[image: image3.wmf]Legend

Course & Course Elements

AU

A1

AU

A1

AU

A4

AU

A4

AU

A2

AU

A2

AU

A3

AU

A3

AU

A9

AU

A9

AU

A10

AU

A11

AU

A11

AU

A12

AU

A12

AU: A10

Block (B1)

Block (B1)

AU

A5

AU

A6

AU

A7

Prereq

.

Logic

Prereq

.

Logic

Prerequisite

Logic

Control

Logic

Block

Assignable

Unit

Course

Starting Points

(No

prereqs

)

Complete

Failed

Not Attempted

Pass

Incomplete

AU

Starting Point

Sample Course

Pass/Fail

Logic

Training

Content(Lesson)

Training Software LLC
Functional Specifications
CONFIDENTIAL

[image: image4.wmf]Client Side

Course Management Component on the Server

CourseTableManagerImpl

extends UnicastRemote...

implements RemoteTable

Find

Sort

View

Table Controls

Course Name

Type

Location

Safety

Avail

MS Office 97

Java Basics

Java Intermediate

Java Crash

Couse

Santa Teresa

5/15

Scheduled

CBT CD

Training Soft

Training Soft

See Details...

Santa Teresa

N/A

N/A

Multi

-location

Safety

Almaden

5/15

Scheduled

Java Crash

Couse

More …

Introduction to OOP

See Details...

Multi

-

locatiion

Java Crash

Couse

Introduction to C++

See Details...

Multi

-location

FancyTableBean

RemoteTableModel

RemoteTableManager

Interface

RemoteTableManager

Interface

Java RMI

Courses

Courses

All Course Information Panels

Required safety training for all

employees.

Course Description:

Safety Training

Course Title:

Course ID:

C56

Course Type:

Instructor:

Big Bad Wolf

Deadline:

Mastery Score:

Location:

Santa Teresa Labs.

Room 4A

Lesson

Facilities Safety

7/17/1998 M

8 am - 9 am

Times

Location

Santa Teresa

Labs, Room 4A

Type

Scheduled

50/100

Mixed

7/21/98

Equipment Safety

7/19/1998 W

8 am - 9 am

Santa Teresa

Labs, Room 4A

Scheduled

Dev

. System:

T.S. Course Builder

Version:

1.0

The web page has handouts that you should print. They are

in the

 pdf

 format.

Instructor Comments:

Start Date:

7/17/98

Safety Exam

Training

Soft

None

None

Web Page:

http

://

www

.

trainings

Current # Enrolled:

10/15

Generate Report

Course Structure

CourseManager

Interface

Courses

Courses

Lessons

CourseManagerServerImpl

extends UnicastRemoteObject

implements CourseManager

CourseManager

Interface

All Lesson Information Panels

LessonManager

Interface

LessonManagerServerImpl

extends UnicastRemoteObject

implements LessonManager

LessonManager

Interface

Lessons

Instructor led lecture on facility and earthquake safety.

Lesson Description:

Facilities Safety

Lesson Title:

Lesson ID:

L-I-56

Type:

Instructor:

Big Bad Wolf

Mastery Score:

Location:

Santa Teresa Labs. Room 4A

None

Scheduled

Comments

Instructor led lecture on facility and earthquake safety.

Vendor:

T.S. Course Builder

Instructor-Led Lesson

Start Time:

End Time:

Duration:

7/17/1998 08:00

7/17/1998 09:00

01:00 Hours

Course Management Component Interfaces

Course Management Component Interfaces

CourseTableCache

Ordered List Mapping

(Read Only)

CourseCache

LessonCache

Training Software LLC
Functional Specifications
CONFIDENTIAL

Functional Specification
Project Aristotle

Version 3.3
Rev #
Revised By
Major Change
Date

1
John Yin
First Draft

2
John Yin
Sent For Estimate

3
John Yin
“Bug Fixes”

Table of Contents

60. Preface

0.1. Coding Standard
6
0.1.1. Coding Styles
6
0.1.2. Commenting
8
0.2. Data Formats
10
0.3. File Formats
11
0.4. Requirement List
11
0.4.1. Localization of Software
11
0.4.2. Following Specifications
11
0.4.3. Communication Channels
12
0.4.4. Project Management Requirements
12
0.4.4.1. Project Timetable
12
0.4.4.2. Weekly Status Meetings
12
0.4.4.3. Monthly Milestone Checkup
12
0.4.4.4. Weekly Source Code Transfer
12
0.4.5. Project Milestones
12
0.4.5.1. Setup
13
0.4.5.2. Database Storage Format Design
13
0.4.5.3. Working User Management Features
13
0.4.5.4. Working Course Management Features
13
0.4.5.5. Coding Finished
13
0.4.5.6. Testing Finished
13
0.4.6. Packaging Requirements
13
0.4.7. Testing Requirement
14
Documentation Requirement
14
1. System Architecture Overview
15
1.1. Phyiscal Components Overview
16
1.2. Functional Components Overview
16
1.3. User Types Overview
18
1.4. Training Material
18
2. CMI System Objects
19
2.1. Training Material Objects Overview
21
2.1.1. Example Course I
22
2.1.2. Example Course II
22
2.1.3. User Objects Overview
23
2.2. The Course Object
24
2.2.1. CourseProperty Subcomponent
25
2.2.2. CourseElements Subcomponent
27
2.2.3. CourseStructure Subcomponent
28
2.2.3.1. Logic Statement Operators
28
2.2.3.2. Logic Statement Operands
29
2.2.3.3. Prerequisites
29
2.2.3.4. Completion Status of Course Elements
29
2.2.3.5. Completion Requirements
31
2.2.4. CourseEnrollment Subcomponent
32
2.3. Lesson Object
33
2.3.1. The BaseLesson Object
33
2.3.2. CBT Lesson
34
2.3.3. Web-Based CBT Lesson
34
2.3.4. CMI compliant CBT Lessons
35
2.3.5. Instructor-led Lessons
35
2.4. CourseElement Abstract Class
37
2.5. Assignable Unit Course Element Objects
38
2.6. Block Course Element Objects
40
2.7. User Abstract Class
41
2.8. Student User Object
42
2.8.1. Training Preferences
42
2.8.2. Performance Data
42
2.8.2.1. PerformanceRecord
43
2.8.2.2. CourseRecord
43
2.8.2.3. CourseElementRecord
43
2.8.2.4. AURecord
44
2.8.2.5. BlockRecord
44
2.9. Instructor
45
2.10. Administrator
45
2.11. System Object Summary
46
3. Communication Protocol
47
4. CMI Application Server Specifications
48
4.1. Physical Specifications
49
4.2. Course Management Logical Component Overview
50
4.2.1. Manager Interface Classes
51
4.2.1.1. CourseTableManagerImpl
51
4.2.1.2. CourseManagerImpl
52
LessonManagerImpl
53
4.2.2. CourseManagement Component Caches
53
4.2.2.1. Caching Scheme
54
4.3. User Management Component
55
4.3.1. Manager Interface Classes
56
4.3.1.1. UserTableManagerImpl
56
4.3.1.2. UserManagerImpl
56
4.3.1.3. TrainingHistoryManagerImpl
57
4.3.2. UserManagement Component Caches
57
4.4. Lesson Import Component
59
4.5. Database Interface Component
59
4.6. Performance Requirements
61
4.7. Termination Conditions
61
4.7.1. Normal Termination Conditions
61
4.7.2. Abnormal Termination Conditions
61
5. Persistent Storage
62
6. Management Client
63
6.1. Physical Specifications
64
6.2. Course Management Component
66
6.2.1. Internal Architecture Specification
66
6.2.1.1. Course Listing Table (FancyTableBean)
67
Course Information Panel Bean
67
6.2.1.3. Lesson Information Panel Bean
68
6.2.1.4. Course Content Information Panel:
69
6.2.2. Creating and Modifying A Course
69
6.3. User Management
70
6.3.1. Internal Architecture Specification
70
6.3.2. User Interface Specifications
71
User Information Panel
71
6.3.2.2. Performance History Panel
72
6.4. Access Rights
72
6.5. Performance Requirements
72
6.6. Termination Conditions
73
6.6.1. Normal Termination Conditions
73
6.6.2. Abnormal Termination Conditions
73
7. CMI Student Client Specifications
74
7.1. Physical Specification
74
7.2. Course Management
76
7.2.1. User Interface Specifications
76
7.2.1.1. Course Content Information Panel
76
7.2.1.2. Course Schedules Panel
77
7.3. User Management
79
7.4. CBT-CMI Integration
80
7.4.1. WebLessonExecution
80
7.4.2. CMICompliantCBTExecution
81
7.4.2.1. Setting up the parameter files
81
7.4.2.2. Starting the Lesson
83
7.4.2.3. Collecting the Performance Data
83
7.5. Termination Conditions
85
7.5.1. Normal Termination Conditions
85
7.5.2. Abnormal Termination Conditions
85
8. Documentation Requirements
92
8.1. Main Documentation
92
8.2. Design Documentation
92
Appendix A. Course Import/Export Files Specification
94
A.1 The Course File
94
A.2 Assignable Unit File
101
A.3 Descriptor File
106
A.4 Course Structure File
109
A.5 Prerequisites File
114
A.6 Completion Requirements File
121
A.7 Course Layout File
124
Appendix B. Lesson Import File Specifications
125
B.1 The CMICompliantLesson File
125
B.2 The WebLesson File
130
B.3 The InstructorLedLesson File
131
Appendix C. Windows INI File Format
133
Appendix D. Comma Delimited ASCII
139
Appendix E. Version Changes
142
E.1 Major Changes From Version 2 to Version 3
142
E.2 Changes From Version 3.2 to 3.3
144

0. Preface

0.1. Coding Standard

In this section, the coding style and conventions for writing Java programs are discussed. All Java source code files must follow the following standards:

0.1.1. Coding Styles

This section contains coding style specifications that should be followed.

1. Functions should be less than 40 lines each

Each member function should be less than 40 lines of code each (not including comments). If a function needs much more than 40 lines, you should divide it into 2 or more functions and make a function call.

2. Class files should be less than 200 lines each

Each class should have less than 200 lines of code each (not including comments). If the class requires more than 200 lines, it usually means that you are trying to put too much functionality into one class. This reduces modularity and expandability. If you need more than 200 lines, try to break the functionality of the class into two or more classes.

