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Preface

This book is aimed at students and practitioners of technical computing who

need to understand both the promise and practice of high performance and

parallel computing. It can be used as a resource by both computer science

and application researchers. The book and its associated Web site can be used

in computational science and parallel computing education and training. The

principal goal of this book is to make it easy for those entering the �eld of

parallel computing with a good background in applications or computational

science to understand the technologies available and how to apply them.

The book is aimed at the users of high performance systems whose archi-

tectures span the range of small desktop SMP's and PC clusters to high-end

supercomputers costing $100 M or more. The book focuses on software tech-

nologies, along with the large-scale applications enabled by them. In each area,

the text contains a general discussion of the state of the �eld followed by detailed

descriptions of key technologies or methods. In some cases, such as MPI for mes-

sage passing, this is the dominant approach. In others, such as the discussion

of problem solving environments, the authors choose systems representing key

concepts in an emerging area.

The book is organized into �ve sections. In the �rst section, the �eld is sum-

marized with an emphasis on motivating applications and the external forces,

from the Internet to the HPCC Presidential Initiatives, that have driven the

�eld. This is followed by an overview of the current status of hardware architec-

tures. The next two sections describe applications and software technologies in

detail. The �nal section discusses futures from both a technology and applica-

tion perspective. There is a related Web site with a set of community resources,

CRPC papers, and links to other sites of interest.

The application section is designed to help new users learn if and how high

performance techniques can be applied in their area. It consists of an overview

of the process by which one identi�es appropriate software and algorithms and

of the issues involved in implementation. Some twenty vignettes of parallel

systems in di�erent areas, which brie
y describe successful approaches to use,

illustrate these general comments. These examples have been chosen to cover

a broad range of both scienti�c areas and numerical approaches. This overview

material is complemented by in-depth studies in areas including computational


uid dynamics, environmental engineering, astrophysical particle simulations,

and computational engineering. The applications are cross-referenced to the
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software technologies section.

The software technologies section will discuss the progress made on a variety

of software technologies, including message passing libraries, parallel I/O and

parallel �le systems, run-time libraries for parallel computing, languages like

HPF and HPC++, problem solving environments, high-level programming sys-

tems, performance analysis and tuning tools, load balancing technologies, grid

generation technologies, and numerical systems and libraries. The goal of this

section is to provide a survey of progress with hints to the user that will help

in selecting the right technology for use in a given application.

The �nal section of the book is a discussion of important future problems for

the high performance science and engineering community, including distributed

computing in a grid environment.
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Chapter 1

Parallel Computing in CFD

Ron Henderson, Dan Meiron, Ravi Samtaney, & Herb
Keller (Geo�rey Fox, editor)

Target Length: 20 pages

1.1 Introduction and Overview

The basic equations of 
uid mechanics are presented. A brief overview is pro-

vided of some of the common physical regimes described by these equations

(compressible vs.incompressible 
ow) and the associated dimensionless param-

eters associated with these physical regimes ( Reynolds number, Mach number

). The need to utilize high performance computation to solve these equations

in many cases of interest is motivated via some example applications.

The particular computational diÆculties associated with incompressible vis-

cous CFD are described For complex geometries which are of practical interest,

special attention is paid to the application of the spectral element method and

its parallel implementation.

A brief overview is presented of approaches to the numerical simulation of

compressible CFD. It is argued that the need to resolve �ne scale features such

as shock waves makes the use of adaptive mesh re�nement essential especially

in three dimensions. The diÆculty of establishing load balancing and scalability

for such calculations is discussed. The chapter concludes with a brief discussion

of some future computational challenges for CFD and an assessment of the

computational resources required to overcome these challenges.

1.1.1 Basic Equations of Fluid Dynamics

The motion of a 
uid is governed by the principles of classical mechanics and

thermodynamics, namely, conservation of mass, momentum, and energy. The

most general statement of these principles is carried out in integral form in a

1



CHAPTER 1. PARALLEL COMPUTING IN CFD 2

stationary frame of reference leading to the following conservation equations:

d

dt

Z
V

�dV +

Z
�

�u � nd� = 0; (1a)

d

dt

Z
V

�udV +

Z
�

[(n � u)�u� n�]d� =

Z
V

fedV (1b)

d

dt

Z
V

�EdV +

Z
�

n � [�Eu� �u+ q]d� =

Z
V

fe � udV (1c)

Here, t is time, � is density, u is the velocity of a material 
uid particle in this

frame of reference, E is the total speci�c energy

E = e+
1

2
u � u (2)

where e is the speci�c internal energy, � is the stress tensor, q is the heat 
ux,

fe is the external force per unit volume and n is the unit outward normal to the

surface � enclosing the 
uid volume V . We are ignoring other sinks and sources

of energy such as those arising from chemical reactions or other phenomena.

The solutions of equations (1a,1b,1c ) need not be continuous functions of

space and it is for this reason that the equations are written in integral form.

However if the 
ow density, velocity and energy are suÆciently smooth then

these equations can be transformed into an equivalent set of partial di�erential

equations through the use of the divergence theorem:

@t�+r � (�u) = 0 (3a)

@t(�u) +r � (�uu� �) = fe (3b)

@t(�E) +r � (�Eu� �u+ q) = fe � u (3c)

The basic dependent variables are the density, velocity, and energy of the 
ow.

Constitutive relations for the stress tensor � and for the heat 
ux vector q must

be added to these equations in order to form a closed system. A Navier-Stokes


uid is de�ned by the following constitutive relations:

� = �pI + �(r � u)I + �
�
(ru) + (ru)T

�
(4)

Here p is the pressure, and � and � are coeÆcients of viscosity. The 
uid is

assumed to obey the Fourier law of heat conduction

q = �krT (5)

where T is the absolute temperature, and k is the thermal conductivity. Finally

since we assume that the 
uid is locally in thermodynamic equilibrium we re-

quire an equation of state for the 
uid which relates for example the entropy of

the 
uid to the density and internal energy:

S = S(�; e) (6)
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where S is the entropy, and from this and the thermodynamic equalities

p = ��2T
�
@S

@�

�
e

; T�1 =

�
@S

@e

�
�

(7)

the Navier-Stokes equations become a closed system for the dynamic variables

�, u, and E.

An important special case of these equations is the 
ow of a perfect gas with

constant speci�c heats Cp, and Cv . For such a gas the equation of state is the

well known ideal gas law:

p = (
 � 1)�e; 
 =
Cp

Cv
(8a)

e = CvT (8b)

1.1.2 Physical Regimes and Dimensionless Variables

The Navier-Stokes equations have been shown to be valid over a wide class of


ow regimes. A useful approach to distinguishing the key regimes is to scale the

physical variables and to rewrite the equations in dimensionless form. To do this

we scale all quantities relative to a reference length L, a reference velocity V �, a

reference density �� and reference values of the coeÆcients of the viscosity � abd

thermal conductivity, k. All other characterisitic quantities can be derived from

these basic ones although some understanding of the various balances of terms

in the equations is required to achieve meaningful results. We choose L=V � to

scale time t, ��V �2 to scale the stress � and so forth. In this dimensionless form

the equations remain essentially unchanged but the consTitutive laws reappear

in a scaled form:

� = �pI +
1

Re

�
�(r � u)I + �

�
(ru) + (ru)T

��
(9)

where Re is the Reynolds number and is given by Re = V �L��=��.

The Reynolds number is a measure of the ratio of inertial to viscous forces

acting within the 
uid. A low Reynolds number signi�es 
ow dominated by

viscous e�ects. A high Reynolds number indicates 
ows dominated by inertial

e�ects. This would seem to imply that one could ignore the viscous terms for


ows at high Reynolds number (for example for 
ow around an aircraft or car

which is typically in the range of Re = 105 � 108. However, this is not quite

correct since the viscous terms become important near solid boundaries (such as

the wing or body of the airplane). In addition, in a turbulent 
ow, the viscous

terms are active at small length scales and cannot be ignored if one wants to

compute how much energy is required for example to keep the 
ow moving at

the characteristic velocity implied by a high Reynolds number.

If we assume the 
uid is a perfect gas then it can be shown the heat 
ux is

given by

q = �



RePr
kre (10)
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where Pr = ��Cp=k
� is the Prandtl number which measures the relative im-

portance of viscous to thermal di�usion. Finally for a perfect gas with constant

speci�c heats the equation of state becomes

e =
T


(
 � 1)M2
(11)

where M = V �=
p

RT � is the Mach number, which measures the ratio of the

characteristic velocity to the speed of sound of the gas at temperature T �. It

can be shown that provided the velocity of the 
uid remains substantially lower

than the speed of sound the 
ow is essentially incompressible meaning that the

density does not change as the 
ow evolves. In this case the equations simplify

and the equation of state of the 
uid becomes irrelevant.

For 
ows with velocities comparable or exceeding the local speed of sound it

is possible to generate shock waves in the 
uid which are essentially thin layers

of 
uid separating regions in which the 
ow is locally supersonic from those in

which the 
ow is subsonic. The viscous terms again become very important in

these thin shock regions.

