available from http://www.openmath.org.

[3] Research council says US climate models can't keep up. Science, 283(5403):766, 1999.

[4] A. Acharya. Mobile streams. In Sixth Annual Tcl/Tk Workshop, San Diego, CA, 1998.

[5] R. Akers, E. Kant, C. Randall, S. Steinberg, and R. Young. SciNapse: A problem-

solving environment for partial di�erential equations. IEEE Computational Science &

Engineering, 4(3):32{42, July/September 1997.

[6] D. Cabaza, M. Hermenegildo, and S. Varma. The pillow/CIAO library for inter-

net/WWW programming using computational logic systems. In 1st Workshop on Logic

Programming Tools for Internet Applications, JICSLP'96, Bonn, Sept. 1996. Available

from http://www.clip.dia.fi.upm.es/miscdocs/pillow/pillow.html.

[7] P. Clements, T. Papaioannou, and J. Edwards. Aglets: Enabling the virtual enterprise.

In International conference on Managing Enterprises - Stakeholders, Engineering, Lo-

gistics and Achievement, 1997.

[8] G. Cybenko, R. Gray, D. Kotz, and D. Rus. D'agents: Security in a multiple-language,

mobile-agent system. Mobile Agent Security, Lecture Notes in Computer Science, 1998.

[9] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Interna-

tional Jnl. of Supercomputer Applications, 11(2):115{128, 1997.

[10] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann, San Francisco, 1998.

[11] D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman, F. Breg,

S. Diwan, and M. Govindaraju. Developing component architectures for distributed

scienti�c problem solving. IEEE Computational Science & Engineering, 1998.

[12] S. Gray, N. Kajler, and P. S. Wang. Design and Implementation of MP, a Protocol for

E�cient Exchange of Mathematical Expressions. Jnl. of Symbolic Computing, 1997.

[13] P. group. The PSEware project: A toolkit for building problem-solving environments,

1996. Available from http://www.extreme.indiana.edu/pseware.

[14] M. Higgs and B. Cottman. Solving the data interoperability problem using a universal

data access broker. I-Kinetics, Inc., http://www.componentware.com.

[15] E. Houstis, J. Rice, N. Chrisochoides, H. Karathanasis, P. Papachiou, M. Samartzis,

E. Vavalis, K.-Y. Wang, and S. Weerawarana. //ELLPACK: A numerical simulation

programming environment for parallel MIMD machines. In 4th ACM International

Conference on Supercomputing, pages 96{107, New York, 1990. ACM Press.

16



[16] O. Inc. Java voyager, 1998. Available from

http://www.objectspace.com/products/vgrOverview.htm.

[17] W. Li and D. G. Messerschmitt. Java-to-go: Itinerative computing using java. De-

partment of Electrical Engineering and Computer Sciences University of California at

Berkeley http://ptolemy.eecs.berkeley.edu/dgm/javatools/java-to-go/.

[18] N. Project. Information power grid (ipg), 1998. Available from

http://www.nas.nasa.gov/IPG/.

[19] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-

Wesley, 1998.

[20] R. van Engelen, L. Wolters, and G. Cats. Ctadel: A generator of multi-platform high

performance codes for pde-based scienti�c applications. In 10th ACM International

Conference on Supercomputing, pages 86{93, New York, 1996. ACM Press.

[21] R. van Engelen, L. Wolters, and G. Cats. Tomorrow's weather forecast: Automatic

code generation for atmospheric modeling. IEEE Computational Science & Engineering,

4(3):22{31, July/September 1997.

[22] L. F. Wilson, G. Cybenko, and D. Burroughs. Mobile agents for distributed simulation.

Technical report, Thayer School of Engineering, Datmouth College, 1998.

17


