
c2web.doc v1 12-Dec-00 Page 1

Web Computing

Web Computing
The World Wide Web offers many opportunities for computing in science and engineering.

Interpreting my charge as department editor quite broadly, I’d like to review some of these possibilities.
If I omit areas of particular interest to you, please let me know.

Web Clients as a Computing Resource

At the recent Supercomputing 2000 conference in Dallas (www.supercomp.org), Steve Wallach’s
keynote explained how it would be possible to combine optical interconnects with the inevitably
improving microprocessor technology to build supercomputers with petaflop (1015 operations per
second) performance within the coming decade. Of course, the same technology trend //singular,
right?// implies that the total computing power of clients interconnected by the Web will be some
thousand times greater—exaop performance.

1,2

In addition, most CPU cycles are “wasted” as desktop machines sit patiently waiting while their
owners chat on the phone, drink coffee, or sleep. Thus, SC 2000 saw several commercial companies
supporting what Larry Smarr called megacomputing in a panel discussion and what industry mysteriously
terms peer-to-peer computing (www.peer-to-peerwg.org). Now, instead of purchasing a new departmental
machine, you can send your computing tasks into the Internet “cloud” to be computed between
keystrokes on some Web client. This powerful idea promises cheaper computing with greater total
performance. Of course, this model has its limitation: the Internet cloud cannot easily support the
large-scale parallel computations of our current teraflop and future petaflop dream. Loosely coupled
machines often have lower communication bandwidth and always have much higher latency than classic
massively parallel machines. Still, we can formulate many problems as a multitude of largely
independent tasks—for example, factorizing //”factoring”?// large numbers to break RSA
cryptography and searching biological databases for patterns. Future editions of this column will
examine these technologies and explore the applications and algorithms that can exploit
megacomputing. Some of the key issues of security and fault tolerance are also fair game.

XML, Java Grande, and Distributed Objects

The Internet has spawned //okay?// many technologies that are contributing to more powerful
programming environments. Good examples are XML (www.xml.org) as the basis of new scientific data
standards and Java as a new scientific programming language. Another is MathML, which will Web-
enable us to render mathematical equations accurately in distributed documents, whiteboards, instant
messengers, and other productivity tools. ScienceML is also emerging, letting us express scientific data
across the Web and enable greater program interoperability. Our Web systems’ //correct?// input and
output //Do you mean “2I5,2F10.4” is both input and output?// will no longer be //”look like”?//
the cryptic “2I5,2F10.4” but will be the more understandable “<MYDATA YEAR=1999
NUM_ITERATIONS=10 POROSITY=0.03 DEPTH=10 DEPTH_UNITS=METERS>Specify my

c2web.doc v1 12-Dec-00 Page 2

ecology</MYDATA>.”
Nobody knows what the //most popular? most common? what?// programming language in 2010

will be, but to borrow a well-known cliché, it surely will not be Fortran—or even be called Fortran. We
can debate for a long time the software engineering advantages of languages like C++ and Java versus
Fortran’s simplicity and high performance, but the next generation of students—immersed from the
cradle on in the Internet, its technologies, and its power—will not care. The best of these students will
not choose computational science unless this field adopts the very best information technology.
Students will learn Java in high school and will not be happy to switch to Fortran for science and
engineering computing.

Although Java was originally popularized in the form of applets to develop dynamic clients, its main
industrial application is to build portable middleware—large server-side applications to support
database access and other e-commerce applications. Thus, it makes sense for this column //right?// to
examine whether Java can be used to code large numerical simulations. The conferences and forums of
the Java Grande group (www.javagrande.org) have identified several problems in this area, including
Java’s lack of a complex data type and rectangular arrays; moreover, there is the need for Java bindings
to libraries in areas ranging from mathematical functions to parallel message-passing. Java’s floating-
point rules inhibit well-known compiler optimizations, while commercial offerings currently do not
include Java compilers (just interpreters, albeit very clever, so-called just-in-time systems that use
dynamic compilation). //right?// We have made progress—even though our field, which is 1% or so of
the total computer market, will find it hard to influence commercial Java activities. This column can
discuss this as well as the progress in C++, which has successfully tackled the issues of performance and
expressivity needed for computational science.

C++ and Java are supported by powerful development environments, which could form the basis of
better scientific-programming systems. Industry has also built distributed-object models (Corba, Java
with RMI and Jini, COM, and SOAP(XML)) that appear very helpful in managing large-scale software
and data systems. The important integration of distributed-object and Internet technologies is often
called the object Web. This provides a powerful model of the distributed systems that underlie modern
Web computing. Perhaps we will discuss some of these points in future columns as well.

Computational Science Portals

Web systems are also used to produce integrated environments that support computing. These used
to be called problem-solving environments or workbenches, but in Web lingo we usually call them
portals to ride the current commercial thrusts bringing us the Yahoo portal (to everything), enterprise
information portals, and so on. EIPs constitute a US$10-billion-a-year business, providing Web-based
corporate information systems that access databases, email, and Web pages using //or do you mean
“with”?// a variety of communication tools. Here, I use the adjective “Web” to describe a distributed,
networked system using Internet or object Web technologies. //Do you mean “intranets”?//

In the computing field, we build a portal by assembling a network of Web servers and clients and
then use them as an interface to computing resources. This approach (see, for example,
https://hotpage.npaci.edu, www.cactuscode.org, and www.gatewayportal.org) gives users a single Web
interface, enabling such capabilities as job application submission and monitoring //right?//, access to
information resources //okay?//, visualization //of what?//, and application linking via data streaming

c2web.doc v1 12-Dec-00 Page 3

or files. //Do all the examples following “such capabilities as” deal with job applications? Or do
you mean generic “applications”?// Such portals can also support communication tools such as
(scientific) whiteboards, audio- and video-conferencing, and so on. Users can often choose which
application to run, at what level of detail, and with what modifications (for example, by Web-inputting
parameters or choosing a library). //Is “by” correct, meaning these last two actions in the
parentheses are examples of HOW a user actually makes a modification? Or do you mean these
are examples of specific modifications one might make? Maybe just a nuance, but I think there’s
a difference…//

We can consider such portals the front ends to computational grids (www.gridforum.org), which are
typically formed by a network of computational resources and thus are thought of as being more
structured than the megacomputers discussed earlier. Increasingly, such grids use object Web
technologies (www.globus.org/cog). A variety of possible topics for this column might deal with these
portal issues. //A final sentence expressing possible coverage in this column would parallel the
other sections. Feel free to edit as you like.//

I Need Your Input!

We have looked at Web computing from three different points of view—stressing the computer, the
technologies, and the systems of the Web. What interests you? Please send me any and all topics that
appeal to you.

REFERENCES

1. G. Fox, “Computing on the Web: New Approaches to Parallel Processing—Petaop and Exaop Performance in the Year
2007,” http://old-npac.csit.fsu.edu/users/gcf/01/terri/SCCS_784/index.html (current 7 Dec. 2000).

2. W. Furmanski, “Petaops and Exaops: Supercomputing on the Web,” IEEE Internet Computing, vol. 1, no. 2, 1997, pp. 38–
46.

insert c2fox.gif –

/ Please send me a photo – preferably black and white, portrait style. If hard copy, at least passport size. If electronic,
please save it as large as possible (say at least 4 inches wide) so we can raise the resolution for print medium./

/ For your bio, please provide current affiliation, title, research and other professional interests; books published,
awards, etc.; your educational background – degrees earned, subjects, from which institutions; email address at
which readers can contact you./