1.1.3 The Role of High Performance Computing

Numerical computation of 
uid 
ows and in particular the use of high perfor-

mance computation plays a critical role in 
uid mechanics research for several

reasons. First, the equations of motion as described above are nonlinear in char-

acter. There exist exact solutions to these equations only for highly simpli�ed

geometries and initial conditions. Numerical computation is essential for solving

general initial value problems in realistic geometries such as the 
ow over an

automobile or an airplane wing. In addition the number of degrees of freedom

required to accurately simulate 
ows in realistic geometries rises rapidy with

Reynolds number and Mach number.

To get a feel for the computational requirements consider the simulation of

turbulent 
ow without boundaries. It can be shown that the number of degrees

of freedom required to properly simulate all relevant length scales in the 
ow

(including the dissipation-producing length scales due to viscosity) varies as

Re9=4. For a moderate Reynolds number of 106 this implies a total of 3� 1013

degrees of freedom per �eld. Typically this needs to be multiplied by 10-15 to

accomodate the required �elds. Thus roughly 300 Terawords of memory are

required simply to describe the 
ow. In order to integrate the 
ow forward in

time it is clear that one requires a machine with a speed of several Tera
ops.

Such architectures are only now becoming available.

Turbulent 
ow is not the only application driver. Even if the 
ow is kept

smooth and laminar the computation of 
uid 
ow about a solid body such as an

airplane or car still requires substantial resources. At the surface of the body the


ow stais�ed the \no-slip" condition and is constrained to move at the velocity

of the body. The 
ow accomodates to this condition via a thin boundary layer

in which the viscous terms are sizable. The thickess of a laminar boundary

layer scales as Re�1=2. For example the boundary layer on a 20 foot automobile
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traveling at 55 mph is about 110'th of an inch. Thus again there is a wide range

of scales required in order to capture correctly the 
ow.

An even more severe ratio of length scales occurs for compressible 
ow with

shock waves. The thickness of strong shock waves is only on the order of a few

molecular mean free paths for a gas. The mean free path is typically several

orders of magnitude smaller than any characterisitc length scale of the mean


ow. In fact it is currently impractical to perform computations of compressible


ows with shock waves in which viscous e�ects are resolved across the shock wave

except at Mach numbers near 1.

The need to resolve the enormous range of scales in the example above

makes the use of computational 
uid dynamics essential. At the same time it

is currently not possible to perform direct numerical simulations of engineering


ows in which all relevant scales are resolved. In all such 
ows some model of the

small scales must be introduced. For turbulent 
ows we instriduce a turbulence

model to perform th dissipation of missing scales. For strongly compressible


ows we employ modern arti�cal viscosities which allow us to capture correctly

the large scale e�ects of the shock wave.

1.2 Incompressible Flows

We begin our discussion by considering Newtonian incompressible 
uids with

constant density � and kinematic viscosity � = �=�, the motion of which is

governed by the incompressible Navier{Stokes equations:

r � u = 0 in 
; (12a)

@tu = N(u)�
1

�
rp+

1

Re
r2
u in 
; (12b)

where u = (u1; u2; u3) is the velocity �eld, p is the static pressure, Re � UL=�

is the Reynolds number, and 
 is the computational domain. Without loss of

generality we take the numerical value of � = 1 since this simply sets the scale

for p. N(u) represents the nonlinear advection term:

N(u) = �(u � r)u; (13a)

= �
1

2
[(u � r)u+r � (uu)] ; (13b)

= �
1

2
r(u � u)� u�r� u: (13c)

We refer to these as the convective form, skew-symmetric form, and rotational

form, respectively. These three forms for N(u) are mathematically equivalent

but behave di�erently when implemented for a discrete system. As shown by

Zang [23], the skew-symmetric form is the most robust; this form is used in all

calculations.

The Navier{Stokes equations are coupled through the incompressibility con-

straint r � u = 0 and the nonlinear term N(u). However, the biggest challenge

for time-integration comes from the linear term:

L(u) �
1

Re
r2
u: (14)
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This term is responsible for the fastest time scales in the system and thus poses

the most severe constraint on the maximum allowable time step for numerical

integration of the 
uid equations. Problems associated with the sti�ness of the

linear operator are handled by treating this term implicitly, while the nonlinear

term is usually integrated with a more direct and easily implemented explicit

method.

1.2.1 Semi-discrete formulation

To solve the Navier{Stokes equations, (12b) is integrated over a single time step

to obtain:

u(t+�t) = u(t) +

Z t+�t

t

[N(u)�
1

�
rP + L(u)] dt: (15)

Next we introduce a discrete set of times tn � n�t where the solution is to

be evaluated, and de�ne un � u(x; tn) as the semi-discrete approximation to

the velocity (discrete in time, continuous in space). For reasons that will be

explained in a moment, the pressure integral is replaced with:

r ~P �
1

�t

Z tn+1

tn

1

�
rP dt: (16)

Next we introduce appropriate integration schemes for the linear and nonlinear

terms. The simplest implicit/explicit scheme would be �rst-order Euler time

integration:

Z tn+1

tn

L(u) dt � �tL(un+1); (17)

Z tn+1

tn

N(u) dt � �tN(un): (18)

Combining (16){(18) we get a semi-discrete approximation to the momentum

equation:

un+1 = un + [N(un)�r ~P + L(un+1)]�t: (19)

This system of equations can be solved by further splitting (19) into three

substeps as follows:

u
(1) � un = �tN(un); (20a)

u
(2) � u(1) = ��tr ~P; (20b)

u
n+1 � u(2) = �tL(un+1): (20c)

Here u(1) and u(2) are intermediate velocity �elds that progressively incorporate

the nonlinear terms and the incompressibility constraint. The motivation for

the splitting is to decouple the pressure term from the advection and di�usion

terms.
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The classical splitting scheme proceeds by introducing two assumptions: that

u
(2) satis�es the divergence free condition (r �u(2) = 0), and that u(2) satis�es

the correct Dirichlet boundary conditions in the direction normal to the bound-

ary (n � u(2) = n � un+1). Incorporating these assumptions, we can derive a

separately solvable elliptic problem for the pressure in the form:

r2 ~P =
1

�t
(r � u(1)): (21)

The �eld ~P is no longer associated with thermodynamic pressure and becomes a

dynamic variable that couples the divergence-free condition and the momentum

equation. Neumann boundary conditions for ~P come from (19), which can be

simpli�ed to the form:

@ ~P

@n
= n � [N(un)�

1

Re
r�r� un]: (22)

This boundary condition prevents the propagation and accumulation of time

di�erencing errors and ensures that ~P satis�es the important pressure compat-

ibility condition [13]. Note that the linear term in (22) is derived from L(un)

rather than L(un+1). This type of �rst-order extrapolation is necessary to keep

the pressure equation decoupled from the other substeps. The order of the

extrapolation should be consistent with the overall time accuracy.

A single time step using the skew-symmetric form of the nonlinear terms

requires the computation of various spatial derivatives to assemble the nonlin-

ear term plus the solution of one Poisson equation for the pressure and up to

three Helmholtz equations for the di�usion in each direction. Most of the com-

putational work is associated with solving these linear systems; integration of

the nonlinear terms makes only a minor contribution. The techniques outlined

below can be applied directly to the solution of the various elliptic subproblems

as well as computation of the nonlinear terms.

Higher-order schemes

It is relatively easy to make the integration scheme outlined above more accurate

in time, i.e. to increase the time accuracy to O(�tJ ). The basic idea is to use

higher-order multi-step schemes for the time integration. Time derivatives can

be approximated with a backward di�erence of the form:

@tu � �t (
0u
n+1 �

J�1X
q=0

�q u
n�q); (23)

where 
0 =
P
�q for consistency. The nonlinear term can be integrated using

an Adams{Bashforth method:

Z tn+1

tn

N(u) dt � �t

J�1X
q=0

�qN(un�q); (24)
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where
P
�q = 1. The pressure boundary conditions should be integrated with

a scheme of the same order to ensure consistent time accuracy:

@ ~P

@n
= n �

J�1X
q=0

�q [N(un�q)�
1

Re
r�r� un�q ]: (25)

Combining these various integration schemes produces the following semi-discrete

equations:

u
(1) �

J�1X
q=0

�qu
n�q = �t

J�1X
q=0

�qN(un�q); (26a)

u
(2) � u(1) = ��tr ~P (26b)


0u
n+1 � u(2) = �tL(un+1): (26c)

1.2.2 Spectral Element Methods

As stated above the key steps in solving the Navier-Stokes equations are the

approximation of the various operators (both linear and nonlinear) and the

solution of the Possson equation for the pressure. In this section we will lay out

a solution to both of these problems that utilizes high order �nite element or

spectral element methods. The advantage of this approach is that we can addres

issues of accuracy as well as complex geometry. Classical formulations of discrete

solutions of the Navier-Stokes equations that are obtained via the use of lower

order �nite di�erence methods can be recovered using this formulation through

the use of low order basis functions and appropriate projection operators.

A 1-D example

It turns out that all the key aspects of the spatial approximation schemes can

be described by considering the solution in one space dimension of the Poisson

equation.

Suppose we want to �nd u such that

u00 + f = 0 on 
; (27)

where 
 is the unit interval 0 � x � 1 and f is a given smooth function. At the

endpoints we will specify the boundary conditions

u(0) = g; (28a)

u0(1) = h: (28b)

This de�nes the strong form, the usual starting point for �nite di�erence and

other schemes.