3. All Java classes should follow the Java Beans naming convention

The Java Bean style of coding must be followed! This is very important. The Java Beans coding convention specifies that there are three different types of member functions:

(1) Properties

(2) Methods

(3) Events

Properties

Properties member functions start with either a “set” or “get” word. These functions are used to access and modify class properties (or member data). You should never access member data directly. The following is an example:

[image: image5.wmf]CMI System

CMI System Architecture

CMI System Architecture

CMI Application Server

CMI Application Server

“User Management”

Server Component

“Course Management”

Server Component

Course

Repository

Lessons

Repository

User

Database

CMI Management Client

CMI Management Client

DB Interface

“Course Management”

Client Component

“User Management”

Client Component

Functional Components

Communication Flow

Legends

CMI Student Client

CMI Student Client

CBT-CMI Integration

Component

“Course Management”

Client Component

“User Management”

Client Component

Persistent Storage

CBT Interface

Logging Center

Lesson Import

Lesson Import Files

Physical

 Components

[image: image6.wmf]Client Side

User Management Component on The Server

UserTableManagerImpl

User Listing w/ FancyTableBean

RemoteTableModel

RemoteTableManager

Interface

RemoteTableManager

Interface

Java RMI

User Objects

All User Information

UserManager

Interface

Training History

Objects

UserManagerlmpl

UserManager

Interface

All Performance History Information

TrainingHistoryManager

Interface

TrainingHistoryManagerImpl

TrainingHistoryManager

Interface

User Management Component Interfaces

User Management Component Interfaces

Sort

Find

View

Table Controls

Full Name

ID

Group

User Type

E-mail

Bunny, Bugs

bbunny

HR

Instructor

Duck, Donald

dduck

Engineering

Student

Duck, Daffy

dduck2

Instructor

Pig,

Porky

ppig

Administrator

Mouse, Mickey

mmouse

Student

Simpson

, Bart

Bsimpson

Student

Simpson

Lisa

lsimpson

Student

HR

HR

HR

Engineering

Engineering

Porky

First Name:

Last Name:

Middle Name:

The

Pig

Sex:

M

Job Title:

Peon

Manager:

Bugs Bunny

E-mail:

ppig

@

toon

.land

Familiar Name:

Location:

Santa Teresa

City:

State:

Zip:

Experience:

Phone:

Address:

Home

x7526

Work

Native Language:

English

3 Years 6 month

User ID:

Password

User Preferences

Birthday:

7/19/1945

Prior Experience:

3

Years

Joining Date:

12 / 8 / 1990

ppig

Group:

Engineering

Social Security Number

123-56-7890

Administrator

User Type:

7/15/97

7/15/96

Lesson

Facilities Safety

Final Status

Complete

Type

Instructor-Led

Start Time:

Course Score:

87/100

7/12/97 1:45

pm

Status:

Pass

Safety Training Exam

Pass: 87/100

Training Software

Equipment Safety

Complete

Instructor-Led

Generate Report

Training Details For “Safety” course:

End Time:

7/15/97 2:15

pm

Time Completed

Attempts

7/12/97 2:30

pm

1

7/13/97 2:30

pm

7/15/97 2:15

pm

Time Spent On Course

03:15 Hours

1

1

Course Title

ID

Status

Time Completed

Oracle 8 Administration

C74

In Progress

10/12/97 5:00

pm

Introduction To Java

C1

In Progress

10/12/97 2:00

pm

Safety Training

C56

Pass

7/15/97 2:15

pm

Introduction To JFC

C5

Pass

9/9/98 1:00

pm

Introduction To JFC

C5

Fail

9/9/98 1:00

pm

Score

80/100

70/100

95/100

UserTableCache

Ordered List Mapping

(Read Only)

UserCache

TrainingRecordCache

[image: image7.wmf]Course

Course

CourseElements

CourseProperties

CourseStructure

CourseEnrollment

Interface Function Stubs

CourseProperties

CourseProperties

CourseStructure

CourseStructure

CourseElements

CourseElements

CourseEnrollment

CourseEnrollment

CourseElement List

AssignableUnit

AssignableUnit

Block

Block

Lesson

AU List

User List

User

User

Course Related Objects

Course Related Objects

AssignableUnit

AssignableUnit

Lesson

AssignableUnit

AssignableUnit

Lesson

User

User

[image: image8.wmf]Lesson Object Cache

LessonManagerImpl

LessonManagerImpl

Returns Lesson objects.

Client Side

Server Side

Java RMI

Transferring lesson objects between the client and server

LessonManager Interface

LessonManager Interface

AU

Course

CourseElements

CourseProperties

CourseStructure

Course Enrollment List

Interface Function Stubs

LessonManagerImpl Client Stub

Lesson Data

Lesson

LessonManager Interface

getLessons()

newLesson()

deleteLesson()

updateLesson()

For boolean properties (properties that are of the boolean type), instead using “get”, use “is”. For example:

[image: image9.wmf]Course

CourseElements

CourseProperties

CourseStructure

Course Enrollment List

Interface Function Stubs

CourseManagerImpl

CourseManagerImpl

Returns a course object.

Client Side

Server Side

Java RMI

Transferring course objects between the client and server

CourseManager Interface

CourseManager Interface

CourseManagerImpl Client Stub

Course Object Cache

CourseManager Interface

getCourse()

get/set CourseProperties

get/set CourseStructure()

get/set CourseElements()

get/set CourseEnrollmentList()

newCourse()

deleteCourse()

Funtions used directly by the client

Funtions used by the client Course object

to incrementally load course information

updateCourse()

Methods

Methods are normal member functions that performs a certain task like sort, find, and draw. These member functions start with a lowercase letter. For example, sort() and find() are both methods.

Events

Event methods are member functions that uses the delegation event model for event handling in Java 1.1. This means, each class has a list of other classes that are listening to events. When an event is generated, everyone on the list is notified. To add and remove someone onto the event listening list, the following function should be used:

public void add<Event Type>Listener(<Event Type>Listener l);

public void remove<Event Type>Listener(<Event Type>Listener l);

The <Event Type>Listener class is an interface class. The definition must be as follows:

public interface <Event Type>Listener extends EventListener {

 ...list of functions that notify the listener something has happened...

}

The following is an example of a clock class using the Java Beans Event method coding standard:

[image: image10.wmf]CMI System

CMI System Architecture

CMI System Architecture

CMI Application Server

CMI Application Server

“User Management”

Server Component

“Course Management”

Server Component

Course

Repository

Lessons

Repository

User

Database

CMI Management Client

CMI Management Client

DB Interface

“Course Management”

Client Component

“User Management”

Client Component

Functional Components

Communication Flow

Legends

CMI Student Client

CMI Student Client

CBT-CMI Integration

Component

“Course Management”

Client Component

“User Management”

Client Component

Persistent Storage

CBT Interface

Logging Center

Lesson Import

Lesson Import Files

Physical

 Components

The following is the AlarmEventListener Interface that goes with the class:

[image: image11.wmf]Legend

Course & Course Elements

AU

A1

AU

A1

AU

A4

AU

A4

AU

A2

AU

A2

AU

A3

AU

A3

AU

A9

AU

A9

AU

A10

AU

A11

AU

A11

AU

A12

AU

A12

AU: A10

Block (B1)

Block (B1)

AU

A5

AU

A6

AU

A7

Prereq

.

Logic

Prereq

.

Logic

Prerequisite

Logic

Control

Logic

Block

Assignable

Unit

Course

Starting Points

(No

prereqs

)

Complete

Failed

Not Attempted

Pass

Incomplete

AU

Starting Point

Sample Course

Pass/Fail

Logic

Training

Content(Lesson)

The following is the AlarmEvent class that must also be implemented:

[image: image12.wmf]Client Side

Course Management Component on the Server

CourseTableManagerImpl

extends UnicastRemote...

implements RemoteTable

Find

Sort

View

Table Controls

Course Name

Type

Location

Safety

Avail

MS Office 97

Java Basics

Java Intermediate

Java Crash

Couse

Santa Teresa

5/15

Scheduled

CBT CD

Training Soft

Training Soft

See Details...

Santa Teresa

N/A

N/A

Multi

-location

Safety

Almaden

5/15

Scheduled

Java Crash

Couse

More …

Introduction to OOP

See Details...

Multi

-

locatiion

Java Crash

Couse

Introduction to C++

See Details...

Multi

-location

FancyTableBean

RemoteTableModel

RemoteTableManager

Interface

RemoteTableManager

Interface

Java RMI

Courses

Courses

All Course Information Panels

Required safety training for all

employees.

Course Description:

Safety Training

Course Title:

Course ID:

C56

Course Type:

Instructor:

Big Bad Wolf

Deadline:

Mastery Score:

Location:

Santa Teresa Labs.

Room 4A

Lesson

Facilities Safety

7/17/1998 M

8 am - 9 am

Times

Location

Santa Teresa

Labs, Room 4A

Type

Scheduled

50/100

Mixed

7/21/98

Equipment Safety

7/19/1998 W

8 am - 9 am

Santa Teresa

Labs, Room 4A

Scheduled

Dev

. System:

T.S. Course Builder

Version:

1.0

The web page has handouts that you should print. They are

in the

 pdf

 format.

Instructor Comments:

Start Date:

7/17/98

Safety Exam

Training

Soft

None

None

Web Page:

http

://

www

.

trainings

Current # Enrolled:

10/15

Generate Report

Course Structure

CourseManager

Interface

Courses

Courses

Lessons

CourseManagerServerImpl

extends UnicastRemoteObject

implements CourseManager

CourseManager

Interface

All Lesson Information Panels

LessonManager

Interface

LessonManagerServerImpl

extends UnicastRemoteObject

implements LessonManager

LessonManager

Interface

Lessons

Instructor led lecture on facility and earthquake safety.

Lesson Description:

Facilities Safety

Lesson Title:

Lesson ID:

L-I-56

Type:

Instructor:

Big Bad Wolf

Mastery Score:

Location:

Santa Teresa Labs. Room 4A

None

Scheduled

Comments

Instructor led lecture on facility and earthquake safety.

Vendor:

T.S. Course Builder

Instructor-Led Lesson

Start Time:

End Time:

Duration:

7/17/1998 08:00

7/17/1998 09:00

01:00 Hours

Course Management Component Interfaces

Course Management Component Interfaces

CourseTableCache

Ordered List Mapping

(Read Only)

CourseCache

LessonCache

These are the only three types of functions that are allowed inside any Java class. The object to object communications is done through the Java 1.1 Event model as described above. For more information, refer to any Java Beans or Java 1.1 book.

