
Performance Prediction for Data Intensive Applications on
Large Scale Parallel Systems

Yuhong Wen, Geoffrey C. Fox
Northeast Parallel Architecture Center

Syracuse University
111 College Place

Syracuse, NY, 13244-4100, U.S.A
{wen,gcf}@npac.syr.edu

ABSTRACT

This paper presents a new interactive performance
estimation tool – PetaSIM for large scale parallel
systems. Our main approach is to divide the difficult
performance estimation problem into three domains:
application, software and hardware, to extract the system
specifications and provide tools for the interactive
changes of the system parameters over the Internet.
Computers, networks and applications are described as
objects with special attention to the proper representation
of caches and hierarchical memories. PetaSIM represents
a prototype of a performance specification language
(PSL). We present encouraging initial results for a set of
data-intensive applications form the real applications and
discuss the extension of PetaSIM to support applications
in distributed collaborative engineering.

Keywords: Performance Prediction, Performance
Specification Language

1. INTRODUCTION

Large-scale data-intensive parallel applications have
become the leading scientific computing problems
on the massively parallel machines, because of their
complexity and time-consuming. It will be great
help to the application design and the new computer
architecture design of petaflop performance if we
can give the performance prediction before
physically running the applications on the parallel
machines. There are two kinds of performance
prediction approaches, concept design level and
detailed performance prediction. At the concept
design, the goal is to provide a quick and roughly
correct performance prediction at the early stage of
model design of the application and/or the new
computer architecture design. While the detailed
performance prediction is aimed to provide the
detailed information of a given application running

on a specific computer system, normally, we call it
performance simulation.

In this paper, we will present a performance estimator
which address to the conceptual performance prediction,
called PetaSIM. It is designed also with particular
attention to easy interactive comparison of different
system design. It is quite convenient to change application
structure in PetaSIM but we have chosen to focus on
cases where one has a relatively fixed application suit and
wish to rapidly explore a range of system designs. A Java
applet front-end is used to optimize interactive estimation.

The performance estimator PetaSIM is built around the
performance prediction process sketched in Fig.1 [1]. The
distinctive feather of our approach is the use of machine
and problem abstractions which although less accurate
than detailed complete representations, can be expected to
be more robust and further quite appropriate for the rapid
prototype needed in the design of new machines, software
and algorithms. The hearts of this performance prediction
process are two technologies - PSL (Performance
Specification Language) and PetaSIM [1], [3]. In this
paper, we will address the design of PetaSIM, which will

Fig.1: The Performance Prediction Process

take three key inputs from PSL, which describe
respectively the target machines, application, script
specifying execution of the application on the machine, to
get an estimation of the performance of the application
running on the machine. All kinds of research have
showed that the performance prediction / estimation has
been a very difficult problem, because of different kinds
of applications, and different kinds of computer systems.
It is important to design a general performance
specification language (PSL) to support the performance
estimation. In this paper, we will also show that PetaSIM
is an initial step to suggest the characteristics of such a
Performance Specification Language.

The rest of the paper is organized as the followings.
Section 2 introduces the design and implementation of
PetaSIM. In Section 3, we will give some real
applications’ performance estimation results running on
IBM-SP2, using different architecture descriptions in
PetaSIM. And Section 4 is the conclusion and further
work.

2. PERFORMANCE ESTIMATOR --
PetaSIM

In this section, we will discuss the design and
implementation of our performance estimator PetaSIM for
parallel memory hierarchy system. PetaSIM takes three
key inputs, which describe respectively the target
machines, application, script specifying execution of the
application on the machine, to get an estimation of the
performance of the application running on the machine.
PetaSIM takes both inputs from the application emulators
(such as University of Maryland Emulators)[4] and hand
written codes.

2.1 Emulators

An application emulator is a program to extract
computational and data access patterns that closely
resemble the patterns observed when executing a
particular class of applications. In practice, an emulator is
a simplified version of the real application, but contains
all the necessary communication, computation and I/O
characteristics of the application required for the
performance prediction study. Using an emulator result in
less accurate performance estimations than using full
application, but it is more robust and enables fast
performance predictions for rapid prototyping of new
machines. An application emulator models the
computation and data access patterns of the full
application in a parameterized way. Adjusting the values
of the parameters makes it possible to generate various
application scenarios within a single class of applications.