Consider the following alternative formulation of the same problem. We

begin with the equation for the residual,

R(u) =

Z



w(u00 + f) dx; (29)
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from which we want to �nd the unique function u that drives the residual to

zero. The search will include all functions satisfying the boundary condition

u(0) = g; each candidate is called a trial solution, and we denote the set of all

trial solutions by S . The residual is orthogonalized with respect to a second

set of functions w 2 V called test functions or variations. Each test function

should satisfy w(0) = 0. To incorporate the Neumann boundary condition we

integrate equation (29) once by parts, �nding that R(u) = 0 ifZ



w0u0 dx =

Z



wf dx+ w(1)h: (30)

If we identify the symmetric, bilinear forms a(w; u) =
R


w0u0 dx and (w; f) =R



wf dx, then we can state the weak form as follows: �nd u 2 S such that for

every w 2 V

a(w; u) = (w; f) + w(1)h: (31)

Galerkin approximation solves (31) using a �nite collection of functions: �nd

uh 2 Sh such that for every wh 2 Vh

a(wh; uh) = (wh; f) + wh(1)h: (32)

This method reduces an in�nite-dimensional problem to an n-dimensional prob-

lem by choosing a set of n basis functions (�1; �2; : : : ; �n) to represent each

member of Sh and Vh. It admits all linear combinations wh 2 Vh as wh =

c1�1 + c2�2 + : : :+ cn�n; where each �p(0) = 0. To generate the trial solutions

we need one additional function satisfying �n+1(0) = 1 so that if uh 2 Sh then

uh = g�n+1 +

nX
p=1

dp�p: (33)

Note that with the exception of �n+1, Sh and Vh are composed of the same

functions.

Substituting uh for u and wh for w, the weak form becomes
nX

p=1

cpGp = 0; (34)

where

Gp =

nX
q=1

[a(�p; �q)dq

�(�p; f)� �p(1)h+ a(�p; �n+1)g] :

(35)

Since this must be true for any choice of the cp's, we require Gp � 0. If we put

the coeÆcients dp into a vector d, it becomes the matrix problem

Ad = F; (36)

where the matrix entries are given by Apq = a(�p; �q) and the components of the

vector F are Fp = (�p; f) + �p(1)h� a(�p; �n+1)g. The solution is d = A�1F.

Quite literally, this is a best �t of the approximate solution uh to the true

solution u based on the measure of error given in equation (29).
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Basis functions

Galerkin approximation is \optimal" in the sense that it gives the best approx-

imation in the restricted space Sh. If the true solution u lies in the intersection

of Sh and S, then uh = u. But the success of the method lies in the selection

of the basis functions. If they are too complicated it will be impossible to gen-

erate the matrix problem, too simple and they cannot adequately describe the

true solution u. The key is to combine computability and accuracy. Spectral

elements accomplish this in the following manner.

First, the domain is partitioned into K non-overlapping subintervals, where

each subinterval, or element, is given by 
k = [ak; bk]. On element k we want

to introduce a set of local functions that provide accuracy of order N for the

solution over that piece of the computational domain. For spectral element

methods, the basis functions are invariably polynomials.

Often, the most convenient approach is to form a set of polynomials from

the Lagrangian interpolants through a particular set of nodes. Recall that the

Lagrangian interpolant takes the value one at some node xi and is zero at all

other nodes. The simplest set of nodes would be the equally spaced points

xi = ak + (bk � ak) i=N . Of course, this turns out to be a terrible choice for a

high-order method because the basis is almost linearly dependent, resulting in

ill-conditioned algebraic systems. It is not the choice of Lagrangian interpolants

but the choice of nodes we de�ne them over, so to �x the problem we just need to

choose a \good" set of nodes. The choice of points is crucial to the success and

accuracy of the spectral method. In constrast this close connection between the

sampling points and the order of the method is not present in �nite di�erence

methods.

To standardize the basis, we introduce a parent domain with the coordinates

�1 � � � 1, and a coordinate transformation to the elemental nodes as

xi = ak +
bk � ak

2
(1 + �i): (37)

Now we choose the nodes �i to be the solutions of (1 � �2)L0N (�) = 0, where

LN(�) is the Legendre polynomial of degree N . With this special choice, the

Lagrangian interpolants can be written down explicitly as

�i(�) = �
(1� �2)L0N (�)

N(N + 1)LN(�i) (� � �i)
: (38)

These polynomials are called the Gauss{Lobatto Legendre (GLL) interpolants.

Figure 1.1 illustrates the mesh and basis functions for a typical element. We

will refer to any basis de�ned this way as a nodal basis.

There are several important reasons for choosing this set of polynomials.

First, the expansion of any smooth function using the GLL interpolants, u �
uh =

P
di�i(x), converges exponentially fast, as can be demonstrated by sin-

gular Sturm{Liouville theory [9]. Because these are Lagrangian interpolants,

the coeÆcients di are simply the nodal values of the approximate solution:

di = uh(xi). Also, there is a set of integration weights �i associated with
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Figure 1.1: One-dimensional spectral element basis functions for an expansion

order of N = 4, along with a sketch of the local and global coordinate systems:

(a) modal basis constructed from P 1;1
n (�); (b) Gauss{Lobatto Legendre basis

and the set of nodal points that de�ne them as Lagrangian interpolants.

the nodes �i so that the integrals appearing in the weak form can be computed

via the GLL quadrature

Z 1

�1

f d� =

NX
i=0

�if(�i) + �N ; (39)

where the error �N � O(f2N(�)) for some point �1 � � � 1; as long as the

integrand is a polynomial of degree less than 2N this quadrature rule is exact [7].

Finally, and perhaps most importantly, the interpolants, quadrature points, and

weights can be generated within a computer program by recursive algorithms

that are numerically stable through values of N � 100, eliminating the need to

store static tables of quadrature data.

Legendre polynomials are one example of a broad polynomial class called the

generalized Jacobi polynomials, which we denote as P�;�
n (�). Legendre polyno-

mials correspond to the parameter values � = 0, � = 0. Sometimes, especially in

higher dimensions and on more complex domains, it is more convenient to work

directly with the polynomials rather than an intermediate Lagrangian basis.

Jacobi polynomials have the orthogonality propertyZ 1

�1

(1� �)�(1 + �)�P�;�
i (�)P�;�

j (�) d� = Æij : (40)
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We can use Jacobi polynomials directly to represent a function through the

expansion uh =
P
diP

�;�
i (x). The values di are the coeÆcients of the basis

functions but they do not correspond to any set of nodal values. In practice,

there is a signi�cant advantage if most of the basis functions are orthogonal, so

in the one-dimensional case we would use:

�0(�) = 1
2
(1 + �);

�1(�) = 1
2
(1� �);

�i(�) = 1
4
(1 + �)(1� �)P 1;1

i�2(�); i � 2:

(41)

Figure 1.1 shows the �rst �ve basis functions constructed this way. In the nodal

basis every function is a polynomial of degree N . In the modal basis there

is a hierarchy of modes starting with the linear modes, proceeding with the

quadratic, the cubic, and so on.

We will refer to spectral elements constructed from a nodal basis as Lagrange

spectral elements and to those based on a modal basis as h-p elements. The

latter were �rst introduced in the early seventies by Szabo [20] who used the in-

tegrals of Legendre polynomials as a modal basis, taking �i(�) =
R �
�1
P
0;0
i�1(s) ds.

However, using the properties of Jacobi polynomials [1] we obtain

2n

Z �

�1

P
0;0
n�1(s) ds = (1� �)(1 + �)P

1;1
n�2(�); (42)

which is the same as the basis in equation (41) except for the normalization.

The choice of which approach to take is somewhat arbitrary since a nodal ba-

sis can always be transformed to an equivalent modal basis and vice versa. The

Fast Fourier Transform (FFT) is one familiar example of such a transformation

onto the basis �k(�) = exp(ik�). Unfortunately, there are no \fast transform"

methods for Jacobi polynomials and the transforms require matrix multiplica-

tion. However, for the values of N used in practice (N � 16) this is not a

serious drawback. For the remainder of this section we will work with the GLL

polynomials, but when we introduce the basis on triangular and tetrahedral

subdomains we will switch back to the modal point of view.

Discrete equations

Returning to the problem of solving equation (32), we begin by noting that the

integral can be broken into a sum of integrals of each element:

a(�p; �q)
 =

KX
k=1

a(�p; �q)
k :

Since each basis function is non-zero over a single element, the inner product

a(�p; �q) is non-zero only if �p and �q \belong" to the same element. This

makes the global system sparse, and allows us to compute only local matrices.

Because of the origin of �nite element methods in computational mechanics,
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A  =  

a1

a 2

a3

u

u

u

u

1

n

5

9

.

.

.

.

.

.

.

.