4. Variable naming convention

All variables must be named starting with a lowercase letter. Each different word’s first letter is capitalized. Do not use _, - or any other kind of word connectors. For example, studentTable, studentRoster, instructorName are all valid variable names; however, InstructorName, instructor_name, and instructorname are not.

5. Class naming convention

All class name must be have its first letter capitalized. Each different word’s first letter is also capitalized. Do not use _, - or any other kind of word connectors. For example, ActionEventListener, AlarmEvent, and Action are all valid class names; however, actionEventListener, ACTIONEVENT, Actionevent, and Action_Event are not.

6. Input Parameter Error Handling

For every member function, you should take care of unexpected inputs. For example:

· A null is passed in as a parameter when null is not expected.

· A negative integer is passed in as a parameter when a positive integer is expected.

All errors on input generate an IllegalArgumentException. With the exception you must pass a detailed error message of the following form:

“Argument <argument name>: <reason for the error>”

<argument name>: This is the argument variable name that the error occurred on.
<reason for the error>: A sentence describing what the function expects and what was actually passed.

7. Return Values and Exceptions

For every member function that get or create an object by id or a set of ids, the following return values and exception rules should be observed:

· get: If the record is not found, a null should be returned

· get: If there are multiple matches when there should only be one, a RuntimeException should be generated. The following string should be passed as the constructor input with the RuntimeException:
“Duplicate Record Found: <record id>”
The <record id> should be some identifier of the record that is duplicated.

· create: If there is already an existing record and no overwrite behavior is specified, a RuntimeException should be generated with the following string as the constructor input:
“Attempt to overwrite/create record: <record id> when overwrite not allowed”
The <record id> should be some identifier of the record that is being created or overwritten.

·
·
8. Garbage Collection

In JDK 1.1, garbage collection is not too intelligent. It often leaves useless object around because it is not sure whether it is collectable or not. To avoid this problem, please override the finalize() method. In it, set all member variables to null.

0.1.2. Commenting

All code documentation must be in English.

1. Each Method type member function of a class must be documented.
The document should include: All input parameters, the returned value, and the function description.

Each input parameter should have the parameter name and then a brief 1 sentence description of what it is for. The return parameter should have the return type and also a brief 1 sentence description. Also, all exceptions generated by the function must be documented as well.

The following is an example. This format should be followed:

// Inputs: input – an array of integers
// order – determines which order to sort in. The possibilities are:

//

 MyClass.ASCENDING, MyClass.DESCENDING
// Returns: int[] – The sorted array of integers

// Exceptions: DuplicateIntegerException – when an integer value appears more

//

 more than once in the input array.
// Description: This function sorts the input array in order specified by the
// input parameter “order”.

public int function(int[] input, int order) throws DuplicateIntegerException {}

2. Each Event type member functions should be documented.

Each addXXXListener function should be documented. The documentation should list what events its generates and a brief description of when that event occurs.

The following is an example: This format should be followed:

// Events:
// SizeChangedEvent – when the window size changes

// ColorChangeEvent – when the color of the icon changes.

public void addChangeListener(ChangeListener l);

public void removeChangeListener(ChangeListener l);

3. Document get/set member functions if they affect something non-obvious.

For get/set member functions that simply get from and assign to a member variable, you do not have to document them. If the get/set member function sets does something that is not directly obvious then the documentation should include what kind of action it triggers.

4. All class files must include a class file description comment.

The class file descripion comment must include:

· A 1 paragraph description of the class and what it does.

· A list of related classes.

· The author

· The creation date

If you are using JBuilder, you should use the “Generate Header Comment” option when you create a new class. The following is an example. This format should be followed:

[image: image13.wmf]Lesson Object Cache

LessonManagerImpl

LessonManagerImpl

Returns Lesson objects.

Client Side

Server Side

Java RMI

Transferring lesson objects between the client and server

LessonManager Interface

LessonManager Interface

AU

Course

CourseElements

CourseProperties

CourseStructure

Course Enrollment List

Interface Function Stubs

LessonManagerImpl Client Stub

Lesson Data

Lesson

LessonManager Interface

getLessons()

newLesson()

deleteLesson()

updateLesson()

5. All branch conditions must be documented.

Each branch condition should be documented. This includes what it takes to reach each branch of the condition and what the branch block does. The following is an example and the format should be followed:

if (previous = next) { // If two consecutive cells are equal.

 throw DuplicateIntegerCondition; // error condition.

} else {

 // If two consecutive cells are not equal.

 int swap = previous; // Swap the 2 cells.

 previous = next;

 next = swap;

}
0.2. Data Formats

The following are the data types you will encounter throughout this document. The format that you see in the examples does not mean the storage format. It means that you should be able to parse the examples and convert them to the data type specified. You should also be able to display the examples given a data of the type specified.

Type
Description
Examples

INT
Signed 32 bit integer.

Use the Java int primitive type
-2000000000,2000000000,1,-1

UINT
Unsigned 32 bit integer
0, 100, 1000000

FLOAT
A number with a decimal point

Use the Java float primitive type
1.2, 1.3215

BOOLEAN
A true or false value

Use the Java boolean primitive type.
TRUE, FALSE

STRING
ASCII string with no carriage returns. Supports Unicode. 254 char limit unless otherwise specified.

In examples, quotes are just boundary markers.

Use the Java String class.
“captain”, “Los Angeles”, “Shanghai”,

TEXT
Like a string property but has encoded carriage returns.

All carriage returns are encoded as the string “<CR>”. This is case insensitive. 1024 char limit unless otherwise specified.

Use the Java String class.
“Training<cr>Software”,”Please <cr>a<CR>seat<cR>”

TIME
In a 24 hour format HH:MM:SS

Use the Java Date class.
13:51:00, 01:12:00

DATE
In MM/DD/YYYY format.

Use the Java Date class.
08/21/1998, 01/01/1970

DATE_TIME
MM/DD/YYYY HH:MM [AM/PM], GMT

The time in GMT or UTC format.
08/21/1998 10:30 AM, GMT

URL
A standard URL. Default of 1024 character limit unless otherwise specified.

Use the Java URL class.
http://www.trainingsoft.com/

UINT_ID[Letters]
An alphabetical characters followed by an UINT.

The [Letters] denote the possible alphabetical letters. For example UINT_ID[A|B] can generate ID like A56,B21,A01,B32.

Unless otherwise stated, there is a 254 character maximum.

Use the Java String class.
A01,A5312753

ALPHAN_ID
Alphanumeric ID. Can include symbols but no spaces.

Use the Java String class.
A-5326-CLASS-6

{ X, X, X, X }
One of the items in the set. If the item is enclosed in “” then the item is a string. If the first part of the string is a bold then only that part is significant. The example column lists possible values for the type:

{ “Exit”, “Continue”, “Resume” }

The values are case insensitive.

Use the Java char type with the

public static final declarations for each possibility.
Exit

E

Continue

Con

Resume

R

{ X, X, X, X }+
One or more of the items in the set separated by commas. Again, if the the item is a string and the first part is bold then only the first part is significant. The example columns lists possible values for the type:

{ “Exit”, “Continue”, “Resume” }

The values are case insensitive.

Use the Java int type with the public static final declarations for each possibility. The flags should be in the 0x1, 0x2, 0x4, 0x8…(hex)

(Example: public static int EXIT = 0x1;

 public static int CONTINUE = 0x2;)
Exit

E

Exit, Continue

E, Continue

E, Con, Resume

Exit, Con, R

X-X
An integer range. 1-100 means an integer between 1 and 100.

Use the Java int type.
1-5, -1-500

0.3. File Formats

In this document, the WIN.INI format and a Comma Delimited Table ASCII file format are used often. Please refer to the Appendix for a description of these formats.

0.4. Requirement List

This document lists some important requirements for the developer.

0.4.1. Localization of Software

All of the software written should be easy to localized. This means switching between Chinese and English versions of the software should only involve changing resource files and not rewriting the source code. In the prototype, the both English and Chinese localizations are expected. English is the primary language.

Many of the IDE’s provide utilities to automatically generate localization resource files. For example, in JBuilder, each string property can be placed in a Resource Bundle which makes it localizable.
For localization, all fields that do not have a corresponding field in the locale should have a blank field name.
You must document the method by which localization is done.

0.4.2. Following Specifications

This specification should be followed at all times; however, there are several areas where flexibility is given.

(1) User Interface Coloring

The user interface does not have to match exactly in color unless otherwise specified. Use the default color scheme of the GUI components when building the user interface.

(2) User Interface

The user interface specification should be followed very closely; however, you should also try to use available components in the JFC library. If you think you can save time by using a prebuilt component and not change the look and feel of the interface by much, please let me know before making the change.

(3) Java Source Code
There are skeleton Java source code files provided along with this document. Most of these files have not been compiled or tested. They serve as a guideline for development direction. You will need to modify or add to the class to make it functional.

Generally, when there are deviations from the specification, you must first consult with John Yin before making any changes. Please e-mail to johnyin@yahoo.com AND johny@trainingsoft.com with :

(1) A description of what part you want to change

(2) The proposed change.

If you do not receive a reply within 12 hours, try sending again to the above addresses and alexho@trainingsoft.com as well.

0.4.3. Communication Channels

John Yin will be contacting your group regularly over the course of the project to find out the status and to discuss changes. You must provide the following channels in addition to e-mail, fax, and telephone through which I can interact with the project lead and possibly the group members:

(1) Yahoo Pager’s talk function
You should register an account with My Yahoo. We will be able to communicate interactively through this service.

0.4.4. Project Management Requirements

We have several requirements in regards to managing the project:

0.4.4.1. Project Timetable

You project lead/project manager must submit a project timetable within one week of signing the contract. This timetable should have a detailed schedule of the todo items in the project and what time they should be completed by.

0.4.4.2. Weekly Status Meetings

We must hold weekly status meetings. In this meeting, I will try to get an idea of the progress made so far and to solve any outstanding problems. The project lead must be present during these meetings. If he or she can not make it, someone who is familiar with the project status must be present. Before the meeting, I will call or e-mail to set up a time and method. The possible methods are:

(1) Regular Telephone

(2) Yahoo Pager’s Talk feature

0.4.4.3. Monthly Milestone Checkup

I will also contact you using the same methods once a month to discuss milestone status. All members of the team should be present. This meeting should be held no later than 30 day intervals from the date when the contract is signed. In some cases, I may travel to your location and to meet instead of over long distance.

