
Java/CORBA based Real-Time Infrastructure to

Integrate Event-Driven Simulations, Collaboration and

Distributed Object/Componentware Computing

G.C. Fox, W. Furmanski, and H.T. Ozdemir

Northeast Parallel Architectures Center, Syracuse University, Syracuse NY, USA

Abstract

We are discussing the four major standard can-

didates for distributed object/componentware com-

puting: Java, CORBA, COM and WOM within

our proposed coordination framework we call Prag-

matic Object Web (POW). We describe our inte-

gration approach based on multi-protocol middle-

ware server JWORB (Java Web Object Request

Broker) that currently integrates HTTP and IIOP

and which we now further develop to also sup-

port COM and WOM core functionalities. We are

also experimenting with visual data
ow authoring

front-ends using NPAC WebFlow system on top

of JWORB based software bus. Finally, we il-

lustrate our technologies in one major application

domain - DoD Modeling and Simulation - where

we use JWORB to implement the Real-Time In-

frastructure (RTI) layer of High Level Architecture

(HLA). HLA was recently speci�ed by DMSO as a

general integration framework for DoD distributed

simulations and we claim that we can bring it to a

broader community of distributed collaborative ob-

ject/componentware computing via the interactive

Web/CORBA/Java/COM interfaces of our Prag-

matic Object Web.

Keywords: CORBA, Java, COM, WOM, Web Ob-

ject Management Architecture, Pragmatic Object

Web, Visual Data
ow, WebFlow, Modeling and

Simulation, High Level Architecture, Run-Time In-

frastructure.

1 Pragmatic Object Web

Recent developments in Internet/Intranet

technologies start in
uencing the whole �eld

of distributed computing, both in its enter-

prise and science & engineering domains. Most

notably, Java appeared during the last few

years as the leading language candidate for

distributed systems engineering due to its el-

egant integrated support for networking, mul-

tithreading and portable graphical user inter-

faces.

While the "Java Platform" or "100% Pure

Java" philosophy is being advocated by Sun

Microsystems, industry consortium led by the

OMG pursues a multi-language approach built

around the CORBA model. It has been re-

cently observed that Java and CORBA tech-

nologies form a perfect match as two comple-

mentary enabling technologies for distributed

system engineering. In such a hybrid approach,

referred to as Object Web [1], CORBA is of-

fering the base language-independent model for

distributed objects and Java o�ers a language-

speci�c implementation engine for the CORBA

brokers and servers.

Meanwhile, other total solution candidates

for distributed objects/components are emerg-

ing such as DCOM by Microsoft or WOM

(Web Object Model) by the World-Wide Web

Consortium. However, standards in this area

and interoperability patterns between various

approaches are still in the early formation

stage. For example, recent OMG/DARPA

workshop on compositional software architec-

tures [2] illustrated the growing momentum,

the multitude of options, and at the same time

the uncertainty of the overall direction in the

�eld. A closer inspection of the distributed ob-

ject/component standard candidates indicates



that, while each of the approaches claims to of-

fer the complete solution, each of them in fact

excels only in speci�c selected aspects of the

required master framework. Indeed, it seems

that WOM is the easiest, DCOM the fastest,

pure Java the most elegant and CORBA the

most realistic complete solution.

Figure 1: Support for multiple protocols

and heretogeneous backend services within the

JWORB based Pragmatic Object Web.

In our Pragmatic Object Web [3] approach

at NPAC we adopt the integrative methodol-

ogy i.e. we setup a multiple-standards based

framework in which the best assets of various

approaches accumulate and cooperate rather

than competing. We start the design from

the middleware which o�ers a core or a `bus'

of modern 3-tier systems and we adopt Java

as the most e�cient implementation language

for the complex control required by the multi-

server middleware. We adopt CORBA as the

base distributed object model at the Intranet

level, and the (evolving) Web as the world-wide

distributed (object) model. System scalability

requires fuzzy, transparent boundaries between

Intranet and Internet domains which therefore

translates into the request of integrating the

CORBA and Web technologies. We imple-

ment it by building a Java server (JWORB)

[4] which handles multiple network protocols

and includes support both for HTTP and IIOP.