.

interior nodes

boundary nodes
interior nodes

interior nodes

2Ω1Ω 3Ω

Coupling at boundary nodes

Figure 1.2: Schematic of the direct sti�ness summation of local matrices Ak to

form the global matrix A.

these matrices are traditionally called:

\mass" M
k
pq =

R

k
�p�q dx;

\sti�ness" A
k
pq =

R

k
�0p�

0

q dx:

To construct the right-hand side of the matrix system, f(x) is approximated

by collocation at the nodal points to produce fh(x); the mass matrix provides

the coeÆcients necessary to perform the integration. Now the elemental matrix

system may be written as

A
k
vk = F

k (+ boundary terms): (43)

Just as the integral over the entire domain can be written as a sum of the

integral over each element, the global matrices can be computed by summing

contributions from the elemental matrices:

A =

KX
k=1

0Ak; M =

KX
k=1

0Mk: (44)

The symbol
P

0

represents \direct sti�ness summation," the procedure dia-

grammed for the nodal basis in �gure 1.2 that maps contributions from the

boundary node shared by adjacent elements to the same row of the global ma-

trix A . The global matrix system is

Av = F (+ boundary terms): (45)

A is banded as a result of using local basis functions, with all of its non-zero

entries located in the N diagonals above and below the main diagonal. It is also

symmetric, due to the symmetry of a(�; �), and positive-de�nite. Thus A can

be computed, stored, and factored economically and eÆciently.

Spectral element discretizations encompass both spectral methods and �nite

elements. With the proper choice of basis functions and projection methods,

�nite di�erence methods can also be included. Standard approximation error
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estimates for Galerkin methods applied to elliptic problems on quasi-uniform

meshes predict that

jju� uhjj1 � const:� h��1N�(k�1)jjujjk; (46)

where � = min(k;N + 1), N is the polynomial degree appearing in the basis

functions, and h is a parameter related to the element size [3]. The constant

depends on the degree of mesh quasi-uniformity. There are two ways to im-

prove the approximation: make h smaller (K ! 1), or make N and � larger

(N ! 1). The latter results in exponential convergence for smooth solutions.

If a solution varies rapidly over a small region, any polynomial �t will oscillate

rapidly and the best approach is to reduce the element size until the solution is

resolved locally. A more e�ective approach is to combine the two convergence

procedures, increasing both K and N simultaneously; this dual path of conver-

gence is known as an h-p re�nement procedure [20]. The 
exibility to adapt the

mesh to the solution makes spectral element methods quite robust.

Basis functions in d-dimensions

A key to the eÆciency of high-order methods in two- and three-dimensional

problems is the formation of a basis from the tensor product of one-dimensional

functions. Among other things, this allows the computation of integrals and

derivatives of the basis functions to be simpli�ed through a procedure called

sum factorization [17]. It also contributes to the sparse structure of matrix

systems for multi-dimensional problems.

In this section we describe the procedure for constructing an eÆcient, high-

order basis on two- and three-dimensional domains. To keep the discussion

simple, we only consider the standard domains Rd, where d is the problem

dimension. Figure 1.3 de�nes the standard rectangle, R2. \Standard" here

means that the coordinates are normalized to fall in the range�1 to 1. For d = 3,

the standard domain is a hexahedral element. Isoparametric mappings can

always be used to transformmore general elements to these standard domains, as

illustrated in �gure 1.3. On the standard element, we wish to de�ne a polynomial

basis, denoted by �ij(�1; �2), so that we can represent a function uh(�1; �2) by

the expansion

uh(�1; �2) =

NX
i=0

NX
j=0

uij�ij(�1; �2);

where uij is the coeÆcient of the basis function �ij and � = (�1; �2) is the local

coordinate within the element.

For quadrilateral (two-dimensional) and hexahedral (three-dimensional) ele-

ments, the procedure is straightforward. For example, on the domain 
k = R2,

the basis would be

�ij(�1; �2) = �i(�1)�j(�2);

where �i(�) is the one-dimensional GLL polynomial de�ned in x ??. In this

case, uij represents the function value at the node �ij . The three-dimensional

basis on R3 is exactly analogous to this one.
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Figure 1.3: De�nition of the standard quadrilateral domain R2. General curvi-

linear elements can always be mapped back to the standard element as shown.

In the remainder of this Chapter we will use the following simpli�ed notation.

Every index (ijk) in the tensor product basis will be mapped to a single number

as p = i + jN + kN2, so there is a one-to-one correspondence between �p(�)

and �ijk(�). This hides the tensor product nature of the basis but makes the

discrete equations much easier to write down. When necessary, we can \unroll"

the p index to take advantage of the tensor product form. This expression for

p is valid for quadrilateral elements only; a modi�ed expression should be used

with the triangular domains.

1.2.3 Basic operations

Integration

The general form for the evaluation of an integral by Gaussian quadrature with

weights (1� �)�(1 + �)� can be written as

Z 1

�1

(1� �)�(1 + �)�u(�) d� =

NX
i=0

�
�;�
i u(�

�;�
i );

where �
�;�
i and �

�;�
i are the quadrature points and weights associated with the

Jacobi polynomial P
�;�
N (�). The quadrature rule is exact if u(�) is a polynomial

of degree 2N + 1 for the Gauss points, 2N for the Gauss{Radau points, and

2N � 1 for the Gauss{Lobatto points.

To integrate a function de�ned over the standard domain R2, we simply use

the tensor product form to reduce the integral to two one-dimensional quadra-

tures. The integral of a general function is written as

Z
R2

u(�) d�1d�2 =

NX
i=0

NX
j=0

�i�ju(�ij):

The extension to integrals over R3 is straightforward.
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Projection

To apply the integration rules described above, we need to evaluate a function

at a given set of quadrature points. For the nodal basis this is trivial because the

basis coeÆcients are the function values at the quadrature points. For a modal

basis we need an eÆcient way to evaluate the full solution at the quadrature

points. This, and the related problem of determining the modal expansion

coeÆcients from a set of nodal values, are both called projections.

A projection is the procedure for determining the coeÆcients uijk so that

uh � u for some given function u. First, recall the general form of the expansion:

u(�) � uh(�) =
X
p

up �p(�):

The expansion coeÆcients are determined by taking the inner-product with the

basis functions on both sides of this equation:

(u; �p)
k = (uh; �p)
k 8�p 2 f�ijkg: (47)

Solving this system of equations to determine the approximation uh is straight-

forward if the basis f�ijkg is orthogonal. Otherwise, we have to compute uh by

inverting a matrix.

To describe this for the modal basis, we introduce the following notation:

up = vector of P � N3 expansion coeÆ-

cients, up  uijk;

~uq = vector of Q function values at the

quadrature points, ~uq  u(�q);

Wqq = diagonal matrix of Q�Q quadrature

weights required to integrate a func-

tion over 
k;

Bqp = rectangular matrix containing the

value of the basis functions at the

quadrature points (Q quadrature

points � P basis functions).

Now we can write down the algebraic form of the inner-products given in (47).

First, the inner product of u with the basis functions:

(u; �p)
k ! BTW ~u:

Second, the inner product of uh with the basis functions:

(uh; �p)
k ! B
T
WBu:

The approximation uh � u is determined by matching these two inner products

for every basis function:

BTW ~u = BTWBu: (48)
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This is the fully discrete form of (47). Note that the epression on the right-hand-

side de�nes the mass matrix (�i; �j)
k ! B
T
WB; or simply M = B

T
WB:

Now we can de�ne the discrete projection operator as

u = P(~u) � [BT
WB]�1BT

W~u:

This is also called the forward transform of a function from physical space (nodal

values) to transform space (modal coeÆcients). The discrete inverse transform

is simply the evaluation of the modal basis at a given set of points:

~u = P�1(u) � Bu:

Finally we note that in the GLL nodal basis, M is a diagonal matrix. This

follows directly from the discrete orthogonality of the basis functions and the fact

that �p(�q) = Æpq , where �q are the GLL quadrature points. A diagonal mass

matrix is a tremendous simpli�cation since multiplication by M�1 is trivial.

Di�erentiation

Since the basis is formed from continuous functions, in principle derivatives can

be evaluated by simply di�erentiating the basis functions:

@uh

@�1
=
X
ijk

uijk
@�i

@�1
(�1)�j(�2)�k(�3):

In practice we only need the derivatives at certain points, namely the quadra-

ture points. Therefore, the solution is �rst transformed onto an equivalent

Lagrangian interpolant basis de�ned over the quadrature points. We introduce

the one-dimensional Lagrangian derivative matrix

Dip �
d�p

d�

����
�i

:

Rather than O(N3) terms, the Lagrangian interpolant basis reduces the summa-

tion to an equivalent one-dimensional operation. The coeÆcient of the deriva-

tive, u0ijk , is then given by

u0ijk =

NX
p=0

Dipupjk:

Since only O(N) operations are required per point, it takes O(N3) operations to

compute all derivatives in R2, and O(N4) operations to compute all derivatives

in R3. In the modal basis, calculation of derivatives is preceded by an inverse

transform (to nodal values) and followed by a forward transform (to modal

coeÆcients), therefore increasing the computational cost.
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Figure 1.4: Local and global numbering for a simple domain composed of two

quadrilateral elements of order N = 2. Points along the boundary do not

constitute global \degrees of freedom" and are not assigned indices in the global

index set.

1.2.4 Global matrix operations

Conforming

One of the basic principles for maintaining the sparse structure in the global

matrix systems is to enforce only the minimum continuity between elements.

For all of the problems we consider here, the global basis is required to be

C0 continuous, i.e. only function values and not derivatives are required to be

globally continuous. For discretizations with both Lagrangian and h-p basis

functions, this is accomplished by choosing a unique set of global \degrees of

freedom" that de�ne the approximation space.

Global continuity in the Lagrangian basis is straightforward. Since the basis

functions are de�ned as the Lagrangian interpolant through the elemental nodes,

we only have to use the same set of nodes along the edge of adjacent elements.