0.4.4.4. Weekly Source Code Transfer

No later than two days after each weekly meeting, all of the source code you have so far must be zipped e-mailed to me.

0.4.5. Project Milestones

The project milestones are defined as follows:

(1) Setup

(2) Database Storage Format Design

(3) Working User Management Features

(4) Working Course Management Features

(5) Done Coding

(6) Testing Finished

0.4.5.1. Setup

You must do the following no later than the 1st week after the date the contract is signed:
(1) Decide on the development environment (which IDE)

(2) The method to localize the software to Chinese and English.

0.4.5.2. Database Storage Format Design

The database design specified in section 5 must be complete an submitted to me no later than 2 weeks after the date the contract is signed.

0.4.5.3. Working User Management Features

The application server, management client, and student client must all be executable program by now. I should be able to start these programs and do the following through a user interface:

· Browse user list

· Add/Delete/Modify student information

· Login through the login interface

0.4.5.4. Working Course Management Features

The following functions should be working:

· Import lessons and courses into the system

· Browse course lists

· View course and lesson information

0.4.5.5. Coding Finished

All other features should be implemented.

0.4.5.6. Testing Finished

The test phase is completed. See below for the testing requirements.

0.4.6. Packaging Requirements

The final packaged project should be zipped into one file and e-mailed to me. If the file is too large to transfer, then we will work out a way to pick up the project.

The directory structure of this zip file should be:

Documentation\

ApplicationServer\

Client\

Source\

The Documentation directory should contain all of the documentation for the project including the ones specified in section 8.

The ApplicationServer directory should contain the directory structure specified in section 4.1. It should contain a ready to run application server that can be started by setting the appropriate environment variables and executing the “Command Line” text also specified in the same section.

The Client directory should contain the directory structures specified in 6.1and 7.1. It should contain ready run management client and student client. We should also be able to start it by setting the appropriate environment variables and executing the “Command Line” texts in those sections.

The Source directory should contain all of the Java source code and project files.
0.4.7. Testing Requirement

As of version 3.3, the testing requirement has been moved to a separate document. Please refer to “Test Spec 1_0.doc” for more information.
All tests should be done after the implementation of this specification has been completed.
0.4.8. Documentation Requirement
Please see section 8 for information on the documentation requirement
System Architecture Overview

This specification describes a Computer Managed Instruction (CMI) system. The system is responsible for online management of courses, student enrollment, and training material. The courses that it manages can be either computer based (CBT) or instructor-led.

Definition: CBT (Computer Based Training)

Any training session that is performed at a workstation. For example, it can be a interactive courseware CD-ROM that the student can run on his or her Windows machine. Or it can be an online web course.

The architecture of the system is a 3-tier client/server model. There is a single application server that contains most of the business logic. It performs most of the burden of the system and is written in Java. There are a total of 2 clients that connects to the application server. These clients are also written in Java and are thin clients; meaning they do not contain too much processing intensive logic. These clients are the front-ends of the system and deals primarily with user interface issues. Finally, the persistent storage module makes up the last tier of the system. These are the four physical components of the system. The following is a diagram of the system architecture:

[image: image14.wmf]Course

CourseElements

CourseProperties

CourseStructure

Course Enrollment List

Interface Function Stubs

CourseManagerImpl

CourseManagerImpl

Returns a course object.

Client Side

Server Side

Java RMI

Transferring course objects between the client and server

CourseManager Interface

CourseManager Interface

CourseManagerImpl Client Stub

Course Object Cache

CourseManager Interface

getCourse()

get/set CourseProperties

get/set CourseStructure()

get/set CourseElements()

get/set CourseEnrollmentList()

newCourse()

deleteCourse()

Funtions used directly by the client

Funtions used by the client Course object

to incrementally load course information

updateCourse()

Figure 1
The above diagram shows all of the physical components in green. All of the communication flow between components and modules are marked by double headed arrows. There is a protocol defined for each of the arrows. In addition, the physical components are broken down into “logical” components.

Each logical component is logic to do with one aspect of the CMI system. The input, output, and operational definition for each logical component will be given in the later part of this documentation.

0.5. Phyiscal Components Overview

Physical components are components that are separated by physical differences. For example, a server and a client are two different physical components. The CMI system is separated into at 4 different physical components. They are:

Name
Type
Description

Persistent Storage
Microsoft SQL

Server
This is the persistent storage for the entire CMI system. It will store all training information, user data, and any other data that require persistence.

CMI Application Server
Java Server
This server contains much of the business logic of the CMI system. It will handle most of the processing load to make the Java client faster.

CMI Management Client
Java Application
This client is used by system administrators and instructors to manage users and training material. It is a thin client that allows users the fully access the management capabilities of the application server.

CMI Student Client
Java Application
This a thin client specifically design for students to manage their training schedule and to initiate a training session. It connects to the application server and allows the student to access information regarding their training possibilities.

0.6. Functional Components Overview

A functional component is a set of logic that performs a certain functionality of the CMI system. It is usually made up of one or more Java packages or class files. These files may or may not be used in the same physical component. It is easier to discuss the functionality of a program by dividing the program’s functions into this kind of a view.

Most of the functional components are spread out over the server and a client. For example, the course management functional component exists in the CMI Applicant Server and the CMI Management client. The server part of the component contains all of management functionality including the actual database operations. The client part of the component is simply the user interface that presents the data visually.

The system architecture diagram shows there are a total of 9 different logical components:

Component Name
Description

Course Management
This component contains all logic associated with managing a course. It handles:

· Adding, removing, importing, and exporting courses

· Removing students from courses

· Examine and modify course information.

User Management
This component contains all logic associated with the mangement of users. Some of its functionality are:

· Add/Modify/Delete users

· Manage user demographic information

· Store and manage user performance information

· Unenroll/Enroll students in active courses

CBT-CMI Integration
This component is responsible for integrating CBT (Computer Based Training) courses into the management system. It will be responsible for automatically executing the training material and collecting performance information.

Event Logging Facility
Centralized storage of all logs including system log,, error log, transaction log, etc.

Database Interface
This component is the database driver portion of the application server.

Import/Export module
Imports/Exports lesson files to and from the lesson repository.

3 Database components
There are a total of 3 different database components. One for storing user information, one for storing course information, and one for storing CBT lesson information. These three database components are all located in the same Microsoft SQL Server.

For most of the functional components, I have already included an architectural design and some skeletal source code; however, the source code files are not compiled or tested and may be incomplete. You may need to modify or add to them to achieve full functionality. The main purpose of the files is to serve as a development guideline.

In designing parts of the functional components, I have some basic design philosophies. These design philosophies should be followed when designing other parts of the CMI system.

· Thin client, fat server
The majority of the processing load is placed on the server. The client is mainly a GUI that allow users to manipulate data.

· Use Java Beans for all reusable GUI components.
The Java Beans methodology allows the reuse of GUI components easily. It also allows the developer to change the appearance of an application inside an IDE. There will be many GUI component groups that appear in different screens of the client.

· 100% Pure SUN Java and Java 1.1
No Microsoft Java add-ons(AFC). These programs must be able to run on UNIX too so that means use only what SUN has defined for Java.

· Client/Server communications should be good on a 56K connection.
The communication protocol should be able to function well on a 56K connection. This means, for commonly used functions, the communication related lag time should be less than 1 second on a 56K connection between mouse clicks.

· Use the Manager style interface classes for Client/Server interface definition.
See how the course management functional component’s interface classes are designed to get an idea.

There is also a series of design decisions that were made in defining this specification. If you think there is a better way to do what is listed, please notify Mr. John Yin before making any changes!

· Use Java RMI as the communication protocol between the client and the server
This means using RMIC utility to generate server skeletons and client stubs. This should take most of the work out of designing communication protocols. This means each of the functional component’s client and server objects will talk to each other through some RMI interface class.

· Use JDBC as the database interface.

· Use Java for both the server and the clients

0.7. User Types Overview

The CMI system supports three different kinds of users. They are:

1. Administrator

2. Instructor

3. Student

The administrator is like a root user and has all access privileges. They access the system through the CMI Management Client.

The Instructor is a limited form of an administrator and also uses the CMI Management Client. This user type is designed for people who teach training courses and helps students along in their training. They are typically in charge of a group of courses. As such, this user type’s access rights are restricted to the courses they are in charge of. They have full access rights to those courses’ information, structure, and enrollment lists.

Students are the majority of the users. This user type is designed to receive training. They have rights to view course lists, enroll in courses, receive training, and manage their own information. They do not have any rights to modify courses, course lists or access other student’s information.

0.8. Training Material

Much of the functionality of the CMI (Computer Management Instruction) system has to do with managing the training material stored inside these two databases. Although the CMI system does not directly store and deliver the training content to the student, it does manage the training content as well as the delivery of it.

The CMI system manipulates a series of Java objects that represent the training material and users. These objects include, Course, Lesson, AssignableUnit, Block, Student, Instructor, Administrator and others.

The most important object in the system is the Course object. It represents a course, the only unit that the student can enroll and unenroll in. They can not enroll in anything smaller or larger than a course. They can be enrolled in more than one course at a time.

A course is made up of one or more assignable units. An assignable unit represents the smallest unit of training that a student can execute at one time. It is like a single session in a course. Each assignable unit can be completed in a short amount of time (within a few hours). They are designed to be taken in one continuous time period and still teach a reasonably complete idea or concept. It contains both meta-data about the training content and the execution information of the training content itself. They are stored with each course in the course repository.

The part of the AU that represents the training content is called a lesson. The lesson is encapsulated inside the Lesson Java object. All of the execution information and development information for the training content is stored inside the lesson object. These object, in turn are stored in the lesson database component of the CMI system. There are a total of three different lesson types each representing three different kinds of training material:

1. CMI compliant CBT lesson
There exists an interface module in the CBT-CMI integration component for this lesson type. This interface module can execute the lesson content directly at the local workstation and collect data from it.

2. Web based CBT lessons
There exists an interface module in the CBT-CMI integration component for this lesson type that only directs the user’s browser to the lesson.

