
Chapter 2

Applications

2.1 The 2-D Poisson Problem

In this section we brie
y describe how an approximate solution to a simple
partial di�erential equation can be found when using parallel computing. This
section will allow us to illustrate the issues of parallelizing an application and
contrast the two major approaches.

2.1.1 The Mathematical Model

The Poisson problem is a simple, elliptic partial di�erential equation. The
Poisson problem occurs in many physical problems, including
uid
ow, elec-
trostatics, and equilibrium heat
ow. In two dimensions, the Poisson problem
is given by the following equations:

@2u(x; y)

@x2
+

@2u(x; y)

@y2
= f(x; y) (2.1)

in the interior

u(x; y) = f(x; y) on the boundary (2.2)

The approximation consists of de�ning a discrete mesh of point (xi; yj) on
which we will approximate u. To keep things simple, we will assume that the
mesh is uniformly spaced in both the x and y directions, and that the distance
between adjancent mesh points is h. That is, xi+1 � xi = h and yj+1 � yj = h.
We can then use a simple centered-di�erence approximation to the derivatives
in Equation 2.2 [?] to get

u(xi+1; yj)� 2u(xi; yj) + u(xi�1;j)

h2
+

u(xi; yj+1)� 2u(xi; yj) + u(xi;j�1)

h2
= f(xi; yj) (2.3)

at each point (xi; yj) of the mesh. To simplify rest of the discussion, we will
replace u(xi; yj) by ui;j .

1

CHAPTER 2. APPLICATIONS 2

real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 2.1: Sequential version of the Jacobi algorithm

2.1.2 A Simple Algorithm

Many numerical methods have been developed for approximating the solution
of the partial di�erential equation in Equation 2.2 and for solving the approxi-
mation in Equation 2.3. In this section we will describe a very simple algorithm
so that we can concentrate on the issues related to the parallel version of the
algorithm. In practice, the algorithm we describe here should not be used. How-
ever, many of the more modern algorithms use the same approach to achieve
parallelism.

The algorithm that we will use is called the Jacobi Method. This method is
an interative approach for solving Equation 2.3 that can be written as

uk+1
i;j =

1

4

�
uk
i+1;j + uk

i�1;j + uk
i;j+1 + uk

i;j�1 � h2fi;j
�
: (2.4)

This equation de�nes the value of u(xi; yj) at the k + 1st step in terms of u at
the kth step (it also ignores the boundary conditions).

We can translate this into a simple Fortran program by de�ning the array
u(0:n,0:n) to hold uk and unew(0:n,0:n) to hold uk+1. This is shown in
Figure 2.1; details of initialization and convergence testing have been left out.

In the next two sections we will look at two di�erent approaches to making
this a parallel program.

CHAPTER 2. APPLICATIONS 3

j=4 j=4

j=0

j=1

j=2

j=3

j=5

j=6

j=7

i=
0

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

(a)

j=3

Ghost Cells

Ghost Cells

(b)

Figure 2.2: Simple decomposition of mesh across processors. Part (a) shows the
entire mesh, divided among three processes. Open circles correspond to points
on the boundary. Part (b) shows the part of this array owned by the second
process; the grey circles represent the ghost or halo cells.

2.1.3 Message-Passing and the Distributed Memory Model

One of the two major classes of parallel programming models is the distrbuted
memory model, as discussed in Section ??. In this model, a parallel program
is made up of many processes, each of which has its own address space and
(usually) variables. Because each process has its own address space, special
steps must be taken to communication information between processes. One
of the most widely used approaches is message passing. In message passing,
information is communicated between processes by sending messages using a
cooperative approach where both the sender and the receiver make subroutine
calls to arrange for the transfer of data between them. Variables in one process
are not directly accessible by any other process.

In creating a parallel program for this programming model, the �rst question
to ask is: what data structures in my program must be distributed or partitioned
among these processes? In our example, in order to achieve any parallelism, each
process must do part of the computation of unew. This suggests that we should
distribute u, unew, and f. One such partition is shown in Figure 2.2(a). The
part of the distributed data structure the is held by a particular process is said
to be owned by that process.

Note that the code to compute unew(i,j) requires u(i,j+1) and u(i,j-1).
This means that in addition to the part of u and unew that each process has
(as part of the decomposition), it also needs a small amount of data from its
neighboring processes. This data is usually copied into a slightly expanded
array that holds both the part of the distributed array managed (or owned) by

CHAPTER 2. APPLICATIONS 4

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1), f(1:n, js:je), h

integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

! Send down

call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &

MPI_COMM_WORLD, status, ierr)

! Send up

call MPI_Sendrecv(u(1,je), n-1, MPI_REAL), nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1, &

MPI_COMM_WORLD, status, ierr)

do j=js, je

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 2.3: Message-passing version of Figure 2.1

a process with ghost or halo points that hold the values of these neighbors. This
is shown in Figure 2.2(b). A process gets these values by communicating with
its neighbors.

The code in Figure 2.3 shows the distributed memory, message-passing ver-
sion of our original code in Figure 2.1.

The values of js and je are the values of j for the bottom and top of the
part of u owned by a process. The routine MPI Sendrecv is part of the MPI
message-passing standard [?], and both sends and receives data. In this case,
the �rst call sends the values u(1:n-1,js) to the process below or down, where
it is received into u(1:n-1,je+1).

Note that though each process has variables js, je, u, and so on, these are
all di�erent variables (precisely, they are di�erent memory locations).

There are many other ways to describe the communication needed for this

CHAPTER 2. APPLICATIONS 5

algorithm and algorithms like it. See [?, Chapter 4] for more details.

2.1.4 The Single Name-Space Distributed-Memory Model

Should this have the HPF version?

2.1.5 The Shared Memory Model

In the shared memory model, in contrast to the distributed memory model,
there is only one process but multiple threads. All threads can access all1 of
the memory of the process. This means that there is only single version of
each variable. This is very convenient; in some cases, a parallel, shared memory
version of Figure 2.1 looks exactly the same: the compiler may be able to create
a parallel version directly from the sequential code.

However, it can be helpful, both in terms of code clarity and generating
eÆcient parallel code to include some code that describes the desired paral-
lelism. One method that was designed for this kind of code is OpenMP [?]. The
OpenMP version is shown in Figure 2.4.

See Section ?? for a more detailed discussion of OpenMP. A complete Open-
MPI code for the Jacobi example is available at the OpenMP web site [?]

2.1.6 Comments

This section has deescribed very brie
y the steps required when parallelizing
code to approximate the solution of a partial di�erential equation. While the al-
gorithm used in this discussion is ineÆcient by modern standards, the approach
to parallelism is very similar to what is needed by state-of-the-art approaches
for both implicit and explicit solution methods. Sections ?? and ?? in this book
discuss more modern techniques.

Another discussion that focuses on some of the more subtle issues, particu-
larly for the shared memory case is given in [?].

1Well, nearly all

CHAPTER 2. APPLICATIONS 6

real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

! Code to initialize f, u(0,*), u(n:*), u(*,0),

! and u(*,n) with g

h = 1.0 / n

do k=1, maxiter

!$omp parallel

!$omp do

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

!$omp enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

!$omp end parallel

enddo

Figure 2.4: OpenMP (shared memory) version of the Jacobi algorithmCHECK
THIS EXAMPLE