As long as the elements are conforming (each edge matches up exactly to one

other edge) and of equal order (same number of nodes along each edge), C0

continuity is guaranteed. Figure 1.4 shows a possible global numbering scheme

for a simple quadrilateral mesh.

Continuity in the modal basis is more involved because we have to match up

all modes. Depending on the orientation chosen for the triangular elements, local

modes may be a positive or negative image of the corresponding global mode.

This extra bit of information must be tracked as part of the implementation,

and we describe it as one use of the mapping matrix Zk.

Nonconforming

An important extension to the original spectral element method was the intro-

duction of nonconforming elements by Bernardi et al . [6]. Here we give only a

sketch of the how the method is used to patch together a nonconforming mesh;

for a full description of the method, including eÆcient solution techniques and
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numerous examples, see the references [2, 6, 10, 11, 15].

The main idea is to use a constrained approximation. For a geometrically

and functionally nonconforming set of elements, we cannot guarantee global C0

continuity of the basis. Therefore, we make the basis as continuous as possible by

minimizing the di�erence in function values across each nonconforming interface.

We do this by enforcing the following weighted residual equation:Z
�

(u� v) ds = 0 8 2 PN�2(�): (49)

The residual is the di�erence in two functions u and v that we would like to

be continuous, and  is the weight used to perform the minimization. The

algebraic form of this equation is

u = Zv;

where u and v are the coeÆcients of whatever basis we choose to represent u

and v, and the entries of Z are determined by evaluating the residual equation

using numerical quadrature. We say the values of v are free and the values of

u are constrained to match them such that equation (49) is satis�ed.

To use this as a computational tool, we choose v to be the solution along the

edge of some element, and u to be the solution along the edge of an adjacent

nonconforming element. Equation (49) is used to construct u from v, thereby

eliminating u as an \unknown" in the mesh. Since v contributes to the global

degrees of freedom in the problem, this is one type of the \combining" described

in x 1.2.5. There is an additional consistency error associated with the noncon-

forming discretization because the approximation space is no longer a proper

subset of the solution space|it admits discontinuous solutions. As bad as this

sounds, the consistency error is of the same order as other components of the

approximation error, and if implemented properly the method always converges

to a continuous solution if one exists.

Nonconforming elements allow quadrilateral meshes to be re�ned locally,

without the conforming restriction propagating re�nement across the mesh. It

is not as important for triangular and tetrahedral elements where algorithms

such as Rivara re�nement [18] can be used to perform local re�nement and

maintain consistency in the mesh. We will give several examples that make use

of nonconforming quadrilateral elements in the following sections.

1.2.5 Data structures

Here we describe the data structures and basic operations required to imple-

ment the most common procedures in spectral element methods. We cover

representation of the global system, how to transfer global data to local (ele-

ment) data, direct sti�ness summation, and �nally the procedures for integra-

tion and di�erentiation of solutions de�ned on geometrically complex two- and

three-dimensional elements.
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Implementation

First we start with the representation of the solution within a computer pro-

gram. In this section we give several examples as pseudo-code fragments that

follow basic C and C++ syntax. This is not meant to be an in-depth presen-

tation, but simply an illustration of the most important ideas and the basic

approach.

In spectral element methods, as in �nite element methods, global data is

stored as a 
at, unstructured array. The basic data structure used to relate the

mesh to entries in this array is a table that identi�es the global node number

of a local node within each element. Since we are interested in both nodal

and modal descriptions, we replace \node" with the more general concept of a

\degree of freedom" in the global solution. The table of indices can be stored

as a two-dimensional array of integers:

map[k][i] = global index of local datum i

in element k.

Local data can be stored in any convenient, regular format. In our �rst

version, we will assume the number of degrees of freedom in the mesh (ndof)

and the number of degrees of freedom associated with each element (edof) are

constant. To perform some global operation, for example to evaluate a function

v = F (u), we insert a layer of indirection between the unstructured global

data and the structured local data. The following is a template for any such

computation:

for (i=0; i < ndof; i++) // Initialize v

v[i] = 0.;

for (k=0; k < nel; k++) { // Loop over elements

for (i=0; i < edof; i++) // Copy global data

uk[i] = u[ map[k][i] ]; // -- gather

compute (uk, vk); // Compute v=F(u) locally

for (i=0; i < edof; i++) // Accumulate the result

v[ map[k][i] ] += vk[i]; // -- scatter

}

Depending on the speci�c operation, the �nal result may need to be corrected

in some way: rescaled with the global mass matrix, averaged based on the data

multiplicity, or some similar global operation. The last loop corresponds to

direct sti�ness summation, and in our matrix notation we would write this

same operation as:

v =

KX
k=1

0vk =

KX
k=1

0F (uk) = F (u): (50)

To make this data structure suitable for both hierarchical bases and noncon-

forming elements (to be developed in x 1.2.4), we introduce two generalizations.



CHAPTER 1. PARALLEL COMPUTING IN CFD 21

First, we allow the number of degrees of freedom in each element to be di�erent

by replacing the constant edof with the array edof[k]. Second, we allow each

local degree of freedom to depend on an arbitrary combination of the global

degrees of freedom. To implement this we need to introduce two new arrays:

idof[k][i] = number of global dependencies for

local datum i in element k,

combine[k][i] = array of coeÆcients for combining

global data to get local data.

And �nally, we need to add a new dimension to our index table:

map[k][i][j] = global index of the jth dependency

of local datum i.

In e�ect, we are introducing a set of coeÆcient matrices Zk that de�ne a gen-

eral transformation between global and local degrees of freedom. Using this

approach, the global initialization, loop over the elements, and function call

for the local computation shown above stay the same, but the procedure for

constructing the local data is re-written as follows:

for (i=0; i < edof[k]; i++) // Initialize

uk[i] = 0.;

for (i=0; i < edof[k]; i++) { // Combine

real *Z = combine[k][i];

for (j=0; j < idof[k][i]; j++)

uk[i] += Z[j] * u[ map[k][i][j] ];

}

Likewise, the accumulation of results uses a similar method for combining local

contributions to the global degrees of freedom:

for (i=0; i < edof[k]; i++) { // Combine

real *Z = combine[k][i];

for (j=0; j < idof[k][i]; j++)

v[ map[k][i][j] ] += Z[j] * vk[i];

}

We also introduce a new matrix notation for this more general approach. Since

the local data is Zku, and the local contribution to the global system is [Zk]Tvk,

the equivalent procedure for assembling the global system is written as:

v =

KX
k=1

0[Zk]Tvk =

KX
k=1

0[Zk]TF (Zku) = F (u) (51)
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Compare this to equation (50) above, and note that the only change is how we

transform between the local and global systems. The actual computations at

both the local and global level are the same.

In the remaining sections we will describe computations in terms of either

the local or global system, omitting the actual \assembly" required to go be-

tween them. Equation (51) is always implied as the method for recovering local

solutions and assembling global ones. This simpli�es what would otherwise be-

come a confusing barrage of notation. Along the way we will give more speci�c

information about how the coeÆcients for the mapping matrix Zk are chosen.

This is a very 
exible scheme for storing the global solution and reconstructing

the local one. The additional storage and computational overhead is simply the

price we pay for new capabilities: variable order of the local basis functions and

arbitrary connectivity in the mesh. However, these are the key ingredients for

adaptive h-p re�nement techniques!

Improvements

Although the scheme outlined above is complete, it is not an eÆcient way to im-

plement h-p methods: too much of the addressing is done by indirection. One of

the computational advantages of high-order elements is the natural partitioning

of data into sets that can be operated on as a group. For example, local degrees

of freedom are normally partitioned into several groups: vertices, edges, faces,

and interior data. Data associated with any of these groups can be operated on

as a single entity. For example, all the points on the interior of an element can

be identi�ed with the element number and moved around or computed on as

a single unit. High-order elements provide better data locality than low-order

elements because computations always involve large amounts of data that can

be grouped together in memory.

The type of full indirection outlined above is only necessary for the degrees

of freedom associated with the surface of an element. These data make up

the loosely-coupled components of the global system. This sparse global sys-

tem forms the \skeleton" of the discretization and shares many characteristics

with low-order �nite elements. For example, the numbering system stored in

the index table can be optimized to reduce its algebraic bandwidth using the

same techniques applied in �nite element methods (see x1.2.6). Unfortunately,
more sophisticated data structures than can be described here are required to

incorporate these simpli�cations.

1.2.6 Solution techniques

In this section we will describe eÆcient iterative and direct methods for invert-

ing the large algebraic systems that result from nonconforming spectral element

discretizations. Iterative methods are more appropriate for steady-state calcula-

tions or calculations involving variable properties, such as a changing time step

or a Helmholtz equation with a variable coeÆcient. For direct methods the issue

is one of memory management | storing A as eÆciently as possible without

sacri�cing the performance needed for fast back-substitution. The development
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of fast direct and well-preconditioned iterative solvers represents a major ad-

vance towards the application of nonconforming spectral element methods to

the simulation of turbulent 
ows on unstructured meshes.