In a simulation-based performance prediction framework,
application emulator provides a specification of the
behavior of the application to the simulator. Using an
application emulator has several advantages over using
traces from actual program runs or running the full
application on the simulator. First, a trace is static and
represents the behavior of the application for a single run
on a particular configuration of the machine. Since an
application emulator is a program that can be run on the
simulator, it can model the dynamic nature of an
application and can be used for different machine
configurations. Second, running a real application may
complicate the task of the simulator unnecessarily. By
abstracting away parts of the application that are not
critical to predicting performance, an application emulator
can allow an efficient simulation without getting bogged
down in the unimportant details of the application. Third,
execution of a complete application requires the
availability of real input data. Since the application
behavior is only emulated, an application emulator does
not necessarily require real input data, but can also
emulate the characteristics of the actual data. This can
enable performance studies of applications on large
machine configurations with large data sets. An
application emulator without a great amount of detail can
be used for rapid prototyping of the performance of the
application on a new machine configuration; while a
highly detailed emulator can be used, for instance, to
study different parallelization strategies for the
application.

2.2 Petasim

There are three parts of descriptions in the PetaSIM
performance estimation system, architecture description
and application description, and the system/software
description. The most general computer architectures can
be specified using the PetaSIM nodeset and linkset objects
while the applications can be specified using dataset and
distribution objects. While the system description
represent the software feature of the parallel machines.

A nodeset is a collection of entities with current types
allowed as:

• memory with cache (with flushing rules) as
special case

• disk which is essentially same as a memory.
• CPU where results can be calculated
• pathway such as a bus, switch or network cable

which concentrates data

A linkset connects nodesets together in various ways.
distributions specify the horizontal (geometrical)
connectivity of nodesets and linksets. Typically these are
arranged in a natural default for the classic homogeneous
architectures. The default mapping is inferred from sizes

of nodesets and done in a simple one-dimensional block
fashion. The vertical (flow of information) connectivity in
the architecture is specified in the execution script with
defaults implied in architecture specification.

The application is specified by a dataset object, whose
implementation is controlled by a distribution object that
specifies classic HPF style geometric decomposition
across memories and CPU objects. The computation is
specified by the execution script, which also specifies
data movement.

nodeset, linkset, dataset and distribution are Java classes
that are subclassed as necessary to give particular special
cases with particular capabilities. They have methods that
are defaulted for simple cases but can be overridden for
complicated cases. Thus we are essentially Java as IDL
(Interface Definition Language) for these core PetaSIM
objects.

2.2.1. nodeset Object Structure in PetaSIM Estimator

nodeset has the following properties:
• name: one per nodeset object
• type: choose from memory, cache, disk, CPU,

pathway
• number: number of members of this nodeset in

the computer architecture
• grainsize: size in bytes of each member of this

nodeset (only relevant for memory cache or disk
• bandwidth: this is maximum bandwidth allowed

in any one member of this nodeset
• floatspeed: performance on floating point

arithmetic specified as a time to do a single
operation for entities in cache. Only used by a
CPU

• calculate(): method for CPU nodesets that
performs computation implied by floatspeed and
other architectural features.

• cacherule: controls persistence of data in a
memory or cache

• portcount: number of ports on each member of
nodeset

• portname[]: ports connect to linksets and a
member of a nodeset has one or more ports --
each of which has a name. A port corresponds to
a class of connections and depending on number
of members involved, a given port can
correspond to multiple connections

• portlink[]: name of linkset connecting to this
port

• nodeset_member_list: list of nodeset members
in this nodeset (for nodeset member
identification)

2.2.2. linkset Object Structure in PetaSIM Estimator

A basic linkset has the following properties. A
derived linkset object is gotten by concatenating
several basic linksets objects together. Derived
linksets could be specified by special scripts or just
written directly in Java.
• name: one per linkset object
• type: choose from updown, across. If across,

this is a network of given topology, linking
members of a single nodeset. If updown, this is
a link between two different nodesets

• nodesetbegin: name of initial nodeset joined by
this linkset

• nodesetend: name of final nodeset joined by this
linkset. Nodesetend and nodesetbegin are
identical if type is across

• topology: used for across networks to specify
linkage between members of a single nodeset

• duplex: choose from full or half. If half only
allow transmission from nodesetbegin to
nodesetend. If full allow either direction with
bandwidth limiting sum of both directions.

• number: number of members of this linkset in
the computer architecture

• latency: time to send zero length message across
any member of this linkset

• bandwidth: this is maximum bandwidth in bytes
per second allowed across any link in this
linkset. Time Tlk to transfer information from
nodeset l to nodeset k is expressed as latency +
bandwidth number of bytes. Here l refers to
nodesetbegin and k to nodesetend

• send(): method that calculates implications of
sending information through given linkset. For a
derived linkset, this method can include multiple
references to properties and methods of basic
linksets and nodesets.

