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Because parallel computing is significantly more complicated than serial
computing, it places significant burdens on the application developer. In addi-
tion to developing a correct problem solution, the user must also control and
coordinate the uses of parallelism in the solution program. This is even more
complicated because the methodology and mechanisms for exerting control may
differ from target platform to target platform.

As a result, high performance parallel computing presents significant chal-
lenges and opportunities for programming language designers, compiler imple-
mentors, and run-time system developers. If program development support
software can make it easier for programmers to design, implement, debug and
tune parallel programs on a variety of target platforms, parallelism may become
accessible to the larger community of application developers.

To understand the nature of the challenge for programming support software,
we must consider the process for development of parallel applications. The
implementor must be able to find opportunities for parallelism in his or her
application, express the paralellism in a machine-independent way, and debug
and tune the resulting application for a particular parallel platform. In designing
language and compiler support for this process, we must keep three goals firmly
in mind:

• Programming should be as easy as possible—that is, the end user should
experience only slightly more complexity than for development of unipro-
cessor programs.

• The resulting programs should be portable across platforms with modest
effort. It should not be necessary to maintain multiple source versions of
the same program. Rather it should be possible to move the same source
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to each platform, adjust some tuning parameters, and run with nearly the
full performance available on the machine.

• The programmer should retain as much control over performance as pos-
sible. If performance problems develop, it should be possible for the pro-
grammer to address them within the high-level programming model—i.e.,
without having to resort to modification of low level code generated from
the high-level representation.

These seemingly conflicting goals will be difficult to achieve because parallelism
presents significant challenges to the application developer. To achieve the goals
above, the programming system will need to solve three fundamental problems:

1. It must find extensive parallelism in the application presented by the user.
It must then package and coordinate that parallelism during execution.
Finding parallelism may involve a transfer of information from the user,
but is must be possible to get this information without forcing a complete
revision of the application.

2. It must overcome the performance penalties due to the complex memory
hierarchies on modern parallel computers. This could involve extensive
program transformations to increase locality. This is more challenging
on parallel computers because there is often a tension between increasing
parallelism and finding locality.

3. It must support migration of parallel programs to different architectures
with only modest changes. This will entail devlopment of a programming
interface that is not machine specific and strategies for optimizing and
tuning applications for different architectures.

In designing strategies for support of parallel programming, we must keep in
mind the principle that each component of the system should do what it does
best:

• the application developer should be able to concentrate on problem analysis
and decomposition at a fairly high level of abstraction;

• the system, including the programming language and compiler, should
handle the details of mapping the abstract decomposition onto the com-
puting configuration available at any given moment; and

• the application developer and the system should work together to produce
a correct and efficient program through the use of execution monitoring,
debugging, and tuning tools.

This chapter explores three technologies that have been reasonably success-
ful in meeting the goals of parallel programming support for scientific com-
putation: automatic parallelization, data parallel languages (High Performance
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Fortran), and shared memory parallel programming interfaces (OpenMP). (Par-
allel object-oriented programming is considered in Chapter ??.) The intent of
our presentation is to give a somewhat tutorial introduction to these technolo-
gies, while providing background on the intellectual development that led to
them and an assessment of their usefulness.

12.1 Automatic Parallelization

From the user’s perspective, the most appealing approach to program decompo-
sition is automatic parallelization. If a fully automatic system could efficiently
parallelize applications, the user would be free to concentrate on what is being
computed rather than how it is being computed. However, to be acceptable, a
fully automatic scheme must generate code that achieves performance compet-
itive with programs hand-coded by experts—the performance penalty should
be no worse than a factor of two. This observation is based on strong evidence
that object program performance has been a significant factor in the acceptance
of new programming languages since the original Fortran I compiler, including
this reflection by John Backus [12]:

It was our belief that if FORTRAN, during its first months, were
to translate any reasonable “scientific” source program into an ob-
ject program only half as fast as its hand-coded counterpart, then
acceptance of our system would be in serious danger... To this day I
believe that our emphasis on object program efficiency rather than
on language design was basically correct. I believe that had we failed
to produce efficient programs, the widespread use of languages like
FORTRAN would have been seriously delayed.

Automatic parallelization research began in the 1970s as automatic vector-
ization, a technology to support portable programming on vector processors.
The important technological tool used in automatic vectorization is dependence
analysis, which seeks to determine whether pairs references to the same data
structure (usually a subscripted variable) may access the same memory loca-
tion [39, 40]. An example loop suggests how this can be done:

REAL A(1000,1000)
DO J = 2, N
DO I = 2, N
A(I,J) = (A(I,J+1)+ 2*A(I,J) + A(I,J-1))*0.25

ENDDO
ENDDO

Any particular element in the interior of the array, say A(m1,m2) will be ac-
cessed on three iterations of the loop nest: (I = m1, J = m2 − 1), (I = m1, J =
m2), and (I = m1, J = m2 + 1). Iteration (I = m1, J = m2) also assigns to
that element. Therefore, the J loop iterations must execute in the correct order
for a fixed value of I to avoid overwriting the element while the “old” value is
still needed. However, the I loop iterations never interfere with each other and
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therefore can execute in any order, including overlapped execution. In other
words, the I loop is vectorizable while the J loop is not. Dependence analysis
formalizes this test.