Conjugate gradient iteration

Conjugate gradient methods [5] have been particularly successful with spectral

elements because the tensor-product form and local structure allows the global

Helmholtz inner product to be evaluated using only elemental matrices. To solve

the system Au = F by the method of conjugate gradients we use the following

algorithm:

k = 0; u0 = 0; r0 = F;

while rk 6= 0

Solve Mqk = rk ; k = k + 1

if k = 1

p1 = q0
else

�k = rTk�1qk�1=r
T
k�2qk�2

pk = qk�1 + �kpk�1
end

�k = rTk�1qk�1=p
T
k Apk

rk = rk�1 � �kApk
uk = uk�1 + �kpk

end

u = uk

where k is the iteration number, rk is the residual, and pk is the current search

direction. The matrix M is a preconditioner used to improve the convergence

rate of the method and is discussed in detail next.

Selection of a good preconditioner is critical for rapid convergence; the pre-

conditioner must be spectrally close to the full sti�ness matrix yet easy to invert.

Popular preconditioners for spectral methods include incomplete Cholesky fac-

torization and low-order (�nite element, �nite di�erence) approximations [8, 17].

Unfortunately, these preconditioners can be as complicated to construct for an

unstructured mesh as the full sti�ness matrix A. Next we present three precon-

ditioners which are simple to build and apply even when the mesh is unstruc-

tured.

In conjugate gradient methods the number of iterations required to reach

a given error level scales as
p
�A. This is only an estimate, since the actual

convergence rate is determined by the distribution of eigenvalues | if all of

A's eigenvalues are clustered together, convergence is much faster. To assess

the e�ectiveness of a given preconditioner we begin by looking at the condition

number of M�1A.

Each of the following methods is based on selecting a subset of entries from

the full sti�ness matrix. The �rst two preconditioners are diagonal matrices
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given by

Mii = Aii \diagonal"; (52)

Mii =

ndofX
j=0

jAij j \row-sum"; (53)

where ndof = rank(A); the diagonal (52) is sometimes called a point Jacobi

preconditioner. Both are direct estimates of the spectrum of A, and have the

advantage of minimal storage and work. The third preconditioner is a block-

diagonal matrix:

Mij =

8<
:
jAij j if i � nbof , j = i

0 if i � nbof , j 6= i

Aij otherwise

(54)

where nbof is the number of mortar nodes in the mesh. The structure of this

matrix assumes that A is arranged in the static condensation format described

in x1.2.6. Applying this preconditioner amounts to storing and inverting the

isolated blocks of A associated with the degrees of freedom on the interior of

each element, while applying a simple diagonal matrix to the mortar nodes.

We conclude this section by giving the memory requirements and com-

putational complexity for a preconditioned conjugate gradient (PCG) solver.

Since the elemental Helmholtz operator can be evaluated using only the one-

dimensional Lagrangian derivative matrix, the required memory is simply stor-

age for the nodal values and geometric factors:

SI = s1KN
2: (55)

As mentioned above, the dominant numerical operations are vector-vector and

matrix-vector products, although derivative calculations are folded into a more

eÆcient matrix-matrix multiplication. The operation count for the entire solver

is

CI = J�
�
c1KN

3 + c2KN
2 + c3KN

�
; (56)

where J� /
p
KN3 is the number of iterations required to reach a given error

level �. Our numerical results (Tables ?? and ??) show that with these pre-

conditioners J� is still proportional to KN3, but the constant is reduced. The

block matrix operations required to compute the elemental inner products pro-

vide good data locality and can be coded eÆciently on both vector processors

and RISC microprocessors.

Static condensation

The static condensation algorithm is a method for reducing the complexity of

the sti�ness matrices arising in �nite element and spectral element methods.

Static condensation is particularly attractive for unstructured spectral element

methods because of the natural division of equations into those for boundaries

(mortars) and element interiors. To apply this method to the discrete Helmholtz
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equation, we begin by writing partitioning the sti�ness matrix into boundary

and interior points:

�
A11 A12

A21 A22

�k �
ub
ui

�k
=

�
Fb
Fi

�k
; (57)

where A11 is the boundary matrix, A12 = [A21]
T is the coupling matrix, and A22

is the interior matrix. This system can be factored into one for the boundary

(mortar) nodes and one for the interior nodes, so that on 
k:

[A11 �A21A
�1
22 A12]ub = Fb � [A21A

�1
22 ]Fi; (58a)

A22 ui = Fi �A21ub: (58b)

During a pre-processing phase, the global boundary matrix is assembled by

summing the elemental matrices,

A11 =

KX
k=1

0[A11 �A21A
�1
22 A12]; (59)

and prepared for the solution phase by computing its LU factorization. Equa-

tion (59) may also be recognized as the Schur complement of A22 in A. As

part of this phase we also compute and store for each element the inverse of

the interior matrix [A�122 ] and its product with the coupling matrix [A21A
�1
22 ].

The system is solved by setting up the modi�ed right-hand side of the global

boundary equations, solving the boundary equations using back-substitution,

and then computing the solution on the interior of each element using direct

matrix multiplication. Because the coupling between elements is only C0, the

element interiors are independent of each other and on a multiprocessor system

this �nal stage can be solved concurrently.

Figure 1.5 illustrates the structure of a typical spectral element sti�ness

matrix factored using this approach. To reduce computational time and memory

requirements for the boundary phase of the direct solver, we wish to �nd an

optimal form of the discrete system corresponding to a minimum bandwidth for

the matrix A11. This is complicated by the irregular connectivity generated by

the using of nonconforming elements. One approach to bandwidth optimization

is to think of the problem in terms of �nding an optimal path through the mesh

that visits \nearest neighbors." During each of theK stages of the optimization,

an estimate is made of the new bandwidth that results from adding one of

the unnumbered elements to the current path. The element corresponding to

the largest increase is chosen for numbering, resulting in what is essentially a

Greedy algorithm. This basic concept is illustrated in �gure 1.6. The reduction

in bandwidth translates to direct savings in memory and quadratic savings in

computational cost. Note that standard methods of bandwidth reduction used

for �nite elements, e.g. the Reverse Cuthill-McKee algorithm, can also be used,

although they only need be applied to the boundary system.

The search for an optimal numbering system can be accomplished during

preprocessing, so the extra work has no impact on the simulation cost and can



CHAPTER 1. PARALLEL COMPUTING IN CFD 26

Figure 1.5: Static condensation form of the spectral element sti�ness matrix.

The vector � = ub represents the boundary (mortar) solution, while ui repre-

sents the interior solution.

result in signi�cant savings. For computers where memory is a limitation, this

procedure can determine whether an in-core solution is even possible. Other sim-

ple memory optimizations include storage of only a single copy of the interior

and coupling matrices for each element with the same geometry, and evaluation

of the force vector F using tensor product summation instead of matrix oper-

ations. By carefully organizing matrix usage, the overall memory requirement

scales as

SD =
1

2
s1K

2N2 + s2KN
3 + s3KN

4: (60)

As mentioned in the introduction to this section, the direct solver is advanta-

geous only when the cost of factoring this sti�ness matrix can be spread over

a large number of solutions. Therefore, we consider only the cost of a back-

substitution using the factored sti�ness matrix, for which the operation count

scales as

CD = c1K
3=2N2 + c2KN

4 + c3KN: (61)

For a well-conditioned, diagonally-dominant system this method usually results

in at least a factor of two savings versus an iterative solver. For a system that

is not diagonally-dominant, like the Navier{Stokes pressure equation, it can be

faster by a full order of magnitude.

1.2.7 Adaptive Mesh Re�nement

In this section we look at the implementation of a high-order adaptive code

based on the nonconforming spectral element method developed in x ??. In

practice this method is used with high-order polynomials (p � 4 to 16) and
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(a)

(b)

(c)

Figure 1.6: Bandwidth optimization for a spectral element mesh: (a) computa-

tional domain, (b) connectivity graph and (c) an optimal path for numbering

the boundary nodes in the mesh. Line thickness demonstrates the change in

global bandwidth with each step.

a mesh of elements that is generated adaptively by h-re�nement. We will not

attempt to re�ne both the elements and the basis functions simultaneously as

experience indicates that uniformly high p and adaptive mesh re�nement leads

to an eÆcient solution for a wide variety of problems.

The formulation based on mortar elements [6] allows completely arbitrary

assembly of nonconforming elements. However, our goal is to develop automatic

procedures for generating an appropriate mesh and this calls for some compro-

mises. To simplify the encoding of the mesh we will require the re�nement

to propagate down a quadtree (two-dimensional geometries) or octtree (three-

dimensional geometries). A basic description of the mesh generation procedure

is provided in x1.2.7. This is found to be a suitable restriction for problems

with smooth solutions and leads to a signi�cant reduction in the complexity of

the data structure needed to represent the many levels in the re�ned grid. For
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cylinder

half-cylinder

riblets

Figure 1.7: Nonconforming meshes used to test the bandwidth optimization.

complex geometries the mesh may incorporate multiple trees at the coarse level.