• distribution: name of geometric distribution
controlling this linkset

• nodeset_member_list: list of nodeset members
in this nodeset (for nodeset member
identification)

2.2.3. distribution Object Structure in PetaSIM
Estimator

distribution has the following properties:
• name: one per distribution object
• type: choose from block1dim, block2dim,

block3dim (can obviously add more to this in
analogy with HPF) to specify geometrical
structure of entity being distributed. Note most
computer architectures are implicitly done as
one-dimensional block distribution

2.2.4. dataset Object Structure in PetaSIM
Estimator

dataset has the following properties:
• name: one per dataset object
• type: choose from grid1dim, grid2dim,

grid3dim, specifies type of dataset
• bytesperunit: number of bytes in each unit. If 5

field values at each grid point and double
precision used, then bytesperunit is 40

• floatsperunit: update cost as a floating point
arithmetic count. Differences between double or
single precision, should be reflected in values of
CPUnodeset.floatspeed and dataset.bytesperunit

• operationsperunit: operations in each unit. A
dataset contains totalsize of units,
operationsperunit then reflects the operations in
each unit for the CPUnodeset to calculate the
computing time.

• update(): ethod that updates given dataset which
is contained in a CPU nodeset and with a
grainsize controlled by last memory nodeset
visited.

• transmit(): method that calculates cost of
transmission of dataset between memory levels
including either communication (between
distributed nodes) or movement up and down
hierarchy. Note classic grid problems are
assumed to be implemented using ghost cells and
that this involves the edges of regions being
transmitted.

2.2.5. Computation/Communication Instructions
(Execution Script)

Much of the execution is controlled by methods in
nodeset, linkset and dataset objects. Some typical
additional commands that implicitly invoke these
methods are:
• send DATAFAMILY from MEM-LEVEL-L to

MEM-LEVEL-K
• Here DATAFAMILY is a dataset specified by

name
• MEM-LEVEL-K, MEM-LEVEL-L are nodesets

labeled by name which must be linked by a
linkset.

• move DATAFAMILY from MEM-LEVEL-L to
MEM-LEVEL-K

• Use distribution DISTRIBUTION on
NODESET1,…,LINKSET1,…,DATASET1

• compute DATAFAMILY-A,DATAFAMILY-B
.. on MEM-LEVEL-L

• synchronize synchronizes all processors (loosely
synchronous barrier). Pipelining which is
normally assumed, is stopped by this.

3. EXPERIMENT RESULTS

In this section we summarize some preliminary results
from PetaSIM with three data-intensive applications
Pathfinder, Titan and Virtual Micro-Scope from the
University of Maryland. The architecture and application
description files are all automatically generated by
University of Maryland's emulators[4].

3.1 Remote Sensing – Titan and Pathfinder

Titan is a parallel shared-nothing database server
designed to handle satellite data. The input data for Titan
are sensor readings from the entire surface of the earth
taken from the AVHRR sensor on the NOAA-7 series of
satellites. The satellite orbits the earth in a polar orbit, and
the sensor sweeps the surface of the earth gathering
readings in different bands of the electric-magnetic
spectrum. Each sensor reading is associated with a
position (longitude and latitude) and the time the reading
was recorded for indexing purposes. In a typical operation
for Titan, user issues a query to specify the data of the
interest in space and time. Data intersecting the query are
retrieved from disks and processed to generate the output.
The output is a two-dimensional multi-band image
generated by various types of aggregations operations on
the sensor readings, with the resolution of its pixels
selected by the query.

Titan operates on data-blocks, which are formed by
groups of spatially close sensor readings. When a query is
received, a list of data-block requests for each processor is
generated. Each list contains read requests for the data-
blocks that are stored on the local disks of the processor
and that intersect the query window. The operation of
Titan on a parallel machine employs a peer-to-peer
architecture. Input data-blocks are distributed across the
local disks of all processors and each processor is
involved in retrieval and processing of data-blocks. The
2D output image is also partitioned among all processors,
and each processor is responsible for processing data-
blocks that fall into its local sub-region of the image.
Processors perform retrieval, processing and exchange of
data-blocks in a completely asynchronous manner. In this
processing loop, a processor issues disk reads, sends and
receives data-blocks to and from other processors, and
performs the computation required to process the
retrieved data-blocks. Non-blocking I/O and
communication operations are used to hide latency and
overlap these operations with computation. The data-
blocks are the atomic units of I/O and communication.
That is, even if a data-block partially intersects with the

query window and/or the sub-region of the output image
assigned to a processor, the entire data-block is retrieved
from disk and is exchanged between processors.