Returning to our example above, we see that there are two dependences from
the assignment to itself—a dependence from the store to a use of A(I,J-1) on
the next iteration and an antidependence (needed to ensure that loads do not
move before stores) from the use of A(I,J+1) to the store into A(I,J) on the
next iteration. These two dependences arise from the iteration of the loop on
index J, so we say that they are carried by that loop. In terms of dependence,
the test for vectorization can be stated as follows: A statement can be vectorized
with respect to a given loop if that statement is not part of a dependence cycle
carried by that loop. Hence, we see in the example above that the J-loop is
not vectorizable, but that the I-loop is. The code can therefore be rewritten in
Fortran 90 as:

REAL A(1000,1000)
DO J = 2, N
A(2:N,J) = (A(2:N,J+1)+ 2*A(2:N,J) + A(2:N,J-1))*0.25

ENDDO

Vectorizers based on dependence analysis matured into extremely useful
tools by the mid-1980s and came to be standard on all vector machines [6, 47].
Yet in spite of the sophistication of vectorizing compilers, it was still not pos-
sible to present a naively-coded Fortran program to any of them with the ex-
pectation of achieving high performance. Some subscripts simply cannot be
fully checked by compile-time dependence analysis. In particular, references
like A(IND(I)) require runtime information not available to the compiler. Vir-
tually every program had to be rewritten so that the computationally intensive
loops were vectorizable. One can therefore characterize the contribution of vec-
torizing compilers as defining a subdialect of Fortran—the “vectorizable loop”
subdialect—for which high performance would be achieved on virtually every
vector machine.

Building on the success of vectorization, the research and development com-
munity turned its attention to automatic parallelization for asynchronous (MIMD)
parallel processors with shared memory [4, 5, 39, 13, 46, 7, 47]. Beginning in the
mid-1980s, such systems began to appear with 2 to 16 processors and, by the
end of the decade, some systems with up to 32 processors became available. For
configurations of modest size, the technology of automatic vectorization could
be employed with good results. However, parallel computers soon moved to
distributed memory architectures as described in Chapter ??. This made the
automatic parallelization problem far more complex, because the compiler now
had the additional task of determining how to partition data to the memories
of a processor in a way that maximized the number of local memory accesses
and minimized communication, which was relatively expensive on such ma-
chines [8, 20, 21, 49]. Moreover, the compiler and runtime system had the task
of arranging the communication operations themselves, which were far more
complex than the simple loads and stores needed on shared memory machines.
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Another important implication of the new architectures was that, even on
shared memory parallel computers, the regions of parallel execution had to be
large enough to compensate for the overhead of initiating and synchronization
of the parallel computation. This led to research on how the compiler could find
larger program regions to run in parallel. Dependence analysis, which worked so
well for vectorization, now had to be applied over larger regions of the program,
even across procedure boundaries. This led to research on interprocedural anal-
ysis and optimization by which a program and all its subroutines are analyzed
as a whole [14, 15, 19, 23, 24, 31, 32, 44].

Through the use of increasingly complex analysis and optimization technolo-
gies, research compilers have been able to parallelize a number of interesting
programs. However, due to the complexity of the techniques, the long compiler
running times, and the small number of successful demonstrations, there exist
few commercial compilers that attempt to parallelize whole applications on scal-
able parallel machines. Although this research has yielded many important new
compilation techniques, it is now widely believed that automatic parallelization,
by itself, is not enough to solve the parallel programming problem.

As a result of these observations, research has turned increasingly to language-
based strategies that can get more information from the user while exploiting
techniques from automatic parallelization to lessen the burden of programming.

12.2 Data-Parallel Languages, Exemplified by HPF

Early in the research efforts on parallel computing, Fox and others observed
that the key to achieving high performance on distributed-memory machines
was to allocate data to the various processor memories to maximize locality
and minimize communication [28]. Once this is done, if each computation in a
program is performed on the processor where most of the data involved in that
computation resides, the program can be executed with high efficiency.

A second important observation was that if parallelism is to scale to hun-
dreds or thousands of processors, data parallelism must be effectively exploited.
Data parallelism is parallelism that derives from subdividing the (presumably
large) data domain in some manner and assigning the subdomains to different
processors. This strategy provides a natural fit with data layout, because the
data layout falls naturally out of the division into subdomains.

These observations are the foundation for data-parallel languages, which
provide mechanisms for supporting data parallelism, particularly through data
layout. A number of such languages were developed in the late 1980s and early
1990s, including Fortran D [27, 36], Vienna Fortran [48, 22], CM Fortran [43],
C* [33], data-parallel C, and PC++ [29]. These research efforts were the pre-
cursors of two informal standardization activities leading to High Performance
Fortran (HPF) [35] and High Performance C++ (HPC++) [37].