3. Instructor-led lessons.
There is a dummy interface module in the CBT-CMI integration component that pops up lesson information. For the actual content, the student will have to physically go to the location.

1. CMI System Objects

The CMI System manipulates course and user information through a set of Java object representations. In this section, the specifications for these objects are given. They are divided into two groups: Training Material Objects and User Objects.

Training Material Objects

Course

This Java object represents a course in the CMI system. Recall that a course is the smallest unit of training that students can enroll in. It consists of a group of course elements. These course elements are “wired” together by prerequisite and completion conditions to form a course.

CourseElement (Abstract Class)
This Java class represents a course element, a single building block of a CMI course. The course element can be one of the specialized subtypes: AssignableUnit or a Block. Course elements can be combined in different ways to build a course. This modularized approach allows the instructors to customize courses.

AssignableUnit

This is a concrete subtype of the CourseElement. It represent a small chunk of training material that can be taken in a short period of time. It also includes meta-data about the time, location, and method of execution of the training material. This is the smallest unit that can be assigned to a student. Every AssignableUnit has a associated Lesson object which holds the training content behavior information.

Block

This is also a concrete subtype of the CourseElement. It represents a group of AssignableUnits. All AssignableUnits within the block will have the same prerequisite conditions. This is mainly a convenience structure.

Lesson

This object represents the training material that belongs to an AssignableUnit. It contains no context sensitive information such as location or time. Through this object, the instructor can mainpulate the delivery behavior of the training content. There is always a one-to-one correspondence between an AssignableUnit and a Lesson(i.e. an AssignableUnit always has a lesson associated with it).

A lesson can be one of three types: Web-based Lesson, CMI Compliant CBT Lesson, and Instructor-Led Lesson.

User Objects

User (Abstract Class)

This Java class represents a user in the CMI system. There are three concrete subtypes of the User abstract class. They are: Student, Administrator, and Instructor.

Student

This is a concrete class of the User object. The Student object represents a student of the CMI system. Its main differentiation from other user types is that it supports training history logging.

Instructor

This is a concrete class of the User object. The Instructor object represents an instructor who can build and teach training material using the CMI system. It therefore has limited administration capability associated with creating, modifying, and monitoring a course.

Administrator

This is a concrete class of the User object. The administrator is a super user of the system. It has access rights to all functions.

1.1. Training Material Objects Overview

Much of the purpose of the CMI system is to manage courses and its contents. The collection of Java objects that represent this data is classified as Training Material Objects.

A course is composed of various course elements. They are:

1. An Assignable Unit
Also known as an AU, represents a unit of training that can usually be completed in one sitting. Each AU has all of the information necessary to execute the training content. For example, a single lecture, a CBT courseware CD, a test or a one day seminar can all be an AU.

2. Block
A group of AU’s. The block is treated as a single AU for prerequisite and completion requirement purposes (prerequisite and completion requirements are explained later).

Each course and course element has prerequisite and completion requirements. They also have “performance history” properties representing how well the students did. Each course element also has its own unique system ID within the course.

The simplest course is a single AU where passing the AU means passing the course. For example, a simple course “Introduction to Java” only has a single AU with the title of “Java Introduction”:

[image: image15.wmf]Client Side

User Management Component on The Server

UserTableManagerImpl

User Listing w/ FancyTableBean

RemoteTableModel

RemoteTableManager

Interface

RemoteTableManager

Interface

Java RMI

User Objects

All User Information

UserManager

Interface

Training History

Objects

UserManagerlmpl

UserManager

Interface

All Performance History Information

TrainingHistoryManager

Interface

TrainingHistoryManagerImpl

TrainingHistoryManager

Interface

User Management Component Interfaces

User Management Component Interfaces

Sort

Find

View

Table Controls

Full Name

ID

Group

User Type

E-mail

Bunny, Bugs

bbunny

HR

Instructor

Duck, Donald

dduck

Engineering

Student

Duck, Daffy

dduck2

Instructor

Pig,

Porky

ppig

Administrator

Mouse, Mickey

mmouse

Student

Simpson

, Bart

Bsimpson

Student

Simpson

Lisa

lsimpson

Student

HR

HR

HR

Engineering

Engineering

Porky

First Name:

Last Name:

Middle Name:

The

Pig

Sex:

M

Job Title:

Peon

Manager:

Bugs Bunny

E-mail:

ppig

@

toon

.land

Familiar Name:

Location:

Santa Teresa

City:

State:

Zip:

Experience:

Phone:

Address:

Home

x7526

Work

Native Language:

English

3 Years 6 month

User ID:

Password

User Preferences

Birthday:

7/19/1945

Prior Experience:

3

Years

Joining Date:

12 / 8 / 1990

ppig

Group:

Engineering

Social Security Number

123-56-7890

Administrator

User Type:

7/15/97

7/15/96

Lesson

Facilities Safety

Final Status

Complete

Type

Instructor-Led

Start Time:

Course Score:

87/100

7/12/97 1:45

pm

Status:

Pass

Safety Training Exam

Pass: 87/100

Training Software

Equipment Safety

Complete

Instructor-Led

Generate Report

Training Details For “Safety” course:

End Time:

7/15/97 2:15

pm

Time Completed

Attempts

7/12/97 2:30

pm

1

7/13/97 2:30

pm

7/15/97 2:15

pm

Time Spent On Course

03:15 Hours

1

1

Course Title

ID

Status

Time Completed

Oracle 8 Administration

C74

In Progress

10/12/97 5:00

pm

Introduction To Java

C1

In Progress

10/12/97 2:00

pm

Safety Training

C56

Pass

7/15/97 2:15

pm

Introduction To JFC

C5

Pass

9/9/98 1:00

pm

Introduction To JFC

C5

Fail

9/9/98 1:00

pm

Score

80/100

70/100

95/100

UserTableCache

Ordered List Mapping

(Read Only)

UserCache

TrainingRecordCache

For this simple case, passing the AU is equivalent to passing the course.

A slightly more complex course is made up of multiple AUs connected together by prerequisite conditions. Also, there might be a more complex condition that defines what is considered as passing the course. For example, the following course is made up of three different AUs with IDs of A1, A2, A3 connected in sequence as follows:

[image: image16.wmf]7/15/97

7/15/96

Lesson

Facilities Safety

Final Status

Complete

Type

Instructor-Led

Start Time:

Course Score:

87/100

7/12/97 1:45

pm

Status:

Pass

Safety Training Exam

Pass: 87/100

Training Software

Equipment Safety

Complete

Instructor-Led

Generate Report

Training Details For “Safety” course:

End Time:

7/15/97 2:15

pm

Time Completed

Attempts

7/12/97 2:30

pm

1

7/13/97 2:30

pm

7/15/97 2:15

pm

Time Spent On Course

03:15 Hours

1

1

Course Title

ID

Status

Time Completed

Oracle 8 Administration

C74

In Progress

10/12/97 5:00

pm

Introduction To Java

C1

In Progress

10/12/97 2:00

pm

Safety Training

C56

Pass

7/15/97 2:15

pm

Introduction To JFC

C5

Pass

9/9/98 1:00

pm

Introduction To JFC

C5

Fail

9/9/98 1:00

pm

Score

80/100

70/100

95/100

[image: image17.wmf]Course Title

Type

Location

Safety

Avail

MS Office 97

Java Basics

Java Intermediate

Java Crash

Couse

Santa Teresa

Find

Sort

View

Table Controls

5/15

Scheduled

CBT CD

Training Soft

Training Soft

See Details...

Santa Teresa

N/A

N/A

Multi

-location

Safety

Almaden

5/15

Scheduled

More …

Introduction to OOP

See Details...

Multi

-

locatiion

Introduction to C++

C++

standrad librari

...

CORBA

Intro

to Oracle 8

Java Crash

Couse

See Details...

See Details...

See Details...

See Details...

See Details...

Multi

-location

Multi

-

locatiion

Multi

-location

Multi

-

locatiion

Multi

-location

Stat

I

I

C

F

P

[image: image18.wmf]Required safety training for all

employees.

Course Description:

Safety Training

Course Title:

Course ID:

C56

Course Type:

Instructor:

Big Bad Wolf

Deadline:

Mastery Score:

Location:

Santa Teresa Labs.

Room 4A

Assignment

Facilities Safety

7/17/1998 M

8 am - 9 am

Times

Location

Santa Teresa

Labs, Room 4A

Type

Scheduled

Current # Enrolled:

10/15

50/100

Mixed

7/21/98

Equipment Safety

7/19/1998 W

8 am - 9 am

Santa Teresa

Labs, Room 4A

Scheduled

Dev

. System:

T.S. Course Builder

Version:

1.0

Web Page:

The web page has handouts that you should print. They are

in the

 pdf

 format.

Instructor Comments:

Start Date:

7/17/98

Safety Exam

Training

Soft

7/21/1998 F

8 am - 9 am

Santa Teresa

Labs, Room 4A

http

://

www

.

trainings

Enrollment

Info

Course Structure

Generate Report

[image: image19.wmf]Instructor led lecture on facility and earthquake safety.

Lesson Description:

Facilities Safety

Lesson Title:

Type:

Mastery Score:

None

Training Software

Start Time:

Anytime

7/17/1998 09:00

None

Comments

Some comments.

Due Date:

N/A

Duration:

Location:

Home Page:

http://www.trainingsoft.com/C56/A2.html

Lesson ID:

TS-L-164

System Vendor:

Training Sofware

Max Time Allowed:

Time Limit Action:

01

56

:

Hours

Exit, No Message

[image: image20.wmf]System ID

Latest Status

Start

A1

Complete

Start

A2

Not Attempted

Start

Title

Introduction to OO Programming

Java For C++ Programmers

B1

Java Packages Tour

Not Attempted

The students must take the three AUs in order. A1 is a CBT courseware AU, A2 is an instructor led training session, and A3 is an online examination. In this case, students will pass the course if they pass the “Java Level 1 Exam”.

The user can also group multiple AUs into a block (another type of course element). The block then is treated as a single AU for prerequisite and completion requirement definitions. All AUs within the block can be taken concurrently.

The definition of the prerequisite structure of a course is very flexible. The instructor or administrator who creates the course can use logic operators such as AND, OR, and NOT together with AU and block IDs as operands.

The completion requirements is similar to prerequisites in that it is also made up of a series of logical statements; however, the operands are different. The completion of a particular course elements may depend on the result of such a logic statement. For example, AU A1 is considered passed when AU A2 and A3 are passed.