On top of such Pragmatic Object Web software

bus, we implement speci�c computational and

collaboratory services.

2 JWORB (Java Web Object

Request Broker) based mid-

dleware

JWORB [4] is a multi-protocol extensible

server written in Java. The base server has

HTTP and IIOP protocol support. It can serve

documents as an HTTP Server and it handles

the IIOP connections as an Object Request

Broker. As an HTTP server, JWORB supports

base Web page services, Servlet (Java Servlet

API) and CGI 1.1 mechanisms. In its CORBA

capacity, JWORB is currently o�ering the base

remote method invocation services via CDR

based IIOP and we are now implementing the

Interface Repository, Portable Object Adapter

and selected Common Object Services.

After the core JWORB server starts up, it

looks at con�guration �le to �nd out which pro-

tocols are supported and it loads the necessary

protocol classes for each protocol (De�nition,

Tester, Mediator, Con�guration). De�nition

Interface provides the necessary Tester, Con-

�guration and Mediator objects. Tester object

looks at the current connection's stream and

decides whether it can interpret this connec-

tion or not. Con�guration object is responsi-

ble for the con�guration parameters of a par-

ticular protocol. Mediator object serves the

connection. New protocols can be added sim-

ply by implementing the four classes described

above and by registering a new protocol with

the JWORB server.

After JWORB accepts a connection, it asks

each protocol handler object if it can recognize

this protocol. If JWORB �nds a handler which

claims that it can serve this connection, then

this protocol handler deals with this connec-

tion. Current algorithm looks at each proto-

col according to their order in the con�gura-

tion �le. This process can be optimized with

randomized or prediction based algorithm. At

present, HTTP and IIOP messaging are sup-



ported and the current protocol is simply de-

tected based on the magic anchor string value

(GIOP for IIOP and POST, GET, HEAD etc.

for HTTP).

3 WOMA (Web Object Man-

agement Architecture)

based Integration

As discussed above, our multi-standard inte-

gration framework starts from the Java based

CORBA middleware and then gradually in-

corporates other emergent standard candi-

dates, using the OMA services and facilities

as the implementation base. The advantage

of this approach is that new dynamic features

of the emergent models for distributed ob-

jects/components can be quickly and reliably

prototyped using Java in the solid software en-

gineering framework of CORBA.

For example, we are building at NPAC

a visual data
ow authoring environment -

WebFlow [5] - for composing Web based dis-

tributed applications from reusable modules.

Early WebFlow prototype was based on cus-

tom Java API for the module interface. New

JWORB based WebFlow under development

attempts at standards based visual compo-

nentware support and it addresses the integra-

tion of the CORBA component, DCOM com-

ponent and the Enterprise JavaBeans models.

Armed with a Java based CORBA platform

such as JWORB to be soon augmented by the

CORBA/COM bridge, we will be able to freely

experiment with and mix-and-match all these

component standard candidates.

We are also analysing several other emergent

standard candidates coming from the Web, En-

terprise, Desktop of Military domains and we

are exploring their integration patterns within

the newWebFlow framework. We discuss some

of these activities below.

In the visual graph editing sector, UML

appeared recently as a new promising stan-

dard candidate, adopted by OMG and also

embraced by Microsoft. We therefore intend

to base new WebFlow authoring model on the

Figure 2: Visual data
ow authoring tools as

a high-level front-end for a software bus based

distributed computing middleware (for example

WebFlow over JWORB as discussed in Section 4)

UML model, extended towards runtime sup-

port for UML activity and collaboration dia-

grams.

The WebFlow operating environment, rep-

resented in the current prototype by custom

Session-, Module- and Connection Managers,

shares in fact several common features with

the standard RTI layer of the DMSO HLA dis-

cussed in the next Section. It seems therefore

reasonable to build the new WebFlow runtime

around the JWORB based RTI communication

dynamics, thereby assuring close interoperabil-

ity with the new generation interactive systems

such as on-line gaming.