The idea behind High Performance Fortran, an extended version of Fortran
90 generated by an informal standardization process in the early 1990s, is to
automate most of the details of managing data. It accomplishes this goal by
proving a set of directives that the user inserts to describe the data layout. The
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compiler and run-time system translate these high-level directives into the com-
plex low-level operations that actually communicate the data and synchronize
processors when needed. An important quality of the layout directives is that
they have no effect on the meaning of the program—they merely provide advice
to the compiler on how to assign elements of the program arrays and other data
structures to different processors for high performance. This layout specification
is relatively machine-independent, so once it exists, the program can be tailored
by the compiler to run on any of a variety of distributed-memory machines.

In HPF, the critical intellectual task for the programmer is to determine
how data is to be laid out in the processor memories in the parallel machine
configuration. We illustrate this by extending the example of the last section:

REAL A(1000,1000), B(1000,1000)
DO J = 2, N
DO I = 2, N
A(I,J) = (A(I,J+1)+ 2*A(I,J) + A(I,J-1))*0.25 &

& + (B(I+1,J)+ 2*B(I,J) + B(I-1,J))*0.25
ENDDO

ENDDO

HPF provides fairly fine-grained control over data layout of arrays through di-
rectives, encoded as structured comments. The DISTRIBUTE directive specifies
how to partition a data array onto the memories of a real parallel machine. In
this case, it is most natural to distribute the first dimension, since iterations
over it can be performed in parallel. For example, the programmer can dis-
tribute data in contiguous chunks across the available processors by inserting
the directive

!HPF$ DISTRIBUTE A(BLOCK,*)

after the declaration of A. HPF also provides other standard distribution pat-
terns, including CYCLIC in which elements are assigned to processors in round-
robin fashion, or CYCLIC(K) by which blocks of K elements are assigned round-
robin to processors. Generally speaking, BLOCK is the preferred distribution
for computations with nearest-neighbor elementwise communication while the
CYCLIC variants allow finer load balancing of some computations. Also, in many
computations (including the example above), different data arrays should use
the same or related data layouts. The ALIGN directive specifies an element-wise
matching between arrays in these cases. For example, to give array B the same
distribution as A, the programmer would use the directive

!HPF$ ALIGN B(I,J) WITH A(I,J)

Integer linear functions of the subscripts are also allowed in ALIGN, and are
useful for matching arrays of different shapes.1

1In fact, other alignments would produce better performance for our example. However,
we use the direct alignment above to illustrate points about communication later.
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In addition to the distribution directives, HPF has special directives that
can be used to assist in the identification of parallelism. Because HPF is based
on Fortran 90, it also has array operations to express elementwise parallelism
directly. These operations are particularly appropriate when applied to a dis-
tributed dimension, in which case the compiler can (relatively) easily manage
the synchronization and data movement together. Using array notation in this
example produces the following:

REAL A(1000,1000)
!HPF$ DISTRIBUTE A(BLOCK,*)
!HPF$ ALIGN B(I,J) WITH A(I,J)
DO J = 2, N
A(2:N,J) = (A(2:N,J+1)+ 2*A(2:N,J) + A(2:N,J-1))*0.25 &

& + (B(3:N+1,J)+ 2*B(2:N,J) + B(1:N-1,J))*0.25
ENDDO

Alternately, the programmer could retain the loop notation but explicitly iden-
tify the inner loop as parallel. The INDEPENDENT directive specifies that the
loop that follows is safe to execute in parallel. In our example, this appears as

REAL A(1000,1000)
!HPF$ DISTRIBUTE A(BLOCK,*)
!HPF$ ALIGN B(I,J) WITH A(I,J)
DO J = 2, N
!HPF$ INDEPENDENT
DO I = 2, N
A(I,J) = (A(I,J+1)+ 2*A(I,J) + A(I,J-1))*0.25 &

& + (B(I+1,J)+ 2*B(I,J) + B(I-1,J))*0.25
ENDDO

ENDDO

Many compilers can detect this fact for themselves using the dependence analysis
discussed in Section 12.1. However, the directive ensures that all compilers
to which the program is presented can do so. The INDEPENDENT directive is
even more important for loops that are theoretically unanalyzable; often the
programmer will have application-specific knowledge that allows the loop to be
executed in parallel.

Using either of the above notations (or relying on the compiler dependence
analysis) puts the burden of efficiently executing the loop on the HPF imple-
mentation. A typical implementation would distribute the computations in loop
iterations according to the owner-computes rule, by which the processor own-
ing the array element on the left hand side of the assignment statement would
perform the computation for each iteration. In the above example, if there
are 25 processors, the first processor would handle iterations 2 through 40, the
second would handle 41 through 80, and so on. These calculations would be
done completely in parallel. Note however, that the references to B(I-1,J) and
B(I+1,J) give rise to communication when I is equal to 40k and 40k+1 respec-
tively. The compiler will generate this communication automatically, and would
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package the communication to optimize performance. On distributed memory
machines, this packaging would generally consist of sending all required values
of B before the start of the loop body, thus avoiding repeated message start-ups.

