 \subsection {Self-adjusting simulation and scheduling optimization}

There are a number of self-adjusting simulation techniques we plan to investigate for adaptive control of performance prediction. \begin{itemize} \item {\em Dynamic profiling of individual modules.} The cost modeling for individual components requires the compiler's symbolic inference and analytical knowledge. For some parts of code, it may be difficult for a compiler or a user to provide accurate prediction. Runtime profiling and full simulation for some critical parts of code will lead to a relatively accurate performance abstraction for these parts to improve the accuracy of the overall performance prediction. \item {\em Deductive performance analysis}. Sometime the worst case performance abstraction can be overly pessimistic in predicting performance in practice. On the other hand, average performance can be very difficult to obtain using symbolic analysis. Runtime profiling based on a set of carefully selected instances can be used to study the average-case performance based on some symbolic terms.

The deductive analysis process involves test case generation and performance summary using statistical methods. The key research issues are the generation of proper test instances based on symbolic structure of an application, and the cost function abstraction based on the statistic analysis. The deductive analysis techniques can be applied to individual components at runtime and can also be applied to the entire application for selecting proper test instances and providing a meaningful performance summary. \item {\em Selective simulation.} For some part of application code, runtime performance is data-dependent. The performance data can only be obtained by the accurate simulation of partial computation. Given the current resource constraints in simulating large-scale applications, the system cannot conduct full simulation for all parts of code. Selectively dropping some unimportant tasks can give the best performance prediction within reasonable resource constraints. \end{itemize}

The first stage of our work is to execute the high level application specification on a sequential machine which simulates a multicomputer/meta-computer environment. The parallel simulation will be the second stage of our research. The standard approach for parallel simulation is to assign several message-passing processes to a physical processor. The main difficulty addressed in the simulation research community is the distributed scheduling of events such as inter-processor communication without global periodic synchronization in finding events with earliest time-stamps. Two solutions have been developed: conservative approach with deadlock elimination and optimistic approach with computation rollback support. There are a number of parallel event simulators developed~\cite{Maisie,GIT}. We will use those existing research results, but address the new research issues arisen in our project. The main issues for scheduling optimization are discussed as follows. \begin{itemize} \item {\em Mapping of SPMD parallelism} For a simple program, the processing mapping of parallelism is fixed. However, for a multidisciplinary application involving interaction of multiple SPMD programs. The processor resource distribution needs to be optimized by the scheduler. \item {\em Dynamic load balancing.} Many applications we deal with is dynamic, irregular and adaptive, and an even distribution of simulated message-passing processes does not lead to a good load balancing solution. The aforementioned self-adjusting prediction may cause substantial load reduction and increase within each simulated process. Thus advanced scheduling techniques are needed based on the dynamic simulation load requirement. Dynamic simulation module splitting, aggregation and migration are needed to improve the system utilization. \end{itemize}