More details on prerequisites and completion requirements are given in later sections.

1.1.1. Example Course I

The following is an example introductory course on Java:

[image: image21.wmf]Porky

First Name:

Last Name:

Middle Name:

The

Pig

Sex:

M

Job Title:

Peon

Manager:

Bugs Bunny

E-mail:

ppig

@

toon

.land

Familiar Name:

Location:

Santa Teresa

City:

State:

Zip:

Experience:

Phone:

Address:

Home

x7526

Work

Native Language:

English

3 Years 6 month

User ID:

Password

User Preferences

Birthday:

7/19/1945

Prior Experience:

3

Years

Joining Date:

12 / 8 / 1990

ppig

Group:

Engineering

Social Security Number

123-56-7890

Administrator

User Type:

[image: image22.wmf]System ID

Latest Status

Start

A1

Complete

Start

A2

Not Attempted

Start

Title

Introduction to OO Programming

Java For C++ Programmers

B1

Java Packages Tour

Not Attempted

[image: image23.wmf]Times

Status

8:00 am

To

9:00 am

8/3/1998 Monday

Class / Assignment

Course: Introduction To Java

Lesson: Java Packages Tour

Location: Building 14, 4B

Prereq

Not

Satisified

1:00

pm

To

3:00

pm

Course: Enterprise Java Seminar

Lesson: Seminar

Location: Building 13, 2A

August

1998

Today

Assignment Calendar

Waiting

To

Take

Sun

Mon

Tu

Wed

Th

Fr

Sat

1

8

15

22

29

7

Due

6

5

4

3

Due

2

14

13

12

11

10

9

21

20

19

18

17

16

28

27

26

25

24

23

31

30

5:00

pm

Course: Enterprise Java Seminar

Lesson: Seminar

This lesson is due at this time

Due at

this time

Figure 2
In this diagram, a course is made up of a total of 7 assignable units. 3 of the AUs are organized in a block which treats them as a single course element in the course structure. The black arrows represent the prerequisite information for each course element. The prerequisite condition states the student must first complete “Introduction to OO Programming” before attempting “The Java Language”. After the “The Java Language”, the student as a choice to taking “Java Applets” or “Java Applications”. Once “Java Applications” is complete, the student can then take the “Java Packages” block. This means, the student can take any of the AUs within the block at the same time or different times. By default, to complete the block, all of the AUs within the block must be completed.

1.1.2. Example Course II

The following is a more complex example:

Figure 3
In this example, there are a total of 10 assignable units. The prerequisite requirement is marked by black arrows. The student can start from any of the 3 course starting points because these three AUs do not have prerequisites. In the case of assignable unit A10, the lesson has a more complex prerequisite that is a combination of AU’s A12 and A9. In the illustration AU A10 is blown up to illustrate what happens during the execution of the training content.

When first entering A10, the completion status of the AU is “Not Attempted”. One the student executing the lesson, the status becomes “Incomplete”. After the lesson execution is done, the Pass/Fail logic part will decide whether the student has passed or not. If it has passed, the final status would be “Pass” otherwise it would be “Fail”. But no matter what the result is, the AU is considered to be “Complete” meaning the student has seen all of the lesson components.

The course can also have its own completion requirements. This is not illustrated in this example.

1.1.3. User Objects Overview

There are three user types within the CMI system. They are: administrator, instructor, and student. Each user type suits different tasks a user wants to accomplish in the system and have different access rights.

The administrator and instructor user types use the CMI Management client. The only difference between the two is that the administrator has access to all of the screens. The instructor only has access to the “Course” main option. In addition this restriction, only the courses that the instructors are in charge of is listed.

In order to make the user types expandable and easily modifiable, the following class hierarchy should be observed:

Figure 4
The User class contains generic information that all users have. The student class is a user who can receive training. It supports training history tracking and other training related functions. The instructor and administrator classes support the management of training material.

By layering the class hierarchy in this manner, future changes are localized.

1.2. The Course Object

The course object represents a single CMI course. It is probably the most complex object in the whole system and much of the specification is devoted to describing it. Whenever changing or accessing course data is required, this object is first retrieved. Then the operations are done through its public methods and saved back to the database. Since it is complex and is passed frequently over the network, it is broken down into four subcomponents. They are:

· Course Properties
Course information properties such as title, id, description and starting time.

· Course Elements
The course elements are assignable units and blocks that belong to the course. Each course element represents a piece of the training material that makes up the course.

· Course Structure
The course structure information defines in what order the user should take the course elements. It also defines what the passing criterias are for each of the course elements.

· Course Enrollment
This component contains the enrollment information for the course.

The course is divided into these four components because the access patterns of the client fits these component boundaries. This allows incremental loading of the course which would otherwise take a significant amount of time on a slower network.

If you have a better suggestion for the break down or design, please let me know and we can discuss it. A skeleton Course class is provided with this specification. You will need to add to the class for complete functionality. The file is located in Course.java.
The following is an overview of all of the course and course related objects:

So far there are two kinds of course elements: Assignable Units and Blocks. The following class hierarchy for all course elements should be followed:

Figure 6
The CourseElement base class skeleton is in CourseElement.java. You will probably have to make additions and modifications.

The only course information that is a permenant part of the Course object is the following property:

Property Name:
ID

Java Type:
java.lang.String

Default:
C<unique integer>

Format:
Alphanumeric: C[0-9]*. The letter ‘C’ followed by a unique integer id.

Description:
This is the unique course ID for the course. This is the only property that is always loaded with course object when transferring across the network.

Examples:
C1, C2, C569

All accesses to the course object is done through the CourseManager manager interface class (CourseManager.java). You must write a concrete implementation of the CourseManager class called CourseManagerImpl. This class must be made RMI capable.

The course object also has the ability to export its contents to a set of ASCII files and import them back in. This feature is need to implement some of the interfaces to other program. The specification for the export files are discussed in Appendix A.

1.2.1. CourseProperty Subcomponent

The course properties subcomponent corresponds to the CourseProperties class found in Course.java. It contains most of the course’s informational properties.

Course Property List

Property Name: creator
Java Type:
CMI.userComponent.User

Default:
nobody.
Format:
A User ID.
Description:
This property contains the user who created the course. This user is always either an instructor or an administrator. It can never be a student.

Examples:

Property Name:
systemVendor

Java Type:
java.lang.String

Default:
“Training Software”

Format:
This is a text string with no carriage return, line feeds, or tabs.

Description:
This is the name of the predominant authoring tool that created the course.
Property Name:
title

Java Type:
java.lang.String

Default:
ID of the course

Format:
This is a text string with no carriage return, line feeds, or tabs.

Description:
This is the commonly used name for the course. This is what appears as the primary identifier for courses in the user interfaces.

Property Name:
description

Java Type:
java.lang.String

Default:
Blank

Format:
This is a text block with all ASCII characters.

Description:
This is the expanded description of the course. It is usually 1 short paragraph long.
Property Name:
homePage

Java Type:
java.net.URL

Default:
blank.

Format:
standard URL. <protocol>://<host>:<port>/<directory>

Description:
This is the home page of the course description. Some courses that are run by instructors may have home pages with detailed information about a course. This is the place to store the link to that information.
Property Name:
location

Java Type:
java.lang.String

Default:
Generated from the location property of all of its AUs.
If all of the AU’s have the same location (blank locations do not count) then this property will contain that location. Otherwise, it will contain the string “Multi-Location”. If all of the location properties are blank then this property will be blank.

Format:
string with no carriage return, line feed, or tabs.

Description:
This is the predominant location where the course takes place. By default it is calculated from the location property of all of the course’s AU’s. It can be changed by an administrator or the instructor in charge of the course.
Property Name:
startTime

Java Type:
java.util.Date

Default:
The value of the earliest startTime property in the member AU’s.
If no such value exist then time 0.

Format:
0 = no start time(start anytime). The exact time down to the minute.

Description:
This is the time when the first scheduled AU in the course starts. It can be changed by the user.
Property Name:
endTime

Java Type:
java.util.Date

Default:
The latest value of the endTime property in all member AUs.
If no such value exist then 0.

Format:
0 = no end time. Otherwise, the time specified. Accurate to the minute

Description:
This is the time when the course is planned to end. The user can change this value. If no startTime exist (startTIme=0) then the endTime is like a due date.
Property Name:
maxScore

Java Type:
int

Default:
100

Format:
positive integer

Description:
The maximum score that a student can get on the course. This is purely an informational property.
Property Name:
maxEnrollment

Java Type:
int

Default:
999999

Format:
positive integer

Description:
The maximum number of students that can be enrolled in the course. This property restrict the size of the enrollmentList property.
Property Name:
instructor

Java Type:
A User ID.
Default:
The smallest user id of all the administrator users

Format:
A user id.

Description:
The administrator or instructor who is in charge of the course.
Property Name:
level

Java Type:
int

Default:
3

Format:
positive integer

Description:
hard coded to 3. Not changeable.
Property Name:
vendorInformation

Java Type:
BLOB (large binary object)

Default:
empty

Format:
a chunk of bytes

Description:
This property is for holding vendor specific information for the course. In this case, after the course is built in the Course Builder client, a set of files described in Appendix A is written to disk. The Management Client must then import them into the system as a Course object. The COURSE.LYO file’s contents will be placed in this property.

The contents might be very large so it is not recommended to store this in memory. While in memory, there should only be a reference to where the data is. When it becomes necessary to pass the information on to some external program (like when the course gets reexported), this is the time that the contents of this property should be passed along.

The actual contents should be stored in the persistent storage.
Each get/set property of the Course object will first see if the CourseProperties subcomponent is loaded. If not, then it will load the CourseProperties subcomponent from the application server through the getCourseProperties() method of the CourseManager interface(CourseManager.java). This subcomponent then serve as a pass through method and invoke the appropriate get/set method in the CourseProperties subcomponent. All of the other subcomponent should all work this way.

There is an option to preload the CourseProperties subcomponent with the Course object as a part of the CourseManager interface.

1.2.2. CourseElements Subcomponent

The course elements subcomponent corresponds to the CourseElements class mentioned in Course.java. There is no skeleton code provided for this class and it is up to the developer to write one. This component contains a full listing of all course elements that make up the course content. Recall that a course element is either an assignable unit or a block.