The HPF compiler must often go to substantial lengths to preserve the mean-
ing of the underlying Fortran 90 program. For example, we might code a sum
reduction loop as:

REAL A(10000)
!HPF$ DISTRIBUTE A(BLOCK)
X = 0.0
DO I = 1, 10000

X = X + A(I)
ENDDO

Although this is much simpler than the equivalent message-passing program
written in MPI, it has a downside—the compiler must do a substantial amount
of work to generate a program that displays reasonable efficiency. In particular,
it must recognize that the main calculation is a sum reduction and replicate the
values of X on each processor. Then it must generate the final parallel sum at
the end. HPF provides directives that make it possible for the user to help the
system recognize such opportunities.

In the example above, the usual INDEPENDENT directive would not be applica-
ble because the repeated assignments to X create a data dependence. However,
because reduction is a common operation with special properties that allow
parallelization, HPF provides an additional clause for the directive to handle it:

REAL A(10000)
!HPF$ DISTRIBUTE A(BLOCK)
X = 0.0
!HPF$ INDEPENDENT, REDUCTION(X)
DO I = 1, 10000

X = X + A(I)
ENDDO

This version is easier for the compiler to process into an efficient program. We
note in passing that there is also a standard intrinsic function available for this
reduction:

REAL A(10000)
!HPF$ DISTRIBUTE A(BLOCK)
X = SUM(A)

The compiler can implement this as a library function or by expanding the sum
in-line. In either case, the generated code will operate as described above.

As a final example, we present a simple HPF code fragment that is intended
model parts of a multigrid method. All arrays are aligned to a “master”, which
is the coarsest grid level; that grid is distributed in both dimensions to get
maximal locality. We use INDEPENDENT directives to ensure portability across
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compilers that might not recognize the parallelism in the computation loops; we
could equally well have used array syntax.

REAL A(1023,1023), B(1023,1023), APRIME(511,511)
!HPF$ ALIGN B(I,J) WITH A(I,J)
!HPF$ ALIGN APRIME(I,J) WITH A(2*I-1,2*J-1)
!HPF$ DISTRIBUTE A(BLOCK,BLOCK)

!HPF$ INDEPENDENT, NEW(I)
DO J = 2, 1022 ! Multigrid Smoothing (Red-Black)

!HPF$ INDEPENDENT
DO I = MOD(J,2), 1022, 2

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + &
A(I,J-1) + A(I,J+1)) + B(I,J)

END DO
END DO

!HPF$ INDEPENDENT, NEW(I), REDUCTION(ERR)
DO J = 2, 510 ! Multigrid Restriction

!HPF$ INDEPENDENT
DO I = 2, 510

APRIME(I,J) = 0.05*(A(2*I-2,2*J-2) + &
4*A(2*I-2,2*J-1) + A(2*I-2,2*J) + &
4*A(2*I-1,2*J-2) + 4*A(2*I-1,2*J) + &
A(2*I,2*J-2) + 4*A(2*I,2*J-1) + &
A(2*I,2*J))

END DO
END DO

In the example, the qualifier NEW(I) is used in the INDEPENDENT directive
for the outer loop to ensure that the inner loop induction variable I is replicated
on each group of processors that execute different iterations of the outer loop.
This is roughly equivalent to the PRIVATE directive in other parallel dialects.

HPF compilation has been the subject of a substantial research and devel-
opment [36, 49, 9, 16, 17, 18, 11, 30, 34, 45, 3]. Eleven companies currently offer
HPF products and over thirty applications have been or are being written in it,
including some over 100,000 lines.

The principal drawback of HPF is its limited support for problems defined
on irregular meshes, which represent a fairly large fraction of the important
science and engineering applications. To address this and other problems, the
HPF Forum completed a second round of HPF standardization to produce HPF
2.0 [26], which includes important irregular distributions such as distribution
indirectly via a run-time array and the generalized block distribution, which
allows blocks to be of different sizes.



CHAPTER 12. LANGUAGES AND COMPILERS 10

12.3 Shared-Memory Parallel Programming in OpenMP

Although HPF provides excellent facilities for specifying data distribution, its
mechanisms for specifying explict parallelism are fairly limited. Principal among
these is the INDEPENDENT directive discussed in the previous section. Control
of the parallelism in HPF is implicit, in that the system assigns work to pro-
cessors rather than the programmer. Moreover, the control is linked to the
partitioning of data among processor memories. On machines where the entire
system memory is shared among all processors, such implicit methods seem ob-
scure. Furthermore, types of parallelism other than data parallelism are often
profitable on such machines, but not well-supported by HPF.

Although a number of machine vendors produced mechanisms for explicit
specification of parallelism in the late 1980s, there was no widely-accepted par-
allel language standard for shared-memory parallel machines. To address this
deficiency, the Parallel Computer Forum began an open standardization pro-
cess that led to the definition of PCF Fortran [42] and eventually to the ANSI
abstract interface standard X3H5 [10]. PCF Fortran combined the facilities of
two programming models: loop parallelism and single-program multiple-data
(SPMD) parallelism. In SPMD parallelism, as exemplified by early efforts such
as The Force [38] and IBM’s VM/EPEX [25], all the processors or threads avail-
able to the program execute the entire program. This execution is redundant
until the threads encounter a work-distribution directive, such as a parallel loop,
whereupon the work is divided among the available threads. At the end of the
work-distribution construct the threads execute an implied barrier and then con-
tinue redundant execution. One advantage of this strategy is that each thread
builds up its own replicated copy of the program state in local memory, enhanc-
ing the locality of references in the code. PCF Fortran included a feature called
parallel regions, which were constructs within which SPMD execution could
take place. Standalone parallel loops were also included in the specification as
a shorthand for a parallel region that exactly brackets a work-distribution loop.

