
Chapter 2

Applications

2.1 The 2-D Poisson Problem

In this section we briey describe how an approximate solution to a simple

partial di�erential equation can be found when using parallel computing. This

section will allow us to illustrate the issues of parallelizing an application and

contrast the two major approaches.

2.1.1 The Mathematical Model

The Poisson problem is a simple elliptic partial di�erential equation. The Pois-

son problem occurs in many physical problems, including uid ow, electrostat-

ics, and equilibrium heat ow. In two dimensions, the Poisson problem is given

by the following equations:

@2u(x; y)

@x2
+

@2u(x; y)

@y2
= f(x; y) in the interior (2.1)

u(x; y) = g(x; y) on the boundary (2.2)

To compute an approximation solution to this problem, we de�ne a discrete

mesh of points (xi; yj) on which we will approximate u. To keep things simple,

we will assume that the mesh is uniformly spaced in both the x and y directions,

and that the distance between adjancent mesh points is h. That is, xi+1�xi = h

and yj+1� yj = h. We can then use a simple centered-di�erence approximation

to the derivatives in Equation 2.2 [?] to get

u(xi+1; yj)� 2u(xi; yj) + u(xi�1; yj)

h2
+

u(xi; yj+1)� 2u(xi; yj) + u(xi; yj�1)

h2
= f(xi; yj) (2.3)

at each point (xi; yj) of the mesh. To simplify rest of the discussion, we will

replace u(xi; yj) by ui;j .

1

CHAPTER 2. APPLICATIONS 2

real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 2.1: Sequential version of the Jacobi algorithm

2.1.2 A Simple Algorithm

Many numerical methods have been developed for approximating the solution

of the partial di�erential equation in Equation 2.2 and for solving the approxi-

mation in Equation 2.3. In this section we will describe a very simple algorithm

so that we can concentrate on the issues related to the parallel version of the

algorithm. In practice, the algorithm we describe here should not be used. How-

ever, many of the more modern algorithms use the same approach to achieve

parallelism.

The algorithm that we will use is called the Jacobi Method. This method is

an iterative approach for solving Equation 2.3 that can be written as

uk+1
i;j =

1

4

�
uk
i+1;j + uk

i�1;j + uk
i;j+1 + uk

i;j�1 � h2fi;j
�
: (2.4)

This equation de�nes the value of u(xi; yj) at the k + 1st step in terms of u at

the kth step; it also ignores the boundary conditions.

We can translate this into a simple Fortran program by de�ning the array

u(0:n,0:n) to hold uk and unew(0:n,0:n) to hold uk+1. This is shown in

Figure 2.1; details of initialization and convergence testing have been left out.

In the next two sections we will look at two di�erent approaches to making

this a parallel program.

CHAPTER 2. APPLICATIONS 3

j=4 j=4

j=0

j=1

j=2

j=3

j=5

j=6

j=7

i=
0

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

(a)

j=3

Ghost Cells

Ghost Cells

(b)

Figure 2.2: Simple decomposition of the mesh across processes. Part (a) shows

the entire mesh, divided among three processes. Open circles correspond to

points on the boundary. Part (b) shows the part of this array owned by the

second process; the grey circles represent the ghost or halo cells.

2.1.3 Message-Passing and the Distributed Memory Model

One of the two major classes of parallel programming models is the distrbuted

memory model, as discussed in Section ??. In this model, a parallel program

is made up of many processes, each of which has its own address space and

(usually) variables. Because each process has its own address space, special

steps must be taken to communication information between processes. One

of the most widely used approaches is message passing. In message passing,

information is communicated between processes by sending messages using a

cooperative approach where both the sender and the receiver make subroutine

calls to arrange for the transfer of data between them. Variables in one process

are not directly accessible by any other process.

In creating a parallel program for this programming model, the �rst question

to ask is: what data structures in my program must be distributed or partitioned

among these processes? In our example, in order to achieve any parallelism, each

process must do part of the computation of unew. This suggests that we should

distribute u, unew, and f. One such partition is shown in Figure 2.2(a). The

part of the distributed data structure that is held by a particular process is said

to be owned by that process.