To give a more speci�c introduction to the goals of developing an adaptive

spectral element method, �gure 1.8 shows a sample calculation for the impul-

sively started 
ow past a blu� plate. In this simulation the solution �eld is

generated by integrating the incompressible Navier{Stokes equations from an

initial state of zero motion. The characteristic scales in the problem are the

free-stream speed u
1
, the plate diameter d, and the kinematic viscosity of the


uid �. The Reynolds number, de�ned as Re � u
1
d=�, is set to the value

Re = 1000. The lower part of the �gure shows the global domain used to rep-

resent the 
ow around the plate. A symmetry condition is imposed along the

centerline so that only one half of the 
ow �eld needs to be computed. The

upper part of the �gure is an enlargement of the near wake region. It shows

both the vorticity of the developing 
ow at an early time and the adaptively

generated mesh. Each element is an 8�8 point subdomain (p = 7) of the global

solution. A large number of separate `trees' are needed at the coarse level to

correctly model the beveled geometry of the �nite-thickness plate. The initial

stage of mesh generation is done by hand to provide the correct starting geom-

etry. Once the problem is handed to the 
ow solver the additional adaptivity in

the mesh is based on a maximum allowable approximation error in the vorticity

�eld.

Because the algorithms for time integration in problems like the one illus-

trated in �gure 1.8 are generally semi-implicit, the computational issues that

arise are somewhat di�erent when compared to other methods that incorporate
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Figure 1.8: Simulation of the impulsively started 
ow past a blu� plate at

Re = 1000 using an adaptive spectral element method: (top) close-up of the

mesh and vorticity of the 
ow a short time after the impulsive start; (bottom)

global computational domain.

adaptive meshes. We are interested primarily in studying incompressible 
ows

governed by the Navier{Stokes and Euler equations. Because of the elliptic na-

ture of the governing equations (due in part to the incompressibility constraint),

local time-stepping is not usually an option. Therefore, solving the elliptic

boundary-value problems that arise in these systems is a particular challenge.

Even for two-dimensional 
ows the resolution needed to maintain suÆciently

high accuracy can lead to very large systems of equations, and computational

eÆciency is an important issue. In the past this meant algorithms that could

be vectorized, while today it means algorithms that can be parallelized. There

is a close relationship between spectral elements and �nite elements, so when it

comes to parallel computing many of the same problems (e.g. load balancing)

arise, and similar solutions apply. x1.2.8 addresses the implementation of this

method for parallel computers with a programming model based on a weakly

coherent shared memory which is synchronized via message passing.

Just as important as overall computational performance are the algorithms

used for driving adaptive re�nement. Ideally such an algorithm would take as

input an error estimate and produce as output a new discrete model or mesh

that reduces the error. The basic problems are the lack of an error estimate
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for nonlinear systems and the unlimited ways in which such an algorithm could

improve the discrete model. The latter problem is addressed by restricting `im-

provements' to propagating re�nement down the tree as described in x1.2.7. The
former problem is addressed with a pseudo-heuristic error estimate based on the

local polynomial spectrum as described in x1.2.7. Depending on the nonlinear-

ity in the partial di�erential equations being solved, parts of the spectrum will

give an accurate approximation to the true solution and parts will be polluted.

We estimate the order of magnitude of the local error by examining the decay

along the tail of the local polynomial spectrum. In a general sense, this heuristic


ags locations in the mesh where the polynomial basis fails to provide a good

description of the solution. For simple problems (linear, one-dimensional) this

can be formally related to the true di�erence between the exact solution and

the approximate solution, i.e. the approximation error. For more interesting

problems it is shown to be a robust guide for driving adaptivity. The heuristic

is easy to compute but is only accurate as an error estimate in computations

with suÆciently high p, meaning that the local polynomial coeÆcients should

decay like janj � exp(��n) for p = n � 1. This is generally not true near

singular points (e.g. corners) and these locations are automatically 
agged for

re�nement. The method based on local spectra is compared to simpler heuris-

tics such as re�ning in regions with strong gradients and the two are shown to

lead to quite di�erent results. In general the local spectrum works well and is a

good match to the overall computational strategy.

Framework

In this section we restrict our attention to two-dimensional problems. Most of

the diÆculties arise in two dimensions and there are no fundamental barriers

(other than computing power) in extending the method to three dimensions.

To begin, let D be some region of space that has been partitioned into K

subdomains which we denote D(k). We consider two related problems:

1. Given a discretization tolerance �, generate a spatial discretization D =

fD(k)g that allows the tolerance to be met;

2. Given a spatial discretization D = fD(k)g, generate a �nite-dimensional

approximation uh � u. The function u may be given explicitly or implic-

itly, i.e. as the solution of a boundary-value problem.

Our approach to problem (1) is to create a hierarchy of grids by forming a

quadtree partition of D. This provides the computational domain for problem

(2) where we apply a nonconforming spectral element method to approximate

uh.

Mesh generation

The mesh generation problem is somewhat simpler, so we describe that �rst. A

quadtree is a partition of two-dimensional space into squares. Each square is a

node of the tree. It has up to four daughters, obtained by bisecting the square
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D(k) = S(i)

Figure 1.9: A four-level quadtree mesh, expanded to show the elements that

make up each level. Each leaf node S(i) has a unique integer key shown in

binary. Daughter keys are generated from a parent's key by a two-bit left shift,

followed by a binary or in the range 00{11. The active elements D(k) that make

up the current discretization are shown with a solid outline.

along each dimension. Each node in a quadtree has geometrical properties (spa-

tial coordinates, size) and topological properties (parents, daughters, siblings).

Geometrical properties of daughter nodes are inherited from parents, and thus

the geometrical properties of the entire tree are determined by the root node.

To represent the topological aspects of the tree we use an idea originally

developed for gravitational N -body problems [19]. Every possible square S(i)

is assigned a unique integer key. The root of the tree is S(1) with key 1. The

daughters of any node are obtained by a left-shift of two bits of the parent's key,

followed by a binary or in the range 00{11 (binary) to distinguish each sibling.

A node's parent is obtained by a two bit right-shift of its own key. Since the set

of keys installed in the tree at any time is obviously much smaller than the set

of all possible keys, a hash table is used for storage and lookup.

From the complete set of nodes in the tree we choose a certain subset D(k) �
S(i) to form the active elements of the computational domain. Figure 1.9 shows

a four-level quadtree with thirteen nodes and K = 10 active elements. Active

elements in the �gure are shown with a solid outline while inactive elements are

shown with a dashed outline. Inactive elements are retained so that they are

available for coarsening the mesh, if necessary. The only requirement enforced

on the topology of the mesh is that active elements that share a boundary

segment live at most one re�nement level apart, limiting adjacent elements to a
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two-to-one re�nement ratio. This imposes a certain smoothness on the change

in resolution in the mesh that is appropriate for the class of smooth functions

we wish to represent.

Re�nement criteria

The adaptive mesh generation described above and high-order domain decom-

position methods described in x?? are coupled through the re�nement criteria

used to drive adaptivity. Here we consider three types of re�nement criteria.

The �rst is by far the simplest: re�ne everywhere that solution gradients are

large. We can enforce this idea by requiring

k ru(k) k� � k uh k1 (62)

everywhere in the mesh, where k � k is the L2 norm, k � k1 is the H1 norm, and

� is the discretization tolerance. This is a common re�nement criteria in cases

where there is simply no alternative measure of solution errors.

The second type takes direct advantage of the high-order polynomial basis.

Consider the expansion of a given smooth function u over the domain D =

[�1; 1]2 in terms of Legendre polynomials:

u(x; y) =

1X
n=0

1X
m=0

an;m Pn(x)Pm(y): (63)

The expansion coeÆcients are given by

an;m =
1

cncm

Z 1

�1

Z 1

�1

uPnPm jJ j dx dy; (64)

where the normalization constant is ci = (2i + 1)=2. We have included the

Jacobian jJ j to include the e�ects of element size and other geometric transfor-

mations, e.g. curvilinear boundaries. There is nothing magical about Legendre

polynomials|they are simply a convenient orthogonal basis for projecting the

approximation onto. Since our approximate solution uh � u is formed essentially
by truncating this expansion at some �nite order p, we can form an estimate of

the approximation error k u� uh k by examining the tail of the spectrum.

To do so we �rst average over polynomials in x and y to produce an equivalent

one-dimensional spectrum:

�ap = jap;pj+
p�1X
i=0

jai;pj+ jap;ij: (65)

Next we replace the discrete spectrum �ap with an approximation to a decaying

exponential:

~a(n) = const:� exp(��n): (66)

The function ~a(n) is a least squares best �t to the last four points in the spectrum

�ap. Our re�nement criteria becomes�
~a(p)2 +

Z
1

p+1

~a(n)2 dn

�1=2

� � k uh k : (67)
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The only practical complication here is making sure the decay rate � > 0 so

that the integral converges. Otherwise, the estimate is ignored and the element

is 
agged for immediate re�nement. This method is analyzed in [16] where it is

shown to be an e�ective re�nement criteria for driving h-p re�nement.

The third re�nement criteria is similar. Since the main contribution to (67)

comes from the coeÆcients of order p, we can simply sum along the tail of the

spectrum. For an accurate representation of u we require the spectrum to satisfy

the discretization tolerance:

jap;pj+
p�1X
i=0

jai;pj+ jap;ij � � k uh k : (68)

This method is somewhat simpler to apply and, as we will see, produces almost

identical results.

To use these polynomial spectrum criteria with our spectral element method

(based on GLL polynomials) we �rst perform a Legendre transform of the local

solution u(k) ! an;m and then use (67) or (68) to decide if the element should be

re�ned. Although we keep p �xed, the error is reduced because we approximate

u over a smaller region D(k).