The PCF/X3H5 standard lay fallow until 1997, when an industry consortium
led by Silicon Graphics refined and simplified these ideas to produce OpenMP,an
informal standard parallel programming interface with bindings to Fortran 77
and C. The consortium is now considering additions to the OpenMP standard,
including bindings for Fortran 95 and C++. OpenMP drew strongly on the
ideas from PCF Fortran and it adopted the directive conventions pioneered by
HPF to specify parallelism in the program. As in HPF, OpenMP directives in
a standard-conforming program can be ignored as comments by a uniprocessor
compiler with no difference in results. In this section, we focus on OpenMP
because it is the most recent and widely-used of these systems; however, many
of the technical ideas were common to the PCF Fortran and ANSI X3H5 dialects.

Perhaps the simplest way to specify parallelism in OpenMP is via an ex-
plicitly parallel loop, bracketed by the PARALLEL DO and the END PARALLEL DO
directives. The PARALLEL DO directive can have a number of qualifying clauses
that permit the specification of variables that are private to threads execut-
ing invidivual loop iterations, and variables that are used in a reduction. The
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following simple example of a PARALLEL DO loop computes a simple relaxation
step:

!$OMP PARALLEL DO
DO I = 2, N

APRIME(I) = (A(I+1) +2*A(I) + A(I-1))*0.25
ENDDO
!$OMP END PARALLEL DO

Note here that the loop induction variable I is private by default. The END
PARALLEL DO directive is optional. OpenMP provides mechanisms for specifying
how the iterations of a parallel loop are to be assigned to threads within a team.
The following variant will assign contiguous blocks of iterations to a single thread
at compile time.

!$OMP PARALLEL DO SCHEDULE(STATIC)
DO I = 2, N

APRIME(I) = (A(I+1) +2*A(I) + A(I-1))*0.25
ENDDO
!$OMP END PARALLEL DO

Under this specification, each thread would get a single contiguous block of
iterations. This is roughly equivalent to the effect that would be achieved in
HPF by declaring APRIME to have a BLOCK distribution. The effect of a
BLOCK(K) distribution can be acheived by explicitly specifying a chunk size:

!$OMP PARALLEL DO SCHEDULE(STATIC,10)
DO I = 2, N

APRIME(I) = (A(I+1) +2*A(I) + A(I-1))*0.25
ENDDO
!$OMP END PARALLEL DO

This loop will hand out chunks of ten iterations to threads in round-robin fashion
in the order of the thread number. If the keyword STATIC is replaced by DYNAMIC
in the above loop, chunks would be distributed to threads at run-time as those
threads became ready to execute. OpenMP also permits GUIDED scheduling in
which chunk sizes decrease as the remaining number of iterations decreases, and
RUNTIME scheduling in which the scheduling and chunk size can be selected at
run time by setting environment variables. This permits the algorithm to make
dynamic choices based on conditions discovered in the data.

To illustrate the reduction mechanism, we present the global sum example
from HPF, rewritten to use the OpenMP directives:

PROGRAM SUM
REAL A(10000)
READ (9) A
SUM = 0.0
!$OMP PARALLEL DO REDUCTION(+: SUM)
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DO I = 1, 10000
SUM = SUM + A(I)

ENDDO
PRINT SUM
END

This example is strikingly similar to its HPF counterpart. The REDUCTION clause
specifies that the final value of variable SUM is determined by summing the final
values in all of the threads executing iterations of the loop.

Task parallelism can be achieved in OpenMP through the PARALLEL SECTIONS
directive. The following example illustrates its usage on a two-processor version
of a routine to find the maximum of a set of numbers:

!$OMP PARALLEL SECTIONS SHARED(N,A) PRIVATE(I), LASTPRIVATE(MAX1,MAX2)
!$OMP SECTION
IF (N>=1) THEN MAX1 = 1 ELSE MAX1 = 0
DO I = 2, N/2

IF(A(I)>A(MAX1)) THEN MAX1 = I
ENDDO
!$OMP SECTION
IF (N>=N/2+1) THEN MAX2 = N/2+1 ELSE MAX2 = 0
DO I = N/2+2,N

IF(A(I)>A(MAX2)) THEN MAX2 = I
ENDDO
!$OMP END PARALLEL SECTIONS
IF (MAX1>0) THEN

IF (A(MAX2)>A(MAX1)) THEN IMAX = MAX2 ELSE IMAX = MAX1
ELSE

IMAX = 0
ENDIF

The LASTPRIVATE clause on the sections directive indicate that MAX1 and
MAX2 are private to threads that execute the sections, but they retain their
last value on exit from the parallel sections clause. Indeed these two are tested
outside the region to determine which is the index of the larger value.