W3C introduces its own distributed ob-

ject/componentware framework, sometimes re-

ferred as WOM, and emergent as a combi-

nation of XML, RDF and DOM standards.

We are currently evaluating XML as a pos-

sible candidate for the universal data for-

mat for inter-modular transmission channels

in WebFlow. We also intend to incorporate

DOM as a CORBA service and to integrate

RDF with our e�orts towards transparent per-

sistence across UNIX and PC platforms dis-

cussed below.



We coined the term WOMA (Web Ob-

ject Management Architecture) which can be

viewed as a merger of W3C WOM and OMG

OMA and we use to refer to our multi-

standards based integration approach. Basi-

cally, rather than debating if we should fol-

low OMA, Java, COM, WOM etc. we are

setting instead an evaluation testbed and an

integration framework that will let these tech-

nologies to work in concert. Such process will

clearly expose the synergy as well as the essen-

tal di�erences between various approaches and

hopefully it will contribute itself to enforcing

and enabling common standards for the Web,

Desktop, Enterprise and Defense computing.

Some of our current activities, aimed at inte-

grating the alternative standard candidates for

the front-end, middleware and the backend lay-

ers, include:

� Integrating DirectX/Java3D/VRML to

support commodity desktop frontends

� Integrating DCOM with Object Web via

COM/CORBA bridges

� Integrating OLEDB/JDBC/PSS to sup-

port transparently persistent backends

� Integrating new DoD Standards for Mod-

eling and Simulation - High Level Archi-

tecture - with the commodity standards of

Pragmatic Object Web.

In this paper, we elaborate on the last ac-

tivity which we view as potentially valuable

and relevant for several other domains of dis-

tributed computing and collaboration.

4 High Level

Architecture and Run-Time

Infrastructure

High Level Architecture (HLA) [6] under de-

velopment by the Defense Modeling and Simu-

lation O�ce (DMSO) o�ers a common integra-

tion and interoperability platform for a broad

spectrum of simulation paradigms. These in-

clude real-time (DIS) models used for com-

bat training simulations, logical-time / event-

driven models used for forces simulation, and

faster-than-real-time models used in analysis

simulations.

HLA is a distributed object technology with

the object model de�ned by the Object Model

Template (OMT) speci�cation and including

the Federation Object Model (FOM) and the

Simulation Object Model (SOM) components.

HLA FOM objects interact by exchanging

HLA interaction objects via the common Run-

Time Infrastructure (RTI) acting as a software

bus similar to CORBA. Current HLA/RTI fol-

lows a custom object speci�cation but DMSO's

longer term plans include transferring HLA to

industry via OMG CORBA Facility for Inter-

active Modeling and Simulation.

Figure 3: A roadmap illustrating synergies be-

tween technology evolution processes within the

DoD Modeling and Simulation, Object Web

Technologies and High Performance Comput-

ing.

At NPAC, we are anticipating these devel-

opments are we are building a prototype RTI

implementation in terms of Java/CORBA ob-

jects using the JWORB middleware.

Although coming from the DoD comput-

ing domain, RTI follows generic design pat-

terns and is applicable to a much broader range



of distributed applications, including modeling

and simulation but also collaboration, on-line

gaming or visual authoring. From the HPCC

perspective, RTI can be viewed as a high level

object based extension of the low level mes-

saging libraries such as PVM or MPI. Since it

supports shared objects management and pub-

lish/subscribe based multicast channels, RTI

can also be viewed as an advanced collabora-

tory framework, capable of handling both the

multi-user and the multi-agent/multi-module

distributed systems [7][8].

In the following, we summarize the ongoing

NPAC work on JWORB based RTI prototype

implementation.