1.2.8 Implementation for parallel architectures

We end this section with a few additional notes on implementation. The algo-

rithms described above have been implemented using a combination of C for the

computational modules and C++ for high-level data types like Element � D(k)

and Field � uh that make up the discretization. The logic and control struc-

ture needed for most of the code are the same as in any algorithm for �nite

element methods. The most complex problem is maintaining the connectivity

of the mesh dynamically, and the approach taken here is worth mentioning.

The geometry and topology of the mesh are closely connected. Figure 1.10

shows the three geometric elements of the discretization: vertices, edges, and

interiors. Obviously interior points are completely local to an element and play

no role in the global system. All connectivity in the mesh is through the edges

and vertices. Because of the method used to construct the grid these geometric

elements are interlocking. The midpoint of each nonconforming edge aligns with

the shared vertex of its two adjacent elements. As discussed below, this feature

is used to simplify the procedure for setting up the mesh topology.

Figure 1.10 shows one other side e�ect of the mesh generation. Internal

curvilinear boundaries are automatically propagated down the various levels of

the re�nement tree because of the isoparametric representation of the geometry.

In the same way that a solution �eld is projected onto a new set of elements,

the polynomial representation of the geometry can also be projected to a �ner

grid. On the other hand, external boundaries like the B-spline segment shown

as the lower boundary in the �gure are explicitly re-evaluated to keep the rep-

resentation as accurate as possible.

How does one represent the topology of this kind of mesh? One solution is to

use pointers. This immediately runs into the problem of interpreting pointers to
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Figure 1.10: The logical structure of a spectral element mesh can be divided into

three geometric parts: (Æ) vertices, (|) edges, and (shaded) interiors. Edges

and vertices de�ne the connectivity in the mesh.

objects on remote processors if the computation is running in parallel. Instead

we use the concept of a voxel database (VDB) of geometric positions in the

mesh [22]. A VDB may be thought of as register of position{subscript pairs. To

each position stored in the VDB we assign a unique integer subscript so that

data may be associated with points in space by using the subscript as an index

into an array.

The basic idea is illustrated in �gure 1.11. The number of times a position

is registered is its multiplicity. Data objects that share positions also share

memory by virtue of a common subscript. In essence the VDB provides a

natural map of the mesh geometry onto the computer's memory. This basic

paradigm can be used to implement many types of �nite element or �nite volume

methods [22].

To establish the connectivity of a mesh like the one depicted in �gure 1.10

we build two separate VDBs: one for the vertices and one for the midpoints

of the edges. Every vertex with multiplicity one that does not lie along an

external boundary is virtual and not part of the true mesh degrees of freedom.

Every edge with multiplicity one that does not lie along an external boundary

is nonconforming. For each nonconforming edge we make a second query to the

VDB using the endpoints. If there is a match then the edge is also virtual and

we store the subscript of the adjacent edge. Otherwise it is simply 
agged as

an internal nonconforming boundary segment.

The shared memory represented by a VDB is extended across processor

boundaries by passing around a list of local positions and comparing against

those registered remotely. A communications link is established for each com-

mon position. The shared memory at each point is weakly coherent and must

be synchronized by explicit message passing. For example, elements on separate

processors with a common boundary segment share data along an edge. Each
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Figure 1.11: Connectivity and communications are established by building a

voxel database (VDB) of positions. A VDB maps each position to a unique index

or subscript. It also tracks points shared by multiple processors to provide a

loosely synchronous shared memory. Points that share memory are those at the

same geometric position.

processor may update its edge values independently and then call a synchro-

nization routine that combines local and remote values to produce a globally

consistent data set. For further details see [22].

There is very little overhead for the adaptive versus non-adaptive data struc-

ture: just one integer (the node key) per element. Likewise, an iterative solver

for sparse systems incurs no performance penalty just because the underlying

mesh is adaptive. When approached in the right way the conversion to a so-

lution adaptive code is almost trivial. To a large degree this is because of the

unstructured nature of the spectral element method we built upon.

1.2.9 An Example - the cylinder wake

Understanding the 
uid 
ow around a straight circular cylinder is one of the

most fundamental problems in 
uid mechanics. It's a model for 
ow around

bridges, buildings, and many other non-aerodynamic objects. Recent work, both

experimental and computational, has revealed some exciting new information

about the nature of this 
ow including intricate three-dimensional structures

that emerge just prior to the onset of turbulence in the wake.

The system considered is an in�nitely long cylinder placed perpendicular to

an otherwise uniform open 
ow. The sole parameter for this system in then

the Reynolds number: Re � U
1
d=�, where U

1
is the free-stream velocity and

d is the cylinder diameter. First we describe some of the physically important

behavior in this 
ow, and then come back to details of how it can be simulated.

It helps to begin with a `road-map' for the sequence of bifurcations that take

the 
ow from simple to more complex states. There are two useful quantities to

form such a guide to understanding: the non-dimensional shedding frequency

and the mean drag coeÆcient CD . Both shedding frequency and drag show

distinct changes at the various bifurcation points of the wake and can be used
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Figure 1.12: Drag coeÆcient as a function of Reynolds number for the 
ow past

a circular cylinder. Experiments: (Æ,�), Wieselsberger [21]; 3D simulations: +,

Henderson [12]. The solid line is a curve �t to two-dimensional simulation data

for Re up to 1000 [11].

as a guide to interpreting changes in the wake structure and dynamics as a

function of Reynolds number.

In non-dimensional form the shedding frequency is referred to as the Strouhal

number. It is de�ned as St � f d=u
1
, where f is the peak oscillation frequency

of the wake. At low Reynolds number the 
ow is steady (St = 0) and symmetric

about the centerline of the wake. At Re1 ' 47 the steady 
ow becomes unsta-

ble and bifurcates to a two-dimensional, time-periodic 
ow. Note that each

point along the two-dimensional curve represents a perfectly time-periodic 
ow

and there is no evidence of further two-dimensional instabilities for Reynolds

numbers up to Re � 1000. At Re2 ' 190 the two-dimensional wake becomes

absolutely unstable to long-wavelength spanwise perturbations and bifurcates

to a three-dimensional 
ow (mode A). Experiments and computations indi-

cate a further instability at Re02 ' 260 marked by the appearance of �ne scale

streamwise vortices.

Figure 1.12 shows the drag curve for 
ow past a circular cylinder for Reynolds

number up to 1000. In the computations the spanwise-averaged 
uid force F(t)

is computed by integrating the shear stress and pressure over the surface of the

cylinder. The x-component of F is the drag, the y-component is the lift. Because

CD is determined from an average over the surface of the cylinder, it is much

less sensitive to changes in the character of the wake at low Reynolds number

than single-point measurements like the shedding frequency. The `textbook'

version of the drag curve is generally plotted on a log-log scale where the only

discernible feature is the drag crisis at Re = O(105). The 
at response of CD
to changes in Reynolds number is compounded by the fact that experimental
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Figure 1.13: Computational domains used for simulating the 
ow past a circular

cylinder. Each domain is a subset of the largest. The parameters Lo and Li
determine the cross-sectional size, and L determines the spanwise dimension.

drag measurements are extremely diÆcult to make at low Reynolds number,

and subtle details of the drag curve are lost in the experimental scatter. The

decrease in magnitude of CD in the steady regime can be �tted to a power-law

curve and also makes a sharp but continuous transition at Re1. Henderson [11]

gives the form and coeÆcients for the steady and unsteady drag curves.

This problem is extremely challenging because it combines several features

that are diÆcult to handle numerically: unsteady separation, thin boundary

layers, out
ow boundary conditions, and the need for a large computational

domain to simulate an open 
ow. If the computational domain is too small

the simulation su�ers from blockage. This can have a signi�cant impact on

quantities like the shedding frequency, generally producing higher frequencies

in the the simulations than are observed in experiments [14]. If resolution near

the cylinder is sacri�ced for the sake of a larger computational domain then the

physically important 
ow dynamics may not be computed accurately.
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Figure 1.13 shows a sequence of computational domains used to simulate

both 2D and 3D wakes using nonconforming quadrilateral elements [12]. Bound-

ary conditions are imposed as follows. Along the left, upper, and lower bound-

aries we use free-stream conditions: (u1; u2; u3) = (1; 0; 0). At the surface of the

cylinder the velocity is equal to zero (no-slip). Along the right boundary we use

a standard out
ow boundary condition for velocity and pressure:

p = 0; @x ui = 0:

Along all other boundaries the pressure satis�es (22).

These domains use large elements away from the cylinder and outside the

wake where the 
ow is smooth. Local mesh re�nement is used to resolve the

boundary layer, near wake, and wake regions downstream of the cylinder. In

this case the re�nement is done beforehand and the mesh is static. Clearly from

�gures ?? and 1.12 the simulations predict values of the shedding frequency

and drag that agree extremely well with experimental studies up to the point

of 3D transition. Just as important as good agreement with experiments, the

simulation results are independent of the grid as shown by a detailed h- and

p-re�nement study [4].

1.3 Compressible Flow

1.3.1 Governing equations of motion

1.3.2 Numerical methods for hyperbolic conservation laws

1.3.3 Details of the numerical method

1.3.4 Application - the Richtmyer-Meshkov instability

1.3.5 Adaptive mesh re�nement

1.4 Conclusion
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