The core parallel contstruct in OpenMP is the parallel region, bracketed by
the PARALLEL and END PARALLEL directives, which delimit a region for SPMD
execution by multiple threads. Within a a parallel region, different work-sharing
directives may appear. The DO directive specifies the extent of a DO-loop work
sharing directive. The previously-discussed PARALLEL DO is simply shorthand
for a parallel region with a DO directive nested within it. Similarly, the SECTIONS
directive within a parallel region permits the specification of parallel tasks within
the region. Note that each unit of work (loop iteration or section) within a work-
sharing directive is executed by a single thread. Parallel regions may be nested
inside one another but work-sharing directive may not, unless they are enclosed
in an intervening parallel region directive. To illustrate these ideas, we will
return to the multigrid code fragment discussed in the previous section.
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REAL A(1023,1023), B(1023,1023), APRIME(511,511)

CALL OMP_SET_NESTED(.TRUE.)
!$OMP PARALLEL
!$OMP DO PRIVATE(J)
DO J = 2, 1022 ! Multigrid Smoothing (Red-Black)

!$0MP PARALLEL PRIVATE(I)
!$OMP DO
DO I = MOD(J,2), 1022, 2

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + &
A(I,J-1) + A(I,J+1)) + B(I,J)

END DO
!$OMP END PARALLEL

END DO

!$OMP DO PRIVATE(J)
DO J = 2, 510 ! Multigrid Restriction

!$OMP PARALLEL PRIVATE(I)
!$OMP DO
DO I = 2, 510

APRIME(I,J) = 0.05*(A(2*I-2,2*J-2) + &
4*A(2*I-2,2*J-1) + A(2*I-2,2*J) + &
4*A(2*I-1,2*J-2) + 4*A(2*I-1,2*J) + &
A(2*I,2*J-2) + 4*A(2*I,2*J-1) + &
A(2*I,2*J))

END DO
!$OMP END PARALLEL

END DO
!$OMP END PARALLEL

! Multigrid convergence test
ERR = MAXVAL( ABS(A(:,:)-B(:,:)) )

Note that there is an implied barrier between the first and second do loop
nests in the outer parallel region. If if this barrier is not desired, the user may
attach a NOWAIT clause to the END DO OpenMP directive, in which case this
directive is required. In the example above, the inner loops are nested within a
nested parallel region, permitting them to be executed in parallel. The call to
OMP SET NESTED before the initial parallel region permits parallelism to be used
in both dimensions of the computation.

OpenMP also provides lock variables to allow fine-grain synchronization be-
tween threads. We illustrate this by an example of parallelizing a simple re-
laxation code using wavefront parallelism. The scalar computation looks like
this:

PARAMETER (N = 2048) ! Total number of elements
REAL A(N,N)
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DO J = 2, N-1
DO I = 2, N-1

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + A(I,J-1) + A(I,J+1))
ENDDO

ENDDO

A simple PARALLEL DO cannot be used in this case, because both the J and
I loops carry data dependences. However, the computation can be partially
parallelized in pipeline fashion as follows. Partition each column (by blocks)
among the threads. At the beginning of each processor’s section of the colum,
force the calculation of A(I,J) to wait until the thread computing A(I-1,J)
finishes that calculation so that it can get the correct input value. Lock variables
do exactly this type of waiting; only one thread may hold a lock at any given
time, forcing others to delay until it is finished. A two-dimensional array of
OpenMP locks can therefore handle the synchronization as follows:

PARAMETER (NP = 8) ! Number of processors
PARAMETER (NEP = 256) ! Number of elements per processor
PARAMETER (N = NP*NEP) ! Total number of elements
REAL A(N,N)
INTEGER LCK(NP,N)

!$OMP PARALLEL SHARED(A,LCK) PRIVATE(ME,JLO,JHI,I,J)
ME = OMP_GET_THREAD_NUM()+1 ! This thread’s id
ILO = MAX( 2, (ME-1)*NEP+1 ) ! This thread’s starting point
IHI = MIN( N-1, ME*NEP ) ! This thread’s ending point

! Initialize the locks
DO J = 2, N-1

CALL OMP_INIT_LOCK( LCK(ME,J) ) ! Leaves lock unset
IF (ME>1) CALL OMP_SET_LOCK( LCK(ME,J) )

ENDDO
! Make sure other threads have done their initialization
!$OMP BARRIER

! Execute this thread’s portion of the loop nest
DO J = 2, N-1

IF (ME>1) THEN
! Wait to acquire lock, then go forward
CALL OMP_SET_LOCK(LCK(ME-1,J)) ! Waits for lock unset
CALL OMP_UNSET_LOCK(LCK(ME-1,J))

ENDIF
DO I = ILO, IHI

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + A(I,J-1) + A(I,J+1))
ENDDO
CALL OMP_UNSET_LOCK( LCK(ME,J) )
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ENDDO

