A. Project Description

A.1 Motivation of the proposed work

Until quite recently it was generally assumed that computers would be used mainly for
doing computations. Today an equally widespread idea is that a computer is primarily a
device for communication. Of course there is no reason to think the value of the computer
as, say, a simulation device for science, engineering, commerce, or even entertainment, has
suddenly diminished. But lately growth in this arena has been eclipsed by the runaway
growth in Internet applications.

The pivotal importance of communication is no surprise those in the high-performance
computing community. For example, the 80s and 90s witnessed a remarkable diversity
of hardware and software architectures for linking individual computational nodes through
very high performance communication devices, specifically to support parallel computation.
Perhaps one should not try to push the analogy between the Internet and the parallel
computer too far—it may well be true that the overall communication bandwidth of a
parallel computer is a better characterization of its effective power than the aggregate
processor speed, but in this context communication is ultimately a means of computation,
not an end in itself. In fact the specialized communication technologies that evolved for
parallel computing do not seem to have had a major influence on the recent history of
the Internet. Meanwhile it is abundantly clear that if parallel computing is to continue to
thrive, and gain wider acceptance, it must adapt itself to the changeing environment of the
Net. Parallel computing must find niches it can exploit in this larger context.

This proposal is especially concerned with enabling parallel computation, and the asso-
ciated communications, in a world dominated by Internet technologies. We will not assume
that parallel computation is necessarily done across the Internet, although of course this
is one possibility that has been widely discussed, especially under the name of metacom-
puting. We do assume that the software and hardware technologies that will be readily
available in the immediate future—the commodity technologies—will be fine-tuned for the
Internet environment. On the hardware side these will include parallel—perhaps massively
parallel—engines designed and deployed as Internet servers. On the software side, they will
include software developed in network-aware programming languages like Java—software
engineered to survive in heterogeneous and very dynamic environments.

One of the most influential developments in parallel computing over the last decade
was the publication in 1994 of the Message Passing Interface (MPI) standard [2]. The idea
of an agreed, standard API for communication in parallel programs now seems obvious.
In practise it was relatively slow in coming. As a result it benefitted from a great deal
of accumulated experience from application developers using earlier, proprietary APIs for
message passing. MPI supports the Single Program Multiple Data (SPMD) model of par-
allel computing. A group of processes cooperate by executing identical program images,
manipulating distinct local data values. MPI provides reliable point-to-point communi-
cation with several blocking and non-blocking communication modes. It also provides a
library of true collective operations (broadcast is the most trivial example). An extended

A-1



standard, MPI 2, allows for dynamic process creation and one-sided access to memory in
remote processes.

The MPI standards specify language bindings for Fortran, C and C+4. None of these
languages is specifically adapted to the heterogeneous environment of the Internet, where
downloadable and mobile code are norms, resources (including computational resources)
may be discovered and lost spontaneously, unreliable networks and the associated need for
fault tolerance are defining issues. In the proposed work we will be especially concerned to
support use of network-oriented languages for high-performance computing. For now this
means Java, although we cannot rule out the emergence of other comparably important
languages in the course of the proposed work. Hence one immediate preoccupation is with
refinement of MPI-like APIs for Java.

The validity of using Java for essentially “scientific” computing has been quite con-
troversial in the past, but over the last few years the prospect has become increasingly
realistic. Ongoing activities in the Java Grande Forum, complemented by work in aca-
demic and industrial sectors on optimizing compilers, JITs, language enhancements and
libraries, have helped to close the credibility gap. By now it is widely assumed that future
Java environments will meet the vital performance constraints needed to support large-
scale computations and simulations. The work on improving the performance of Java is
driven largely by its industrial application as a programming language for high-performance
Internet servers. Scientific programmers will also reap the benefits.

As a part of the Java Grande process, a Message-Passing Working Group has been
considering MPI-like APIs for Java over the last two years. Draft specifications and pro-
totype implementations have been produced, but work remains to be done on the final
specification, and robust reference implementations are urgently needed.

In the end, just providing MPI-like APIs for Java not enough. We must address the
specific features of distributed computing. MPI was designed for a reliable environment.
According to the philosophy of Sun’s Jini project, for example, a defining characteristic
of distributed computing versus concurrent programming (or in our case, versus parallel
programming) is the presence of partial failures. We intend to exploit ideas similar to
those developed in the Jini project. We anticipate such ideas will facilitate construction
of scalable and fault-tolerant platforms for parallel computing, harvesting spontaneously
discovered computational resources. The technology adds new job initiation capabilities,
beyond those found in traditional high-performance computing environments.