Pathfinder is very similar to Titan except that it always
processes all the input data that is available for a
particular time period, over the entire surface of the earth.
In addition, the operation of Pathfinder on a parallel
machine employs a client / server architecture with
separate I/O nodes and compute nodes.

3.2 Virtual Microscope

The Virtual Microscope is designed to emulate the
behavior of a high-power light microscope. The input data
for the Virtual Microscope are digitized images of full
microscope slides under high power. Each slide consists
of several focal planes. The output of a query into the
Virtual Microscope is a multi-band 2D image of a region

of a slide in a particular focal plane at the desired
magnification level (less than or equal to the
magnification of the input images). The server part of the
software running on the parallel machine employs a peer-

to-peer architecture. As in Titan and Pathfinder, input data
is partitioned into data-blocks and distributed across the
disks on the parallel machine. In a typical operation,
multiple clients can simultaneously send queries to the
server. When a query is received, each processor in the
server retrieves the blocks that intersect with the query
from its disks, processes these blocks, and sends them to
the client. There is no communication or coordination
between server processors. Different processors can even
operate on different queries at the same time.

3.3 IBM-SP2 Architecture Description

We did the performance prediction experiments of the
above real data intensive applications running on IBM-

Titan Estimation Results Pathfinder Estimation Results

Fig. 4: PetaSIM Performance Estimation on Architecture I

Fig.2: IBM-SP2 Simple nodeseet and
linkset components -- Architecture I

Fig.3: Detailed SP2 configuration used in fig. 5 showing
the nodeset and linkset components – Architecture II

0
50

100
150
200
250
300
350

P15(9K
Data)

P15(27K
Data)

P32(27K
Data)

IBM-SP2
Running
Time

Petasim
Estimate
Time

0
100
200
300
400
500
600
700
800

P15(9K
Data)

P15(27K
Data)

P32(55K
Data)

IBM-SP2
Running
Time

PetaSIM
Estimate
Time

SP2. In order to describe the features of the underlying
parallel architecture, we abstract the memory hierarchy of
each node on IBM-SP2 architecture in Fig.2 and Fig.3.
We used two different kinds of architecture description in
our experiments. Fig.2 gives a roughly description of the
architecture, while in Fig.3, we did the performance
estimation in a more detailed way.

Both pictures describe the architecture of one single node
in IBM-SP2. It consists of nodesets joined by linksets.
The whole system may contain 32, 64, or even more such
nodes. PetaSIM also supports the description of
heterogeneous architecture, the system may contain
different kinds of nodes. Each node may not have the
same architecture as the others.

3.4 Experiment Results

The results in Fig.4 show the application Titan and

Pathfinder’s performance comparison of PetaSIM
estimate time with the real measured running time on
IBM-SP2 based on the roughly description of the
architecture I. The symbol P15(9K Data) represents that
the application is running on 15 nodes of IBM-SP2, and
the application has 9K data. The others are the same as
this one. The results show that PetaSIM can get quite
accurate performance estimation compared with the
measured running time.

Fig.5 shows the PetaSIM estimation results on detailed
description of architecture II. The results in Fig.5 are
plotted against the number of parallel SP2 nodes except
for one case (Pathfinder) where we also compare results
plotted against number of I/O nodes in the system. From
the benchmarks we can see that the PetaSIM estimate
results are quite close to the measured application's
running time.

Processor Number

T
im

e
(S

ec
.)

Pathfinder Estimation Results

I/O Nodes

T
im

e
(S

ec
.)

Pathfinder Estimation Results (I/O Nodes Changed)

Processor Number

im
e

(S
ec

.)

Titan Estimation Results (fixed)

Processor Number

T
im

e
(S

ec
.)

Virtual MicroScope Estimation Results

Fig.5: Measured Execution Time compared to the estimated execution time from PetaSIM for four
examples. We also show the sequential execution time needed to produce the estimate. – Architecture II

