Chapter 2

Applications

2.1 The 2-D Poisson Problem

In this section we briefly describe how an approximate solution to a simple
partial differential equation can be found when using parallel computing. This
section will allow us to illustrate the issues of parallelizing an application and
contrast the two major approaches.

2.1.1 The Mathematical Model

The Poisson problem is a simple elliptic partial differential equation. The Pois-
son problem occurs in many physical problems, including fluid flow, electrostat-
ics, and equilibrium heat flow. In two dimensions, the Poisson problem is given
by the following equations:

Oulz,y) , Fulz,y)
ox? oy?
u(z,y) = g(z,y) on the boundary (2.2)

= f(z,y) in the interior (2.1)

To compute an approximation solution to this problem, we define a discrete
mesh of points (x;,y;) on which we will approximate u. To keep things simple,
we will assume that the mesh is uniformly spaced in both the x and y directions,
and that the distance between adjancent mesh points is h. That is, ;41 —x; = h
and y;j4+1 —y; = h. We can then use a simple centered-difference approximation
to the derivatives in Equation 2.2 [?] to get

U(.’I/'i+1,yj) - Q’U’(xl:yj) + u(wi—layj)
h2
u(wi, yjr1) — 2wz, y;) +u(wi, yj—1)
eli) - WEbi) ¥ U = foy) (23)

+

at each point (2;,y;) of the mesh. To simplify rest of the discussion, we will
replace u(z;,y;) by u; ;.

CHAPTER 2. APPLICATIONS 2
real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

! Code to initialize f, u(0,*), u(n:*), u(*,0), and
! u(*,n) with g

h=1.0/n
do k=1, maxiter
do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h *x h *x £(i,j))
enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 2.1: Sequential version of the Jacobi algorithm

2.1.2 A Simple Algorithm

Many numerical methods have been developed for approximating the solution
of the partial differential equation in Equation 2.2 and for solving the approxi-
mation in Equation 2.3. In this section we will describe a very simple algorithm
so that we can concentrate on the issues related to the parallel version of the
algorithm. In practice, the algorithm we describe here should not be used. How-
ever, many of the more modern algorithms use the same approach to achieve
parallelism.

The algorithm that we will use is called the Jacob: Method. This method is
an iterative approach for solving Equation 2.3 that can be written as

Ufj_l = i (u?-i-l,j + “5—1,1' + Uf,j+1 + Uf,j—1 —h’fij) - (2.4)
This equation defines the value of u(x;,y;) at the k + 1st step in terms of w at
the kth step; it also ignores the boundary conditions.

We can translate this into a simple Fortran program by defining the array
u(0:n,0:n) to hold u* and unew(0:n,0:n) to hold w**1. This is shown in
Figure 2.1; details of initialization and convergence testing have been left out.

In the next two sections we will look at two different approaches to making
this a parallel program.

CHAPTER 2. APPLICATIONS 3

=7

0000000 O0 Ghost Cells
6 O ® ® ® 0 0 0 O
500006660 ¢oeooe00e
=ON M M M N N NO EON M N N N N NO
OO0 006660 FFOe6eeee e
2 0 0000 0 O 0 000000
10 © 0000 0 O M
=0 O O O O OO0 OO0

O 1 N MM < IO O I~

(a) (b)

Figure 2.2: Simple decomposition of the mesh across processes. Part (a) shows
the entire mesh, divided among three processes. Open circles correspond to
points on the boundary. Part (b) shows the part of this array owned by the
second process; the grey circles represent the ghost or halo cells.

2.1.3 Message-Passing and the Distributed Memory Model

One of the two major classes of parallel programming models is the distrbuted
memory model, as discussed in Section ??. In this model, a parallel program
is made up of many processes, each of which has its own address space and
(usually) variables. Because each process has its own address space, special
steps must be taken to communication information between processes. One
of the most widely used approaches is message passing. In message passing,
information is communicated between processes by sending messages using a
cooperative approach where both the sender and the receiver make subroutine
calls to arrange for the transfer of data between them. Variables in one process
are not directly accessible by any other process.