5 JWORB based RTI Proto-

type at NPAC

RTI is given by some 150 communication

and/or utility calls, packaged as 6 main

management services: Federation Manage-

ment, Object Management, Declaration Man-

agement, Ownership Management, Time Man-

agement, Data Distribution Management, and

one general purpose utility service.

Our design is based on 9 CORBA interfaces,

including 6 Managers, 2 Ambassadors and

RTIKernel. Since each Manager is mapped to

an independent CORBA object, we can easily

provide minimal support for distributed man-

agement by simply placing individual man-

agers on di�erent hosts.

The communication between simulation ob-

jects and the RTI bus is done through the

RTIambassador interface. The communica-

tion between RTI bus and the simulation ob-

jects is done by their FederateAmbassador in-

terfaces. Simulation developer writes/extends

FederateAmbassador objects and uses RTI-

ambassador object obtained from the RTI bus.

RTIKernel object knows handles of all man-

ager objects and it creates RTIambassador ob-

ject upon the federate request. Simulation

obtains the RTIambassador object from the

RTIKernel and from now on all interactions

with the RTI bus are handled through the

RTIambassador object. RTI bus calls back

(asynchronously) the FederateAmbassador ob-

ject provided by the simulation and the feder-

ate receives this way the interactions/attribute

updates coming from the RTI bus.

Federation Manager object is responsible for

the life cycle of the Federation Execution. Each

execution creates a di�erent FederationExecu-

tive and this object keeps track of all federates

that joined this Federation.

Object Manager is responsible for creating

and registering objects/interactions related to

simulation. Federates register the simulated

object instances with the Object Manager.

Whenever a new registration/destroy occurs,

the corresponding event is broadcast to all fed-

erates in this federation execution.

Declaration Manager is responsible for the

subscribe/publish services for each object and

its attributes. For each object class, a special

object class record is de�ned which keeps track

of all the instances of this class created by fed-

erates in this federation execution. This ob-

ject also keeps a seperate broadcasting queue

for each attribute of the target object so that

each federate can selectively subscribe, publish

and update suitable subsets of the object at-

tributes.

Each attribute is currently owned by only

one federate who is authorized for updating

this attribute value. All such value changes are

re
ected via RTI in all other federates. Own-

ership Management o�ers services for trans-

ferring,maintaining and querying the attribute

ownership information.

We are currently working on implement-

ing the Time Management service which of-

fers support for logical time handling, and the

data Distribution Management which o�ers

advanced publish/subscribe services via rout-

ing spaces or multi-dimensional regions in the

attribute value space.

In parallel with the �rst pass prototype

implementation, we are also addressing the

issues of more organized software engineer-

ing in terms of Common CORBA Services.

We are now testing this concept and extend-

ing JWORB functionality by building Java



Figure 4: Object Web RTI constructed as a

set of CORBA objects (RTIAmbassador at the

server side, FederateAmbassador at the client

side) managed by the JWORB middleware and

editable by visual data
ow authoring tools in

the front-end.

CORBA based RTI implementation structured

as a JWORB service and referred to as Ob-

ject Web RTI [4]. Our implementation in-

cludes two base user-level distributed objects:

RTI Ambassador and Federate Ambassador,

built on top of a set of system-level objects

such as RTI Kernel, Federation Execution or

Event Queues (including both time-stamp- and

receive-order models). RTI Ambassador is fur-

ther decomposed into a set of management ob-

jects, maintained by the Federation Execution

object, and including: Object Management,

Declaration Management, Ownership Manage-

ment, Time Management and Data Distribu-

tion Management. To be able to run C++

RTI demo examples, we developed a C++ li-

brary which: a) provides RTI C++ program-

ming interface; and b) it is packaged as a

CORBA C++ service and, as such, it can

easily cross the language boundaries to ac-

cess Java CORBA objects that comprise our

Java RTI. Our C++ DMSO/CORBA glue li-

brary uses public domain OmniORB2.5 as a

C++ Object Request Broker to connect RTI

Kernel object running in Java based ORB.