An assignable unit is the basic building block of the course. It has two components. The first components is the lesson. A lesson represents the training material content and contains information on how to access or execute the content. The second component is the course specific scheduling information. The smallest unit of training that the CMI system can assign to students is the assignable unit; therefore, the AU can usually be completed within a few hours and in a single session.

The block is a group of assignable units. This is simply a convenient grouping structure. Each block is treated as a single AU for prerequisite conditions (discussed later in this document).

There can be an unlimited number of assignable units in the course and an unlimited number of assignable units in a block.

More detail information about each of the course element types is described later.

1.2.3. CourseStructure Subcomponent

This subcomponent corresponds to the CourseStructure class mentioned in Course.java. The course structure component describes the routing behavior of a course by prerequisite conditions. It also defines the completion requirements by a set of completion conditions. Therefore, it should contain all prerequisite and completion information for the course. This information is loaded separately from the list of course elements.
Prerequisite conditions are used to control entry into a course element. If the prerequisites are not satisfied, then the course element can not be started by the user.

Completion conditions are used to alternatively determine the completion status of a course element. It is used primarily to state equivalence relations between different course elements. For example, completing one course element is the same as completing another course element. These conditions are especially useful in course elements that function like equivalence tests or proficiency tests.

All of these condition are defined using special logic statements discussed later in this section. The operand of these logic statements is the completion status of a course element in the form of (<Course Element system ID> = <completion status). The system ID is exactly the same as the systemID property in 2.4. The completion status is exactly the same as the status property in the PerformanceRecord structure discussed in section 2.8.2.1.

Each prerequisite or completion requirement condition has the following format in this specification:

systemID, Requirement[, Status]

systemID: The systemID property of the course element

Requirement: The logic statement

Status: The final compeltion status if the logic statement is true. This property only applies for

completion requirements.

1.2.3.1. Logic Statement Operators

The following are the possible logic operators:

Symbol
Operator Meaning
Example

&
AND.
A1 & A2

|
OR
A1 | A3

never
Never
A34, never, F

~
Not
~B1

{ }
Group of set. Usually used in conjunction with the * operator.
{ A1, B1 }

,
Separator for members of a set {}
{ A1, B1 }

*
Complete X members out of a set
3 * {A1, A2, A3, A4, B1}

complete 3 out of the 5 course elements

()
Evaluate first.
B2 | (3 * {A1, A2, A3, A4, B1} * & B1)

These operator only make sense when in the context of prerequisites and completion requirements for a course.

1.2.3.2. Logic Statement Operands

The operand of the logic statement is in the following format:

<system id(section 2.4)> = <course element status(section 2.8.2.3)>

The course element status can be either P(Pass), C(Complete), F(Failed), I(Incomplete), or N(Not Attempted). The status used will be the latest one for that course element in a student’s progress information(Status property in section 2.8.2.3. The operand can also be abbreviated by using only the system ID instead of <system id> = <course element status>. In this case, it is the same as requiring a “Complete” status for that AU. The following is an example:

A3, ~(B2=F) & A1=I & A2, Pass

In this example, AU A3 will get a “Pass” status if:

Block B2 is not Fail AND AU A1 is Incomplete AND A2 is complete.

Notice that by default, if only the system ID is show in the operator (like A2 in the example above), the operand is assumed to read <system id>=C.

In section 2.2.3.4, how to determine the completion status for each course element type is discussed.

1.2.3.3. Prerequisites

Prerequisite conditions define the entry condition of a assignable unit or block. All of the prerequisite conditions must be satisfied in order for the student to be able to start an assignable unit. If the conditions are for a block, then none of the AUs within the block can be started without satisfying the prerequisites. Each AU or block can have multiple prerequisite conditions.

The simplest prerequisite definition is a singular dependency. This means, the prerequisite of an AU ‘B’ is the passing of another AU ‘A’: the student may start AU ‘B’ only after he or she has passed AU ‘A’. An example of a singular dependency prerequisite appears in Figure 2 where a black arrow illustrates the relationship.

Each prerequisite condition has the following format:

<course element systemID>, <Prerequisite Logic Statement>

Example 1: A31, A23 & A28

The student is required to complete A23 and A28 before beginning AU A31.

Example 2: B31, ~(A31=F)

The student is required to not have failed A31 in order to begin block 31.

Example 3: A5, 1*{A1, A2, A3, A4=P}

The student is required to have completed one of A1, A2, A3 or passed A4 in order to start AU A5.

For more examples, please refer to Appendix A.

1.2.3.4. Completion Status of Course Elements

All prerequisite and completion requirements are based on the completion status of course elements. This attribute is stored in the status property of the PerformanceRecord(or a subclass of PerformanceRecord, i.e. AURecord) discussed in section PerformanceRecord. In the following sections, we will discuss how the value of this property is determined.

For the AU course element, the status is determined in different ways depending on the lesson type of the AU. For CMI compliant CBT’s, all of the necessary information to determine the completion status of the AU is passed directly to the CMI system when the student finishes the lesson. For the other two types, this information is not immediately available.

Completion Status Determination for AUs with a CMI Compliant Lesson

For AU that are CMI compliant lessons, the recommended completion status and score will be sent automatically to the CMI system after the student is done with the lesson through the execution interface(discussed in section 7.4). The CMI system then makes a final decision on what the actual status of the AU is from the user settings for that AU. This decision is based on the Mastery Score value set in the AU record and the score and recommended status passed from the CBT lesson. The final status for the AU may be different from the recommended status because the user may have changed the mastery score setting for the AU.

The following table defines the status change behavior for this type of an AU. The AU’s Status and Score properties are the Status and Score properties in the performance record parent class discussed in section 2.8.2.1.

CBT Lesson To CMI upon Exit

Final CMI AU status

Lesson Status
Score
Mastery Score setting for the AU
AU Status
Score

Pass
[score]
Mastery_Score <= [score]
Pass
[score]

Mastery_Score > [score]
Fail
[score]

Mastery_Score = blank
Pass
[score]

Pass
Blank
Mastery_Score = blank
Pass
Blank

Mastery_Score > 0
Fail
Blank

Complete
[score]
Mastery_Score <= [score]
Pass
[score]

Mastery_Score > [score]
Fail
[score]

Mastery_Score=blank
Complete
[score]

Complete
Blank

Complete
Blank

Failed
[score]
Mastery <= [score]
Pass
[score]

Mastery > [score]
Fail
[score]

Mastery = blank
Fail
[score]

Failed
Blank

Fail
Blank

Incomplete
[score]
Mastery_Score <= [score]
Pass
[score]

Mastery_Score > [score]
Fail
[score]

Mastery_Score = blank
Incomplete
[score]

Incomplete
Blank

Incomplete
Blank

Not Attempted
[score]
Mastery_Score <= [score]
Pass
[score]

Mastery_Score > [score]
Fail
[score]

Mastery_Score = blank
Not Attempted
Blank

Not Attempted
Blank

Not Attempted
Blank

This is the default way to determine the status of a lesson attempt. Completion requirement logic statements discussed in section 2.2.3.5 can override it or supplement it.

Completion Status for AUs with a Web-based Lesson

The web base lesson is started by the WebExecution class. Before starting the lesson, the completion status should be “Not Attempted”. After starting the lesson (by starting a web browser and pointing it to the lesson URL), the status becomes “Incomplete”. When the browser exits, the status will become “Complete”. The “Pass” and “Fail” status can not be determined for this lesson type. It must be manually changed by an instructor or administrator.

Completion Status for AUs with a Instructor-Led Lesson

For these type of lessons, the AU status will become “Complete” when the scheduled time for the AU has passed. Before the startTime is reached, the status will be “Not Attempted”. When the current time is in between startTime and endTime values, the status will be “Incomplete”. When the current time has past the endTime property, the status will become complete.

Completion Status for Blocks

By default, the completion status of a block depends on the completion status of all of the member AUs. The following is a table illustrating the relationship:

Member Statuses
Block Status

All “Pass”
Passed

Has a “Fail” member
Failed

All “Complete” or some “Passed” and other “Complete”
Complete

Has an “Incomplete” member
Incomplete

Has a “Not Attempted” member
Not Attempted

Completion requirement logic statements discussed in section 2.2.3.5 can override this default behavior.

1.2.3.5. Completion Requirements

Completion requirements define how to determine the final status of a course element or the course. These requirements have higher precedence and override the default behavior discussed in section 2.2.3.4. There may be multiple requirement conditions for each course element or course. The requirement condition that appears first has a higher precedence.

Each statement is made up of three properties. The first property, “systemID”, defines the course element or course that this requirement applies to. The second property, “Requirement”, is the logic statement describing the dependency. The third property, “status”, is the new status of the course element or course if the logic statement returns TRUE. So the semantic of each requirement statement is:

If “Requirement” = TRUE then “systemID” status = “status”

The properties for each completion requirement is as follows:

Property Name
Description
Format

systemID
The system id of the course element. This is the same as the systemID property for each of the AU or block. If the system ID is “Root” then it refers to the completion requirement for the course that this statement belongs to.
UNIT_ID[A|B]

Requirement
The logic statement described starting in section 2.2.3.1
STRING

Maximum of 1000 characters

status
This can be one of:

· Complete

· Incomplete

· Not attempted

· Pass

· Fail
{

“Complete”, “Incomplete”,

“Not attempted”,

“Pass”,

“Fail”

}

Example 1: “B13”, “A23=P & A24=P & AJ25=P & A26=P”, “Complete”

B13 is considered complete anytime when objectives A23, A24, A25, A26 are passed.

Example 2: “B13”, “A8=P | A9-P | A10-P | A11=P”, “Incomplete”

“B13”, “A8=P & A9=P & A10=P & A11=P”, “Complete”

In this bad example, B13 will never be considered to be complete since the first condition always true before the second.

Example 3: “B13”, “A8=P & A9=P & A10=P & A11=P”, “Complete”

“B13”, “A8=P | A9=P | A10=P | A11=P”, “Incomplete”

This fixes the problem in example 3. Now B13 will be considered complete when AU’s 8,9,10, and 11 are all passed. It will be considered incomplete when one to three of those AU’s are passed but not all 4.

For details please see Appendix A.

1.2.4. CourseEnrollment Subcomponent

This subcomponent corresponds to the CourseEnrollment class mentioned in Course.java. It preresents the list of users who are currently enrolled in this course. No skeleton is provided for this class. You must design and implement it.