Note that the code to compute unew(i,j) requires u(i,j+1) and u(i,j-1).

This means that in addition to the part of u and unew that each process has

(as part of the decomposition), it also needs a small amount of data from its

neighboring processes. This data is usually copied into a slightly expanded

array that holds both the part of the distributed array managed (or owned) by

CHAPTER 2. APPLICATIONS 4

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1), f(1:n-1, js:je), h

integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

! Send down

call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &

MPI_COMM_WORLD, status, ierr)

! Send up

call MPI_Sendrecv(u(1,je), n-1, MPI_REAL), nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&

MPI_COMM_WORLD, status, ierr)

do j=js, je

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 2.3: Message-passing version of Figure 2.1

a process with ghost or halo points that hold the values of these neighbors. This

is shown in Figure 2.2(b). A process gets these values by communicating with

its neighbors.

The code in Figure 2.3 shows the distributed memory, message-passing ver-

sion of our original code in Figure 2.1.

The values of js and je are the values of j for the bottom and top of the

part of u owned by a process. The routine MPI Sendrecv is part of the MPI

message-passing standard [?], and both sends and receives data. In this case,

the �rst call sends the values u(1:n-1,js) to the process below or down, where

it is received into u(1:n-1,je+1).

Note that though each process has variables js, je, u, and so on, these are

all di�erent variables (precisely, they are di�erent memory locations).

There are many other ways to describe the communication needed for this

CHAPTER 2. APPLICATIONS 5

real u(0:n,0:n), unew(0:n,0:n), f(0:n, 0:n), h

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew WITH u

!HPF$ ALIGN f WITH u

! Code to initialize f, u(0,*), u(n:*), u(*,0),

! and u(*,n) with g

h = 1.0 / n

do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * (u(2:n,1:n-1) + u(0:n-2,1:n-1) + &

u(1:n-1,2:n) + u(1:n-1,0:n-2) - &

h * h * f(1:n-1,1:n-1))

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 2.4: HPF version of the Jacobi algorithm CHECK THIS EXAMPLE

algorithm and algorithms like it. See [?, Chapter 4] for more details.

2.1.4 The Single Name-Space Distributed-Memory Model

High Performance Fortran (HPF) [?] provides an extension of Fortran (Fortran

90) to distributed-memory parallel environments. Unlike the message-passing

model, a single variable may be declared as distributed across all processes. For

example, rather than declaring the part of the u variable owned by each process,

in HPF, the program simply declares u in the same way as for the sequential

program, and adds an HPF directive that describes how the variable should be

distributed across the processes. All communication required to access neighbor

values is handled for the programmer by the HPF compiler. The HPF version

of the Jacobi iteration is shown in Figure 2.4.

Variables that are not speci�cally distributed by the programmer with an

HPF directive behave just like variables in the message-passing program: each

process has a separate version of the variable. For example, the variable h is in

a di�erent memory location on each process (even though we give it the same

value).

Note also that the details of the distribution are controlled by HPF: the

BLOCK distribution is speci�cally de�ned by HPF and does not exactly match

the decomposition shown in Figure 2.2. For values of n that are much greater

than the number of processes (the only case where parallelism makes any sense),

however, the HPF choice is as good as any.

An advantage of HPF is that by changing the single line

CHAPTER 2. APPLICATIONS 6

j=4

j=0

j=1

j=2

j=3

j=5

j=6

j=7

i=
0

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

Figure 2.5: Decomposition of the mesh across a two-dimensional array of four

processes, corresponding to an HPF BLOCK,BLOCK distribution.

!HPF$ DISTRIBUTE u(:,BLOCK)

to

!HPF$ DISTRIBUTE u(BLOCK,BLOCK)

we can change the distribution of the arrays to that shown in Figure 2.5.

