The technical merit of the work done by Mr. Chang for the HCI group led by Dr. Warner and Prof. Lipson, and described in Mr. Chang's thesis, is extremely high. The use of superlative is entirely justified here. During relatively short period of time Mr. Chang devised not just another PC application, but actually a groundbreaking architecture supporting visual programming of data-flow networks. Designing Neat Tools, Mr. Chang solved a number of extremely difficult programming problems. His fine-grain data flow network is clearly superior to other data-flow networks I know about. Aside of LabView and AVS, which are briefly described and discussed in the paper, there is another example of visual data-flow programming environment - ActiveMovie framework from Microsoft. ActiveMovie, currently marketed as "DirectShow", allows users to build data-flow networks to handle multimedia data. The system supports graphical network editor as well as concurrency and parallelism. It does not have central flow controller, and uses threads to implement concurrency. It also supports graphs with multiple concurrent data paths. These features make ActiveMovie and NeatTools similar. Compared to NeatTools, ActiveMovie is a primitive, cumbersome framework with dozens of serious glitches, especially in the inter-module synchronization area, poor performance, and t extensibility methodology that requires expert programming skills. Yet, ActiveMovie is one of the technically most advanced products of Microsoft.

One of the most stunning properties of NeatTools is its "continuous execution" model. This is a truly unique feature, bordering with magic. The synchronization problems that needed to be solved to implement such a solution are paramount. The usefulness of this solution for rapid prototyping is obvious. The concept is akin to the switch from compiled to interpreted languages: what interpreted frameworks did to traditional text-based programming, NeatTools do to the visual programming. Of course it is important to add missing discussion has to how magic happens. How is synchronization addressed without a mess of buffers.

I believe that if properly documented and published, data flow network implemented in NeatTools could become a milestone in software engineering design, revered and used as much as other classical solution in this field, the AVS. Here however the problems start.

There are many problems in the presentation. The thesis is rather incoherent and it lacks basic, canonical structure usually adopted in well-written dissertations. It fails to clearly define truly relevant goals of the project (the list of buzzwords in Sec. 3.1 is really embarrassing); further it fails to coherently highlight the achievements, and provide succinct and well documented conclusions..

The paper contains a lot of irrelevant and spurious material. I consider the entire "C++ vs. Java" discussion in Sec. 1 completely out of place. No reasonable person would argue that a project such as NeatTools, dealing with physical interfaces, should use Java platform. Very few people consider Java as a silver bullet, do-it-all environment. Yet, one gets impression that Mr. Chang feels that the choice of C++ needs to be justified, and he devotes one quarter of the precious dissertation space to that problem. Even worse, certain arguments used by him are either factually incorrect, or based on clearly flawed logic. An example: Chang states that the early Java implementation of NeatTools stopped functioning in generation 4 browsers due to unspecified changes in SDK and the situation was beyond repair. In fact, there is not such a problem: it was sufficient to digitally sign the code to recover entire functionality. Another example: Chang presents an argument that "no support for pointers" in Java can be emulated in C++ by appropriate library of functions. While formally true, the entire argument does not make any sense in broader context. Firstly, the argument is trivially true: Java VM is implemented in C++ and it provides "no pointer" feature, so Chang's solution is hardly original. Second, his solution is missing the point: Java designers removed pointers since it can be proven that pointers in C and C++ are one single largest source of intricate bugs, creating huge financial loss for initial code fixing and further maintenance. To avoid this, the programmers must be forced to abandon questionable practices, not just be offered an alternative. Java design solves a socio-technical problem, allowing average programmers to write robust code. The technical merits of pointers are completely irrelevant in this context.

Having wasted space and readers time on irrelevant issues, Chang breezes over the most interesting part: a detailed explanation how his excellent system really works. Glaring examples: Table 1 on page 77, or architecture diagrams in Sec. 3. The reader is not provided with any useful information here. The reference manual in Sec. 6.1 certainly does not make up for a descriptive discussion. The most important part of the paper is completely superficial. The reader can dig some critical information from Appendices, if s/he has a patience to get so far. A PhD paper must document some research process. It just isn't there.

Another problem I see is a factual misrepresentation of certain aspect of NeatTools framework. Among other things, Mr. Chang states that the tool is "secure" and it offers "multimedia support". Neither of this is true. No security features have been implemented. Encryption is mentioned, but even this is only a potential possibility. For a distributed system to be secure, channel encryption is just a start. Secure system needs to identify agents via digital signatures, and be able to deal with firewalls. None of this is part of the design, let alone implementation. Ergo, NeatTools is not secure. As for multimedia support, it does not exist either. The fact that NeatTools communication channels can send encoded digital audio and video does not constitute "multimedia support". It is entirely trivial capability. There are months of hard work between being able to push digitized sound or images over socket connections, and being able to provide a robust support for even the simplest audio/video communication between users or software agents.