!$OMP END PARALLEL

We should note that this code is likely to be impractical on most implemen-
tations because of the overhead in time and space of managing so many locks.
We can reduce the number of locks by synchronizing groups of columns, rather
than one at a time. This sacrifices some parallelism (by delaying the start of the
pipeline on some processors) in exchange for reducing the overall overhead. The
optimal number of columns to group in this way will depend on the parameters
of the machine, but the outline of the blocked code would always be similar to
the following:

PARAMETER (NP = 8) ! Number of processors
PARAMETER (NB = 16) ! Number of blocks
PARAMETER (NEB = 16) ! Number of elements per block
PARAMETER (NEP = NB*NEB) ! Number of elements per processor
PARAMETER (N = NP*NEP) ! Total number of elements
REAL A(N,N)
INTEGER LCK(NP,NB)

!$OMP PARALLEL SHARED(A,LCK) PRIVATE(ME,JLO,JHI,I,J,JJ,JLO,JHI)
ME = OMP_GET_THREAD_NUM()+1 ! This thread’s id
ILO = MAX( 2, (ME-1)*NEP+1 )
IHI = MIN( N-1, ME*NEP )

! Initialize the locks
DO JJ = 1, NB

CALL OMP_INIT_LOCK( LCK(ME,JJ) )
IF (ME>1) CALL OMP_SET_LOCK( LCK(ME,JJ) )

ENDDO
!$OMP BARRIER

! Execute this thread’s portion of the loop nest
DO JJ = 1, NB
JLO = MAX( 2, (JJ-1)*NEB+1 )
JHI = MIN( N-1, JJ*NEB )
IF (ME>1) THEN

! Wait to acquire lock, then go forward
CALL OMP_SET_LOCK(LCK(ME-1,JJ))
CALL OMP_UNSET_LOCK(LCK(ME-1,JJ))

ENDIF
DO J = JLO, JHI
DO I = ILO, IHI

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + A(I,J-1) + A(I,J+1))
ENDDO

END DO
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CALL OMP_UNSET_LOCK( LCK(ME,JJ) )
ENDDO

!$OMP END PARALLEL

OpenMP is an excellent programming interface for uniform-access shared-
memory machines. However, it provides the user with no way to specify locality
in machines with non-uniform shared memory or distributed memory. On clus-
ters of multiprocessor workstations, it is often used in conjunction with MPI,
with OpenMP used for nodes and MPI used for message-passing between nodes.
In the long term, a mixture of OpenMP and HPF directives seems a promising
way to provide programming support for modern machines with a mixture of
shared-memory and distributed-memory parallelism.

12.4 Supporting Technologies

To support the goal of making it possible to provide the user with a high level
of abstraction without denying the opportunity to have fine-grained control
over performance, the programming system must provide mechanisms for un-
derstanding the performance of applications and for overcoming any bottlenecks
that are discovered in the tuning process. In addition, certain functions that are
used over and over again in parallel programs need to be pre-tuned for execu-
tion on each parallel platform. This requires certain component technologies be
developed along with the language compilers. Two of these—tools and tuned
libraries—are of critical importance to the succes of a new languages.

Programming Support Tools All of the strategies envisioned for application de-
velopment establish a complex relationship between the source version of the
program and the version that runs on the computational grid. Science and engi-
neering users need to have ways to understand performance of a given program
and to tune it when it is unacceptable. Furthermore, the explanation of program
behavior must be presented in terms of the source rather than the object ver-
sion. Otherwise, the advantages provided by language abstraction will be lost.
This becomes particularly challenging when some of the compilation process is
done at run time.

The HPF experience has established that the compiler must generate two
things to support performance analysis and tuning [2]: (1) calls to the perfor-
mance monitoring system at critical points, where what is “critical” must be
decided by some combination of user and system; and (2) information on how
to map performance information back to the source of the program when it
becomes available after execution.

In addition, the compiler and language must provide mechanisms that per-
mit the program performance to be improved once the bottlenecks have been
identified. These performance-improving changes must typically be made in the
program source, so they will be preserved for the next run. Thus the tools must
understand the relationship between the structure of the program and typical
performance problems and they must be able to make transformations based on
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that understanding.

Libraries There are many functions that are common in parallel programming
yet difficult to implement efficiently for different platforms without hand tuning.
It has been common to encapsulate these functions in programming support
libraries. HPF was one of the first languages to specify an extensive library
as a part of the langauge and Java has followed suit with a large collection
of special-purpose library interfaces. The advantage of a library is that it can
be hand tuned to achieve optimal performance on each target platform. The
disadvantage is that, without such tuning, performance is likely to suffer. One
of the most important impediments to widespread acceptance of HPF has been
problems with the library implementations. This has been compounded by
the absence of a well-developed, portable math library such as the CMSSL,
which was developed for the Connection Machine. To be truly useful, all of the
standard libraries must be capable of accepting the data types provided in the
language—scientific programmers expect no less.

One area of importance in the future will be methodologies for development
of libraries that can be easily and efficiently integrated into applications via
transformations in the compiler. This will be discussed further in the next
section.