We call this the single name-space, distributed memory model because all

communication between processes is handled with variables (like u) that are

declared globally, that is, they are declared as if they were accessible to all

processes. This allows many programs to be written so that they are very

similar to the sequential version of the same program. In fact, the program in

Figure 2.4 is nearly identical to Figure 2.1, particularly if the i and j loops in

Figure 2.1 are replaced with the Fortran 90 array expression used in Figure 2.4.

2.1.5 The Shared Memory Model

The shared memory model, in contrast to the distributed memory model, has

only one process but multiple threads. All threads can access all1 of the memory

of the process. This means that there is only single version of each variable.

This is very convenient; in some cases, a parallel, shared memory version of

Figure 2.1 looks exactly the same: the compiler may be able to create a parallel

version directly from the sequential code.

However, it can be helpful, both in terms of code clarity and the generation

of eÆcient parallel code, to include some code that describes the desired par-

allelism. One method that was designed for this kind of code is OpenMP [?].

The OpenMP version is shown in Figure 2.6.

1Well, nearly all.

CHAPTER 2. APPLICATIONS 7

real u(0:n,0:n), unew(0:n,0:n), f(1:n-1, 1:n-1), h

! Code to initialize f, u(0,*), u(n:*), u(*,0),

! and u(*,n) with g

h = 1.0 / n

do k=1, maxiter

!$omp parallel

!$omp do

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

!$omp enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

!$omp end parallel

enddo

Figure 2.6: OpenMP (shared memory) version of the Jacobi algorithmCHECK

THIS EXAMPLE

CHAPTER 2. APPLICATIONS 8

See Section ?? for a more detailed discussion of OpenMP. A complete Open-

MPI code for the Jacobi example is available at the OpenMP web site [?].

2.1.6 Comments

This section has described very briey the steps required when parallelizing code

to approximate the solution of a partial di�erential equation. While the algo-

rithm used in this discussion is ineÆcient by modern standards, the approach

to parallelism is very similar to what is needed by state-of-the-art approaches

for both implicit and explicit solution methods. Sections ?? and ?? in this book

discuss more modern techniques.

Because of the simplicity of the algorithm and the data-structures in this

example, these examples are very simple and do not address the many issues

that can arise in more complex situations, such as unstructured grids, dynamic

(run-time) allocation and management of data structures, and more complex

data dependencies between shared data-structures (either between processes or

threads). Some of these issues are discussed in more detail in Sections ??.

Even the convergence test, a necessary part of this algorithm that we have

left out for simplicity, requires care, since the result is a single value that all

processes/threads contribute to and that must be available to all processes.

Computing this scalably and correctly requires care; each of the programming

models illustrated above provides special features to handle this and similar

problems. These are discussed in the next section.

Another discussion that focuses on some of the more subtle issues, particu-

larly for the shared memory case is given in [?]. Suggestions for choosing between

di�erent approaches to expressing parallel programs are given in Section ??.

2.2 Adding Global Operations

In the examples above, the code to check for convergence was left out. This

allowed us to concentrate on how to compute with an array distributed across

many processes or processors. For computations such as a convergence test, a

single value is needed by all processes or threads. In this section, we discuss

how each approach to parallel computing provides this operation.

A simple convergence test is to compute the two-norm of the di�erence

between two successive iterations. In the serial case, this can be accomplished

with the code shown in Figure 2.7.

2.2.1 Collective operations in MPI

In the MPI case, computing the two norm of the di�erence of unew and u requires

two steps. First, the sum of the squares of the di�erences of the local part of

unew and u are computed. These are then combined with the contributions

from all of the other processes and summed together. Because the operation of

combining values from many processes is common and important, and because

eÆcient implementations of this operation can require very system-speci�c code

and algorithms, MPI provides a special routine, MPI Allreduce, to combine a

CHAPTER 2. APPLICATIONS 9

real u(0:n,0:n), unew(0:n,0:n), twonorm

! ...

twonorm = 0.0

do j=1, n-1

do i=1, n-1

twonorm = twonorm + (unew(i,j) - u(i,j))**2

enddo

enddo

twonorm = sqrt(twonorm)

if (twonorm .le. tol) ! ... declare convergence

Figure 2.7: Sequential code to compute the two-norm of the di�erence between

two iterations of the Jacobi algorithm

value from each process and return to all processes the result. This is shown in

Figure 2.8.