An early deliverable will be a robust pure-Java implementation of the message-passing
API, MPJ, specified by the Java Grande Message-Passing Working Group. This implemen-
tation will internally adopt Jini protocols and software components to manage distributed
resources and detect failures, while providing a traditional SPMD programming environ-
ment at the user level. Later research will investigate how to bring low-level techniques
for dealing with partial failures into the realm of control of the parallel programmer. An
overall research goal is to combine successful technologies for High Performance computing
with state-of-the-art object-oriented technologies for network programming.

A-2



A.2 Background

A.2.1 Why parallel computing and Java?

We can assume that the computers that host major Web sites will be either multiproces-
sors or clusters of workstations. Many are now, and this trend will presumably continue.
Increasingly these servers are programmed in Java. The simple fact that the computers are
parallel obviously does not imply that people will necessarily write parallel programs for
them. Most of the time they clearly will not—individual nodes will simply handle indepen-
dent transactions. But since these two technologies—Java and parallel computers—will
coexist in Internet servers, this is a [fertile] place where we may expect to see roles for
Java-based parallel computation emerging. In one scenario we can imagine that in the
near future compute-intensive commercial services start to make their appearance on the
Web. The exact nature of these services is still uncertain. Perhaps they will be data-
mining queries using parallel algorithms, or financial analysis programs based on physical
optimization processes, or perhaps people will simply want to play chess against a parallel
computer.

[Need to make a case that multi-threaded Java programming is not enough./

Relate the JGF-related efforts. Most important lesson is that (on reputable authority)
Java can be made efficient.

Reiterate that many of the platforms most readily available for parallel computing in the
future will be machines deployed primarily as massively parallel Internet servers. These are
likely to be volatile environments that demand the reliability provided by foundations like
Java and Jins.

A.2.2 Where will parallel programs live?

For the sake of a concrete example, consider the Ninja vision of the future of the Internet
elaborated by researchers at UC Berkely. In their view a service—an Internet-accessible
application or set of applications—should be scalable (able to support thousands of con-
current users), fault-tolerant (able to mask faults in the underlying server hardware), and
highly-available. An important goal is to enable Internet-based services that are accessible
globally from any user device, from PCs and workstations down to cellphones and Personal
Digital Assistants. So one major concern is with mobile code for service deployment—
specialized active proxies that migrate out across the Internet to position themselves close
to the client devices, whatever they may be. But services must maintain persistent state,
and the architects of Ninja conclude that distributed, wide-area management of this state
is generally intractable. So, while “soft” state may be distributed across proxies, hard,
persistent state is maintained in a carefully-controlled environment—the Base—engineered
to provide high availability and scalability.

The Base is assumed to be a cluster of workstations with fast, local communication, a
controlled environment, and a single administrative domain. The Base hosts the backend
of services. The Base may be constructed from a heterogeneous set of nodes, and individual
nodes may fail under unpredictable loads, and so on; but the cluster is strongly coupled and
essentially trustworthy. It isn’t necessarily homogeneous and it isn’t completely reliable,
so it 1s not quite a conventional parallel computer. However this is one environment where

A-3



we might expect parallel programs written in Java to thrive. Partly (as suggested [above))
this could happen because massively parallel programming will be needed to implement
the individual Internet services of the future; partly it may be because the commodity
parallel computers of the future will be designed primarily as Internet servers, because this
is where the demand will be. Scientific programmers may exploit these resources to run
their programs simply because they are readily available.

A completely different place where we might see early uptake Java-based parallel com-
puting is in the classroom /...]

The last niche for parallel Java we will discuss here is in a sense the most obvious.
Because of its platform independence, mobility, and other associations with the Internet,
Java is a natural candidate as a language for metacomputing. We interpret this to mean
computation by parallel programs distributed across the Internet itself. [Cite some relevant
papers from the JG workshops, if poss.] Within the MPI community there is an ongoing
effort to extend MPI specifications and implementations to support metacomputing, by al-
lowing logical process groups (the basic cooperative units of parallel computation) to span
geographically separated clusters and supercomputers. For example, an MPI interoper-
ability standardization effort led by the National Institute of Standards and Technology [1]
proposes a cross-implementation protocol for MPI that will enable heterogeneous comput-
ing. MPI implementations that support the Interoperable MPI (IMPI) protocol will allow
parallel message passing computations to span systems, using the native vendor message
passing library within each system.