In creating a parallel program for this programming model, the first question
to ask is: what data structures in my program must be distributed or partitioned
among these processes? In our example, in order to achieve any parallelism, each
process must do part of the computation of unew. This suggests that we should
distribute u, unew, and f. One such partition is shown in Figure 2.2(a). The
part of the distributed data structure that is held by a particular process is said
to be owned by that process.

Note that the code to compute unew (i, j) requires u(i,j+1) and u(i,j-1).
This means that in addition to the part of u and unew that each process has
(as part of the decomposition), it also needs a small amount of data from its
neighboring processes. This data is usually copied into a slightly expanded
array that holds both the part of the distributed array managed (or owned) by

CHAPTER 2. APPLICATIONS 4

use mpi
real u(0:n,js-1:je+1), unew(O:n,js-1:je+1), f(1:n-1, js:je), hjj
integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

! Code to initialize f, u(0,*), u(n:*), u(*,0), and
! u(*,n) with g

h=1.0/n
do k=1, maxiter
! Send down
call MPI_Sendrecv(u(l,js), n-1, MPI_REAL, nbr_down, k &
u(l,je+l), n-1, MPI_REAL, nbr_up, k, &
MPI_COMM_WORLD, status, ierr)
! Send up
call MPI_Sendrecv(u(l,je), n-1, MPI_REAL), nbr_up, k+1, &
u(l,js-1), n-1, MPI_REAL, nbr_down, k+1,&]]
MPI_COMM_WORLD, status, ierr)
do j=js, je
do i=1, n-1
unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h*xh * £(i,j))
enddo
enddo
! code to check for convergence of unew to u.
! Make the new value the old value for the next iteration
u = unew
enddo

Figure 2.3: Message-passing version of Figure 2.1

a process with ghost or halo points that hold the values of these neighbors. This
is shown in Figure 2.2(b). A process gets these values by communicating with
its neighbors.

The code in Figure 2.3 shows the distributed memory, message-passing ver-
sion of our original code in Figure 2.1.

The values of js and je are the values of j for the bottom and top of the
part of u owned by a process. The routine MPI_Sendrecv is part of the MPI
message-passing standard [?], and both sends and receives data. In this case,
the first call sends the values u(1:n-1,js) to the process below or down, where
it is received into u(1:n-1,je+1).

Note that though each process has variables js, je, u, and so on, these are
all different variables (precisely, they are different memory locations).

There are many other ways to describe the communication needed for this

CHAPTER 2. APPLICATIONS 5

real u(0:n,0:n), unew(0:n,0:n), £(0:n, 0:n), h
'HPF$ DISTRIBUTE u(:,BLOCK)
'HPF$ ALIGN unew with u
'HPF$ ALIGN f with u

! Code to initialize f, u(0,*), u(n:*), u(x,0),
! and u(*,n) with g

h=1.0/n
do k=1, maxiter
unew(1:n-1,1:n-1) = 0.256 * (u(2:n,1:n-1) + u(0:n-2,1:n-1) + &Nl
u(1:n-1,2:n) + u(1:n-1,0:n-2) - &A
h*xh* £f(1:n-1,1:n-1))
! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration
u = unew
enddo

Figure 2.4: HPF version of the Jacobi algorithm CHECK THIS EXAMPLE

algorithm and algorithms like it. See [?, Chapter 4] for more details.

2.1.4 The Single Name-Space Distributed-Memory Model

High Performance Fortran (HPF) [?] provides an extension of Fortran (Fortran
90) to distributed-memory parallel environments. Unlike the message-passing
model, a single variable may be declared as distributed across all processes. For
example, rather than declaring the part of the u variable owned by each process,
in HPF, the program simply declares u in the same way as for the sequential
program, and adds an HPF directive that describes how the variable should be
distributed across the processes. All communication required to access neighbor
values is handled for the programmer by the HPF compiler. The HPF version
of the Jacobi iteration is shown in Figure 2.4.

Variables that are not specifically distributed by the programmer with an
HPF directive behave just like variables in the message-passing program: each
process has a separate version of the variable. For example, the variable h is in
a different memory location on each process (even though we give it the same
value).