RTI Ambassador glue/proxy object forwards

all method calls to its CORBA peer and Fed-

erate Ambassador, de�ned as another CORBA

object running on the client side, forwards all

received callbacks to its C++ peer.

For example, we intend to use the CORBA

Naming Service to provide uniform mapping

between the HLA object names and handles,

and we plan to use CORBA Event and No-

ti�cation Services to support all RTI broad-

cast/multicast mechanisms. This approach

will assure quality of service, scalability and

fault-tolerance in the RTI domain by simply

inheriting and reusing these features, already

present in the CORBA model.

6 Outlook

We outlined here our Pragmatic Object Web

based integration approach and we discussed

in more detail the NPAC implementation of

the RTI software bus in the JWORB frame-

work. We intend to use our RTI both for DoD-

speci�c high performance M&S applications

within our WebHLA [9] project with the DoD

High Performance Computing Modernization

O�ce, and for other interactive distributed

Web/Commodity application domains such as

synchronous and asynchronous collaboration

at visual data
ow authoring environments.

More gen-

erally, we believe that our JWORB+WOMA

integration approach will o�er an e�cient

testbed for evaluating and possibly integrat-

ing new emergent Web/Commodity technolo-

gies. Given the ongoing competition between

the major standards bodies, such a testbed

operated within an academic lab linked with

several federal programs such as NPAC might

play a role itself in the formation process of

Web/Commodity standards for distributed ob-

ject/componentware computing.

References

[1] 1. Robert Orfali and Dan Harkey,

Client/Server Programming with Java



and CORBA , 2nd Edition, Wiley 1998.

[2] Craig Thompson, OMG/DARPA Work-

shop on Compositional Software Architec-

tures, Monterey, CA January 6-8 1998

[3] G. C. Fox, W. Furmanski and S. Pal-

lickara, Building Distributed Systems for

the Pragmatic Object Web, book in

progress, Wiley '98.

[4] G. C. Fox, W. Furmanski and H. T.

Ozdemir, JWORB - Java Web Object

Request Broker for Commodity Software

based Visual Data
ow Metacomputing

Programming Environment , submitted

for the HPDC-7, Chicago, IL, July 28-31,

1998.

[5] D. Bhatia, V. Burzevski, M. Camuseva,

G. Fox, W. Furmanski and G. Prem-

chandran, WebFlow - a visual program-

ming paradigm for Web/Java based coarse

grain distributed computing , June '97, in

the special issue of "Concurrency: Prac-

tice and Experience" on Java for Scienti�c

Computing.

[6] High Level Architecture (HLA) by the

Defence Modelling and Simulation O�ce

(DMSO)

[7] D. Dias, G. C. Fox, W. Furmanski, V.

Mehra, B. Natarajan, H. T. Ozdemir, S.

Pallickara, Z. Ozdemir, Exploring JSDA,

CORBA and HLA based MuTech's for

Scalable Televirtual (TVR) Environments

, presented at the Workshop on OO and

VRML, VRML98 Conference, Monterey,

CA, Feb 16-19,1998.

[8] G.C. Fox, W. Furmanski, B. Natara-

jan, H. T. Ozdemir, Z. Odcikin Ozdemir,

S. Pallickara and T. Pulikal, Integrat-

ing Web, Desktop, Enterprise and Mil-

itary Simulation Technologies To En-

able World-Wide Scalable Televirtual

(TVR) Environments , submitted to the

Workshop on Web-based Infrastructures

for Collaborative Enterprises, the WET

ICE'98 Conference, Stanford University,

June 17-19,1998.

[9] D. Bernholdt, G. C. Fox, W. Furman-

ski, B. Natarajan, H. T. Ozdemir, Z. Od-

cikin Ozdemir and T. Pulikal, WebHLA -

An Interactive Programming and Training

Environment for High Performance Mod-

eling and Simulation , submitted to the

DoD HPC 98 Users Group Conference,

Rice University, Houston, TX, June 1-5

1998.