This operation is called a reduction because it combines values from many

sources into a single value. MPI provides many routines for communication and

computation on a collection of processes; these are called collective operations.

2.2.2 Reductions in HPF

Fortran 90 and hence HPF contain built-in functions for computing the sum

of all of the values in an array. In HPF, these functions work with distributed

arrays, so the code is very simple, as shown in Figure 2.9.

2.2.3 Reductions in OpenMP

The approach taken in OpenMP is somewhat di�erent from that in HPF. Just

like MPI, OpenMP recognizes that reductions are a common operation. In

OpenMP, you can indicate that the result of a variable is to be formed by a

reduction with a particular operator. This is shown in Figure 2.10.

The e�ect of the reduction(+:twonorm) statement is to cause the OpenMP

compiler to create a separate, private version of twonorm in each thread. When

the enclosing scope ends, OpenMP combines the contributions in each thread

using the speci�ed operation to form the �nal value.

This code also illustrates the directive private to create a variable that

is private to each thread (i.e., not shared). Without this directive, the value

of ldiff added to the thread-private value of twonorm could come from the

\wrong" thread.

2.2.4 Final Comments

All of these approaches to �nding the two-norm exploit the associativity of

real arithmetic. Unfortunately, computers don't use real numbers, they use an

approximation called oating-point numbers. Operations with oating-point

CHAPTER 2. APPLICATIONS 10

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1), twonorm

integer ierr

! ...

twonorm_local = 0.0

do j=js, je

do i=1, n-1

twonorm_local = twonorm_local + (unew(i,j) - u(i,j))**2

enddo

enddo

call MPI_Allreduce(twonorm_local, twonorm, 1, &

MPI_REAL, MPI_SUMM, MPI_COMM_WORLD, ierr)

twonorm = sqrt(twonorm)

if (twonorm .le. tol) ! ... declare convergence

Figure 2.8: Message-passing version of Figure 2.7

real u(0:n,0:n), unew(0:n,0:n), twonorm

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew with u

!HPF$ ALIGN f with u

! ...

twonorm = sqrt (sum ((unew(1:n-1,1:n-1) - u(1:n-1,1:n-1))**2))

if (twonorm .le. tol) ! ... declare convergence

enddo

Figure 2.9: HPF version of the convergence test for the Jacobi algorithm

CHECK THIS EXAMPLE

CHAPTER 2. APPLICATIONS 11

real u(0:n,0:n), unew(0:n,0:n), twonorm

! ..

twonorm = 0.0

!$omp parallel

!$omp do private(ldiff) reduction(+:twonorm)

do j=1, n-1

do i=1, n-1

ldiff = (unew(i,j) - u(i,j))**2

twonorm = twonorm + ldiff

enddo

enddo

!$omp enddo

!$omp end parallel

twonorm = sqrt(twonorm)

enddo

Figure 2.10: OpenMP (shared memory) version of the convergence test for the

Jacobi algorithm CHECK THIS EXAMPLE

number are nearly but not exactly associative. (See any introductory book on

Numerical Analysis.) Because of this lack of associativity, the value computed

by these methods may be di�erent. In a well-designed algorithm, the di�erence

will be small (in relative terms). However, this di�erence can sometimes be

unexpected and hence confusing.

2.3 Unstructured Meshes

The preceeding sections have focused on regular meshes because these provide

the simplist code examples. Many computations, however, rely on unstructured

meshes, such as that in Figure 2.11.