0

20

40

60

80

100

120

140

16 32 64 100

Measured R unning T ime on SP2

Estimated R unning T ime on SP2

Sequential T ime to Produce Estimate

0

5

10

15

20

25

30

35

4 8 16 32 48 56 60

Measured Running T ime on SP2

Estimated Running T ime on SP2

Sequential T ime to Produce Estimate

0
10
20
30
40
50
60
70
80
90

16 32 64 100

Measured Running T ime on SP2

Estimated Running T ime on SP2

Sequential T ime to Produce Estimate

0

5

10

15

20

25

16 32 64 100

Measured R unning T ime on SP2

Estimated R unning T ime on SP2

Sequential T ime to Produce Estimate

These figures also show the actual wall clock time used
by PetaSIM to produce the estimates. As this runs on a
sequential machine and the execution script is not
explicitly data-parallel, this time to get estimation
increases linearly with the number of nodes. If one looks
at the estimation time for simple data-parallel systems
such as finite difference problems, PetaSIM would be
much faster (as just a few not a few thousand lines of
execution script) and take a time roughly independent of
the number of nodes on the target machine. In fact we
have recently abstracted the operations in the applications
shown in Fig.5 to a “primitive data parallel operation” and
have correspondingly drastically reduced the time needed
to produce the estimate. One can expect to initially use a
simple crude loop over parallel nodes for each new type
of computation. If used enough, it can be implemented in
data parallel fashion and added to PetaSIM’s library of
operations.

PetaSIM provides the ability to easily modify the features
of the architecture and application behavior, which helps
greatly in the architecture conceptual design and get
accurate performance estimation. PetaSIM also provides
the interface for both inputs from the emulators (like our
experience with the University of Maryland's
emulators[4]) and from the hand-written code of the
system designers, which make it even more flexible.

4. CONCLUSION AND FURTHER WORK

PetaSIM bases its performance estimate on several inputs:
namely the computer architecture description, nodeset and
linkset, and application description, dataset and
distribution, and the data operation description, execution
script, of the application. This has similarities to the
approach used by the POEMS group led by University of
Texas at Austin. In the POEMS system, one divides the
performance estimation into application domain, system
and software domain, and hardware domain. In each
domain, they provide a model to describe the features of
both application and architecture. The performance
estimation will be based on the information provided. [6]

Compared with some other performance estimators,
PetaSIM has some special characteristics. Most of the
other simulators, such as the University of Maryland’s
systems [4], [5], base their simulation on the task graph
describing the application. PetaSIM instead uses an
execution script for the application specified in ASCII
format, which corresponds to a coarse grained description
of the application. PetaSIM’s approach appears to provide
a more intuitive interface to both application and resource
description, which naturally supports rapid prototyping
studies over a wide range of computer architectures. And
because of the web-based technology used in PetaSIM, it
has the advantage of easy to operate and change the

system parameters, rapid and accurate performance
estimation, and global availability.

In order to make PetaSIM more powerful to deal with
more different kinds of real applications, we need to
improve its abilities in representing both the applications,
the computer architectures. In the application aspect, we
are considering to provide more statements in the
execution script to make it able to deal with more cases of
data processing, such as loop operation. While in the
computer architecture, we also need to provide more
features to reflect the information of the parallel computer
systems.

5. REFERENCES

[1] "The Petaflops Systems Workshops", Proceedings of
the 1996 Petaflops Architecture Workshop (PAWS),
April 21-25, 1996 and Proceedings of the 1996
Petaflops System Software Summer Study (PetaSoft),
June 17-21, 1996, edited by Michael J. MacDonald
(Performance Issues are described in Chapter 7).

[2] Kivanc Dincer and Geoffrey C. Fox, "Using Java in
the Virtual Programming Laboratory: A web-Based
Parallel Programming Environment", to be published
in special issue of Concurrency: Practice and
Experience on Java for Science and Engineering
Computation.

[3] Geoffrey C. Fox and Wojtek Furmanski, Computing
on the Web -- New Approaches to Parallel
Processing-- Petaop and Exaop Performance in the
Year 2007", submitted to IEEE Internet Computing,
http://www.npac.syr.edu/users/gcf/petastuff/petaweb/

[4] Mustafa Uysal, Tahsin Kurc, Alan Sussman, Joel
Saltz, Performance Prediction Framework for Data
Intensive Applications on Large Scale Parallel
Machines, University of Maryland Technical Report:
CS-TR-3918 and UMIACS-TR-98-39, July 1998

[5] M. Uysal, A. Acharya, R. bennett, J. Saltz, "A
Customizable Simulator for Workstation Networks",
Proceedings of the International Parallel Processing
Symposium, April 1997.

[6] Deelman, Bagrodia, Dube, Browne, Hoisie, Luo,
Lubeck, Wasserman, Oliver, Teller, Sundram-Stukel,
Vernon, Adve, Houstis, and Rice, POEMS: End-to-
end Performance Design of Large Parallel Adaptive
Computational Systems: Technical Report, August
1998