12.5 Future Trends

As of this publication, the reseach community and commercial vendors have
been actively working on programming support for parallel computer systems
for over fifteen years, yet the improvements in ease of programming have been
reasonably modest. In our opinion, this has been because designers have been
exclusively focused on making it possible to write parallel programs that can
be ported to a variety of parallel computing platforms. With technologies such
as MPI, PVM, Pthreads, HPF, OpenMP, and Java, these problems have been
well addressed. However, as new parallel computing platforms emerge they will
bring new challenges for compiler developers.

Over the first decade of the next century, we see two major challenges for
research on programming systems:

• Programming Support for the Computational Grid. There is great emerg-
ing interest in using the global information infrastructure as a computing
platform. By drawing on the power of high performance computing re-
sources across the world, it may be possible to solve problems that cannot
currenltly be attacked by any single computer system, parallel or oth-
ewise. However, the so-called Computational Power Grid, or Grid for
short, presents nightmarish problems for the application developer be-
cause of the dynamic nature of the underlying computing and communi-
cations resources. The critical issues are how to build applications that are
tolerant of the changes in resource base and how to construct execution en-
vironments that can deliver reliable progress on a given application. One
strategy being pursued by a number of CRPC researchers in the GrADS
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(Grid Application Development Software) Project is to implement an ex-
ecution environment that constantly monitors progress of an application
and automatically reconfigures it whenever performance falls below cer-
tain specifications. To implement this strategy, compilers and libraries
will need to developed with the notion of reconfigurability built in from
the outset.

• Problem-Solving Environments and High-Level Programming Systems. Pro-
gramming for parallel execution environments is still clearly an expert’s
game. If parallel computing is to ever become more widely used, we need
ways to make it easier for end users to develop programs. One strat-
egy that promises to become more prominent over the next few years is
the use of sophisticated problem-solving environments (PSEs). In such
environments, domain-specific macro operations could be encapsulated as
language primitives and programs written in high-level easy-to-use scripts.
Visual Basic, Matlab, and data base query languages are three examples
of such systems. If sript-based PSEs are to be used for applications where
efficiency and performance are critical factors, the compilation systems
will need to be able to automatically integrate the macro operations with
scripts and translate the resulting global program to make effective use of
scalable parallelism.

If substantive progress is made on these two issues over the next decade, it
should be possible to come much closer to the dream of making the collection
of networked computers into a problem solving system for ordinary users, much
as the internet has become the common man’s information system. Such a goal
is worthy of a major national effort.

12.6 Summary

Parallel computation is a challenging activity because, at the lowest level, the
application developer must discover parallel work and coordinate the activities
of multiple processors carrying it out. The goal of high-level language and
compiler strategies is to make this job easier by doing as much as possible for
the user. In this chapter we have described three key technologies developed
over the past 15 years for support of high-level parallel programming:

1. Automatic Parallelization, in which the compiler translates a sequential
program to a parallel one. Although this is the ideal strategy from the
point of view of the end user, it has not been successful in achieving
acceptable degrees of scalability. Nevertheless, the techniques of automatic
parallelization are fundamental to the support of most other high-level
strategies.

2. Data Parallel Languages as exemplified by High Performance Fortran.
Data parallel languages support a style of parallelism derived from decom-
posing array data structures across the processors of distributed memory
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machines. High Performance Fortran, provides a set of data decomposi-
tion directives that serve as hints to the compiler on how to achieve high
locality and implicit parallelism on such systems.

3. Shared Memory Parallel Programming Interfaces as exemplified by OpenMP.
Shared-memory parallelism is primarily concerned with work decomposi-
tion, since the ideal target systems for such interfaces have a uniform-
access shared global memory. OpenMP is the most prominent example of
such systems. It uses a system of directives that specify where multiple
threads should be applied and how to assign work to those threads.

These three strategies represent the most promising results of the research con-
ducted by the community on support for parallel computing over the lifetime of
CRPC. Although they represent fairly modest advances, we believe they have
set the stage for much more dramatic improvements that will come in the near
future.

Further Reading

For more information on the topics covered in this chapter, the following works
are recommended:

• The book Parallel Computing Works! [28] by Fox, Williams, and Messina,
which compiles an enormous amount of information about parallel com-
putation, particularly in the early days of distributed memory machines.

• The book High Performance Compilers for Parallel Computing [47] by
Wolfe, which covers most of the vectorization and parallelization subjects.

• The Springer-Verlag book Languages, Compilation Techniques and Run
Time Systems for Scalable Parallel Systems [41], edited by Santosh Pande
and Dharma P. Agrawal, which contains a collection of articles on com-
piling for modern parallel machines.

• The Morgan-Kaufmann book Advanced Compiling for High Performance
by Kennedy, which provides an in-depth coverage of automatic methods
of vectorization, parallelization, and management of memory hierarchies.

• The survey article Interprocedural Analysis and Optimization [23] by Cooper,
Hall, Kennedy, and Torczon, which provides a fairly comprehensive overview
of whole-program compilation technologies.

• The article Requirements for Data-Parallel Programming Environments [1],
by Adve et. al., which gives an overview of considerations in designing pro-
gramming tools that are integrated with the language compiler system.

12.7 Acknowledgments
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