Parallelizing a code that uses an unstructured mesh follows a similar path

to parallelizing a structured-mesh code. For MPI, the �rst step is to partition

the grid. For parallel �nite element calculations, it is necessary to partition the

mesh across the processors in such a way that each processor's work load is

balanced and the communication between processors is minimized. There are

many di�erent ways to partition meshes, and if done naively, the result can be

an ineÆcient parallel implementation. Consider a simple example using linear

�nite elements on an unstructured, triangular mesh. In this case, the amount of

work associated with each element is the same and communication is required

to transfer information to nearest neighbor elements that have been assigned to

a di�erent processor. Thus to meet our partitioning objective of assigning equal

work to all processors while simultaneously minimizing communication costs,

we must assign an equal number of elements to the processors and minimize

the number of o�-processor neighboring elements. In Figure 2.12, we show

CHAPTER 2. APPLICATIONS 12

Figure 2.11: A simple unstructured grid

the results of two partitioning strategies for a triangular mesh. In the left

�gure, we sort the elements by the y-coordinant of their centroid and assign

an equal number of elements to each of four processors. In the right �gure, we

sort the elements in the y-direction and make one cut that divides the set of

elements in half. Each subset of elements is then sorted in the x-direction and

divided so that they have again been equally distributed to each of the four

processors. Although both partitioning strategies balance the work load, their

communication patterns are quite di�erent. For example, consider processor

P3; the communication required for this processor is indicated by the shaded

elements in each �gure. There are roughly twice the number of o�-processor

neighbors in the �rst partitioning which will result in larger communication

costs and a less eÆcient parallel implementation.

Many techniques have been developed for partitioning meshes; see Chap-

ter ?? for more information.

Once the mesh has been partitioned, neighbor data must be moved between

processes just as it was in the structure-mesh case. With MPI, this requires

roughly the same routines, though the appropriate data must be gathered from

the unstructured-mesh data structure, communicated to the neighboring pro-

cess, and scattered to the appropriate ghostcells. MPI also provides a way to

combine the scatter and gather operations with the communication through

the use of MPI datatypes, though few MPI implementations have made these

eÆcient.

An HPF expert should review and change the following

In HPF, similar steps must be used, since it is no longer possible to use HPF

CHAPTER 2. APPLICATIONS 13

P4P3

P1

P2

P4

P3

P1 P2

Figure 2.12: The results of partitioning an unstructured mesh using two di�erent

strategies

!HPF$ DISTRIBUTE ugather(*,BLOCK)

!HPF$ ALIGN uscatter WITH ugather

real ugather(n,2), uscatter(n,2)

! ... gather data into ugather(:,myprocess)

uscatter(:,myprocess) = ugather(:,neighbor)

Figure 2.13: Using HPF arrays to communicate data from process neighbor to

the calling process.

partitioning directives to partition the unstructured mesh. Communication of

neighbor data between processes can be managed by using a communication

array as shown in Figure 2.13.

In this example, each process sends n data items. In an unstructured mesh

computation, the number of neighbor data values needed will probably be dif-

ferent for each neighboring process. With a little more work, each process can

arrange to communicate exactly the correct amount of data.

An OpenMP expert should check and change the following

Since OpenMP is a fully shared-memory model, it is unnecessary to explic-

itly communicate any data. An unstructured mesh often has a single loop (over

all mesh cells), rather than nested loops over each coordinate direction; further,

the mesh data is often accessed through indirect addressing (e.g., A(IADD(K))

rather than A(K)). Partitioning the mesh and introducing an outer loop over the

partitions can help the OpenMP compiler generate eÆcient code. Partitioning

the mesh also helps in maintaining memory locality, which is critical for perfor-

mance. To reduce the performance consequences of false sharing, it may also be

CHAPTER 2. APPLICATIONS 14

necessary to make copies of the neighboring data, similar to the gather/scatter

steps that are required for MPI and HPF.

Acknowledgement

Thanks to Lori Freitag for the unstructured mesh example and the discussion

of partitioning.