Java-based metacomputing could exploit and supplement these ongoing MPI activities
in various ways. Suppose, for example, that only a parallel sub-component of a distributed
application is particularly suited to implementation in Java. If the Java part is programmed
in the essentially MPI-like paradigm we espouse, it is an easy step to suppose that the
Java component could interact with the non-Java, MPI-based part through the inherently
parallel IMPI protocols (rather than, say, through a serial, performance-limiting CORBA
or RMI gateway). In another scenario, a parallel program may be written uniformly in
Java, using our MPI-like API. An optimized implementation of the communication class
library is made available at each site that hosts distributed Java jobs. Internally these
implementations can use a native, vendor-supplied MPI, with IMPI protocols between
sites. The platform-independent, compiled byte-code for the user’s parallel program is
uploaded to host sites at run-time and dynamically linked to the local message-passing
stubs.

The three application areas described here are suggestive only. This is essentially a
research proposal, and we cannot predict with certainty how the results might be used.

A.2.3 Where does Jini fit in?

Short section of background on Jini—what it is; where it fits in the scheme of things;
the role of it’s lookup services; spontaneous federation of services; fault-tolerance and self-
healing in communaities of services; the Jini take on “distributed programming”. What Jini
s not, really: not a global infrastructure—it isn’t Ninja or E’speak. In the Ninja vision,
for example, Jini is a technology that might fit comfortably (like MPI) within the “Base”
(addresses initial federation of nodes, crashes of individual nodes, etc) or at the periphery,

A4



near the end-user devices (deals with attachment of devices to the Net).

Jini is Sun’s Java architecture for making services available over a network. It is built
on top of the Java Remote Method Invocation (RMI) mechanism. The main additional
features are a set of protocols and basic services for “spontaneous” discovery of new services,
and a framework for detecting and handling partial failures in the distributed environment.

[Contrast Jini discovery with discovery in E’speak, Ninja, CORBA trading.]

[Talk about fault-tolerance features: leasing, distributed events, transactions.]

A.2.4 Bringing these things together

To support the parallel programmers of the future we will need Java implementations of
lightweight messaging systems akin to MPI—the single most successful platform for parallel
computing. A likely physical setting is in the more or less tightly coupled (but probably
heterogeneous, multi-user) clusters of trusted workstations that we expect to host the Web
services of the future. We need to address the fact that these environments will be highly
dynamic. Any software must be adaptive: availability changes dramatically as workloads
and network traffic fluctuates; nodes crash, new ones are attached and discovered on the
fly, old ones are removed. Jini is the Java technology for dealing with these situations.

Reiterate: this proposal will address design issues for new message-passing APIs for
Java and potentially other object-oriented network programming languages. It will address
the principles of reliably implementating these APIs in the dynamic environments of In-
ternet servers and networks. In particular implementations on top of Jini and emerging
successors will be developed. The proposal will consider how MPI-like parallel programming
APIs may best be enhanced to make Jini-like techniques for fault-tolerant programming
avatlable directly at the parallel application level.

Realistic assessment of current level of demand for MPI + Java (figures on mpiJava
downloads, java-mpi membership). Not yet large enough to support commercial exploitation,
but enough to encourage research.

A.3 Approach

Get back to concrete stuff. Sketch the proposed implementation of MPJ, using Jini.
Improving the API: talk about channels, MPI-RT.
Hand waving about how we will import Jini-like fault-tolerance into MPJ. (Don’t really
have anything concrete to say yet.)
Things to emphasize. ..

o Java Grande
o Jing
o JG Message-passing Working group—MPJ

o mpiJava

Proposal for Jini-based implementation of MPJ

A5



e MPI-2 (dynamic process creation).
Things to mention. . .

o Java interfaces to VIA

o Ninja

o FE-speak

e IMPI (Standard for interoperable MPI)
e MPI-RT (Skjellum’s work)

[Use the word “Landscape” somewhere.]

A-6



B. Bibliography

[1] IMPI Steering Commitee. IMPI—Interoperable Message-Passing Interface, January
2000. http://impi.nist.gov/IMPI/.

[2] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Uni-
versity of Tenessee, Knoxville, TN, June 1995. http://www.mcs.anl.gov/mpi.

B-1