Note also that the details of the distribution are controlled by HPF: the
BLOCK distribution is specifically defined by HPF and does not exactly match
the decomposition shown in Figure 2.2. For values of n that are much greater
than the number of processes (the only case where parallelism makes any sense),
however, the HPF choice is as good as any.

An advantage of HPF is that by changing the single line

CHAPTER 2. APPLICATIONS 6

7 00 0 000O0O0
600000 ee ol
ENoN X X X X X Xe
IREK X X K X Noi
20000 0eee Ol
2000 0eee ol
ElE X X X X X Xe
0 00 000000

TERRTRRNE

Figure 2.5: Decomposition of the mesh across a two-dimensional array of four
processes, corresponding to an HPF BLOCK,BLOCK distribution.

'HPF$ DISTRIBUTE u(:,BLOCK)
to
'HPF$ DISTRIBUTE u(BLOCK,BLOCK)

we can change the distribution of the arrays to that shown in Figure 2.5.

We call this the single name-space, distributed memory model because all
communication between processes is handled with variables (like u) that are
declared globally, that is, they are declared as if they were accessible to all
processes. This allows many programs to be written so that they are very
similar to the sequential version of the same program. In fact, the program in
Figure 2.4 is nearly identical to Figure 2.1, particularly if the i and j loops in
Figure 2.1 are replaced with the Fortran 90 array expression used in Figure 2.4.

2.1.5 The Shared Memory Model

The shared memory model, in contrast to the distributed memory model, has
only one process but multiple threads. All threads can access all! of the memory
of the process. This means that there is only single version of each variable.
This is very convenient; in some cases, a parallel, shared memory version of
Figure 2.1 looks exactly the same: the compiler may be able to create a parallel
version directly from the sequential code.

However, it can be helpful, both in terms of code clarity and the generation
of efficient parallel code, to include some code that describes the desired par-
allelism. One method that was designed for this kind of code is OpenMP [?].
The OpenMP version is shown in Figure 2.6.

LWell, nearly all.

CHAPTER 2. APPLICATIONS 7

real u(0:n,0:n), unew(0:n,0:n), f(1:n-1, 1:n-1), h

! Code to initialize f, u(0,*), u(n:*), u(*,0),
! and u(*,n) with g

h=1.0/n
do k=1, maxiter
'$omp parallel
!$omp do
do j=1, n-1
do i=1, n-1
unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h * h * £(i,j))
enddo
enddo
'$omp enddo
! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration
u = unew
'$omp end parallel
enddo

Figure 2.6: OpenMP (shared memory) version of the Jacobi algorithm CHECK
THIS EXAMPLE

CHAPTER 2. APPLICATIONS 8

See Section 77 for a more detailed discussion of OpenMP. A complete Open-
MPI code for the Jacobi example is available at the OpenMP web site [?].

2.1.6 Comments

This section has described very briefly the steps required when parallelizing code
to approximate the solution of a partial differential equation. While the algo-
rithm used in this discussion is inefficient by modern standards, the approach
to parallelism is very similar to what is needed by state-of-the-art approaches
for both implicit and explicit solution methods. Sections ?? and ?? in this book
discuss more modern techniques.

Because of the simplicity of the algorithm and the data-structures in this
example, these examples are very simple and do not address the many issues
that can arise in more complex situations, such as unstructured grids, dynamic
(run-time) allocation and management of data structures, and more complex
data dependencies between shared data-structures (either between processes or
threads). Some of these issues are discussed in more detail in Sections ?7.
Even the convergence test, a necessary part of this algorithm that we have
left out for simplicity, requires care, since the result is a single value that all
processes/threads contribute to and that must be available to all processes.
Computing this scalably and correctly requires care; each of the programming
models illustrated above provides special features to handle this and similar
problems.

Another discussion that focuses on some of the more subtle issues, particu-
larly for the shared memory case is given in [?]. Suggestions for choosing between
different approaches to expressing parallel programs are given in Section ?7?.