1.3. Lesson Object

Before we discuss the specifications for a course element, we first define the Lesson object. A Lesson object represent the training material that the AU contains. It has a description of the content as well as manages the execution interface through which the student executes the training material.

Currently there are three concrete lesson types: instructor-led, CMI Compliant CBT, and Web based lessons. More types may be added in the future so the architecture must be modular and expandable. Both the CMI Compliant CBT and Web based lessons derive from the CBT Lesson abstract type. How each lesson is launched and how the performance data is collected distinguish the different types. Their class hierarchy is as follows:

Figure 7
At the leaves of this class tree are the three available lesson types in the prototype system. They are:

1. Web based CBT lesson
This is the non-CMI compliant web based lessons. Lessons of this type are executed by pointing a web browser to a starting URL. There is no performance data that can be collected.

2. CMI compliant CBT lesson
This lesson type can be executed through a defined set of protocols. Performance data can also be collected through a set of data files.

3. Instructor-led Lesson
This lesson type is the traditional class room lesson. There is no way to execute it on the local workstation. An information panel describing when and where to take the class is given by the CMI system when executed.

IMPORTANT

The Java classes for this hierarchy has been defined fairly completely. In general, you may not modify the existing method definitions unless there is no other way to implement a certain needed functionality. If there is such a case, you must notify me immediately before attempting to make any changes.

Please extend these classes to add new functionality to them. You may add implementations, add member functions, and modify existing function implementations only if there is an extremely compelling reason or a bug is discovered.

1.3.1. The BaseLesson Object

Basic Lesson Properties

Property Name
Description
Format

ID
Unique internal system ID for the lesson. It is used for a fast reference and is has redundant functionality to the combination of vendorID and systemVendor properties.

DEFAULT: Generated by the system when the lesson is imported or created.
ALPHAN_ID

title
Commonly used name for the lesson. Such as “Java AWT classes”.

DEFAULT: The contents of Lesson_ID
STRING Maximum 254 characters

description
A textual description of the content of the lesson. Entered by the lesson builders.

DEFAULT: blank.
TEXT

type
User definable type string. This field is imported from the lesson import files or given when created.

DEFAULT: Unknown
STRING

[keywords]
Keywords associated with the lesson. Used for searching lessons.

DEFAULT: none.
List of STRING
Maximum for 1024 characters total.

executionInterface
This is a special property. The implementation of this interface is responsible for executing the lesson content and collecting results. Each lesson type discussed above will have their own execution interfaces. You will have to implement one of these execution interfaces in the CBT-CMI Integration module. See 7.4
Class

maxScore
The maximum score a student can get in the lesson

DEFAULT: 100
UINT

masteryScore
If a students gets >= this score then he/she is considered to have passed the lesson

DEFAULT: 50
UINT

systemVendor
The author of the lesson. This and the vendorID property uniquely identifies a lesson and is imported from the lesson import files.

DEFAULT: blank.
STRING

vendorID
An ID given by the creator of the course. This and the systemVendor property uniquely identifies a lesson. It is imported from the lesson import files.

DEFAULT: blank.
ALPHAN_ID

The BaseLesson class has already been defined in the BaseLesson.java file.

1.3.2. CBT Lesson

The CBT Lesson type is a special case of the basic lesson. It represents all computer based training lessons or courseware. It does not have any extra properties but the meaning of 2 of the fields are different:

Basic Lesson Properties

Property Name
Description
Format

vendorID
An internal ID generated by the developer of the CBT lesson.
ALPHAN_ID

systemVendor
The name of the company or vendor who developed this CBT lesson.
STRING

The CBTLesson class has already been defined in the CBTLesson.java file.

1.3.3. Web-Based CBT Lesson

This type of lesson is the non-CMI compliant variant of web lessons. It is completely taught on the web. It can be referred to by a URL such as http://www.trainingsoft.com/courses/C15. The execution interface for this type of lesson should launch a browser and point it towards its URL property.

The following are data properties for this type of lesson. They are in addition to the basic lesson data properties described above and not modifiable inside an AU.

Property Name
Description
Format

URL
The url of the lesson.

DEFAULT: Blank
STRING

This class has already been defined in WebLesson.java. Extend this class to add new functionalities to it such as caching and persistent storage support. Also, the developer must implement the WebExecution class, a concrete implementation of the LessonExecution interface, as this lesson type’s execution interface.

1.3.4. CMI compliant CBT Lessons

This type of lesson corresponds to a CMI compliant CBT lesson. CMI compliant means that there is a predefined way the CBT lessons should be launched. There is also a predefined format through which returned performance data is collected. This lesson type will have a special execution interface that implements these protocols. Please see section 7.4.2 for more details.

Each CMI compliant CBT lesson type contains the following data properties:

Property Name
Description
Format

coreVendor
Parameters needed to launch the CBT lesson. It will be passed as an execution parameter in the execution interface.

DEFAULT: Imported from lesson import files.
TEXT

commandLine
The execution command to launch the CBT lesson. It is a shell command to start the lesson. This is for command shell launch of the lesson only.

DEFAULT: Imported from lesson import files.
STRING

fileName
The full identifier of the file containing the most critical content of the lesson. Should not include an explicit path name.

DEFAULT: Imported from lesson import files.
STRING

Case sensitive.

maxTimeAllowed
The maximum amount of time allowed for the lesson.

DEFAULT: Unlimited
TIME

timeLimitAction
The action to be taken when time has expired according to maxTimeAllowed. This property is modifiable in an AU. Exit and Continue are mutually exclusive. Message and No_Message are mutually exclusive.

DEFAULT: Exit, Message
{ “Exit”, “Continue”, “Message”, “No_Message” }

This class has already been defined in the CMICompliantLesson.java file. Extend this class to add new functionalities to it such as caching and persistent storage support. Also, the developer must implement the CMICBTExecution class, a concrete implementation of the LessonExecution interface, as this lesson type’s execution interface.

1.3.5. Instructor-led Lessons

This is the traditional instructor-led classroom lesson. In this lesson type, the vendorID and systemVendor has different meanings.

“Instructor-led Lesson” custom type.

Property Name
Description
Format

vendorID
The same as the title of the lesson.
ALPHAN_ID

systemVendor
The same as the lecturer field below
STRING

lecturer
The person who is lecturing or teaching this lesson.
STRING

lecturerInfo
Information about this lecturer
TEXT

This class has already been defined in the InstructorLedLesson.java file. Extend this class to add new functionalities to it such as caching and persistent storage support. Also, the developer must implement the InstructorLedExecution class, a concrete implementation of the LessonExecution interface, for as this lesson type’s execution interface. The implementation should pop up an error message saying with the following message: “You must go to the lesson location to get trained!”. Also keep in mind that this string must be localized to Chinese and English.

1.4. CourseElement Abstract Class

The CourseElement class is the base class for all concrete course elements such as AssignableUnit and Block. It defines a common set of properties and methods that all course elements must have. Each course element has the following common properties and methods regardless of type:

Property/Method Name
Description
Format

systemID
Each course element has a unique id relative to the course they are contained in. The format of the systemID depends on the type of the course element. For assignable units, the id starts with the letter ‘A’. For blocks, the id starts with the letter ‘B’.

DEFAULT: Imported from Course files specified in the Appendix or generated automatically when the newCourse() method is invoked in the CourseManager class..
UNIT_ID[A|B]

title
The title for this course element.

DEFAULT: if the course element is an AU, the title is the title of the lesson that belongs to the AU. Otherwise, it is blank.
TEXT

max 254 chars.

description
A description for this course element.

DEFAULT: if the course element is an AU, the description is the description property of the lesson that belongs to the AU. Otherwise, it is blank.
TEXT

getPrerequisites()
Each course element may have one or more prerequisite conditions.
Java Object

Yet to be defined

getCompletionRequirements()
Each course element may also have one or more completion requirements.
Java Object

Yet to be defined

getStatus(User)
All user has a completion status field for the course elements that they have taken.
PerformanceRecord

See CourseElement.java for a look at the skeleton class. Additions and possibly modifications will be required to achieve full functionality.

There can be an unlimited number of course elements in the course.

1.5. Assignable Unit Course Element Objects

The assignable unit is the basic building block of a course. When creating an assignable unit, you must first associate a lesson to it. The following are properties for the AU and should be stored along with the course in the course repository:

Property Name
Description
Format

homePage
The home page for this AU. This property is optional.

DEFAULT: blank.
URL

location
The location where this AU is to take place

DEFAULT: blank
STRING

startTime
The starting time of the AU. If no starting time is given then the student can start it anytime.

DEFAULT: 0 or blank (no start time)
DATE_TIME

endTime
The ending time of an AU. If there is no ending time, then there is no deadline or a time when the AU must finish. If there is only an end time and no start time, then the end time property functions as a due date.

DEFAULT: 0 or blank (no deadline)
DATE_TIME

lesson
The lesson object associated with this AU.
Lesson object

masteryScore
Overrides the masteryScore property in the lesson object associated with this AU.

DEFAULT: the masteryScore value of the Lesson object associated with this AU.
UINT

maxTimeAllowed
Overrides the maxTimeAllowed property in the lesson object associate with this AU. Applies only to CMICompliantCBTLesson object.

DEFAULT: the maxTimeAllowed value of the Lesson object associated with this AU.
TIME

timeLimitAction
Overrides the timeLimitAction property in the lesson object associated with this AU. Applies only to CMICompliantCBTLesson object.

DEFAULT: The timeLimitAction value of the Lesson object associated with this AU.
{ “Exit”, “Continue”, “Message”, “No_Message” }

[comments]
AU specific comments made by the instructor. There can be multiple comments per AU. The exact implementation of this list of comments is up to the developer. Please document the method clearly.
TEXT

A single lesson object can be associated with multiple AU objects. For example, the lesson object “Java AWT” can appear in more than one course’s AU object. This allows the reuse of a training content in more than one course.

This means that some of lesson properties can be overriden in the AU to provide course-based customization. For example, the lesson object of the AU has a mastery score setting of 50. The AU can override this setting by storing a copy of the mastery score in the AU object.

The following is an example of a overriden properties situation:

Figure 8
These properties are modifiable:

Property Name
Lesson Type

masteryScore
Basic Lesson

maxTimeAllowed
CMI Compliant CBT

timeLimitAction
CMI Compliant CBT

1.6. Block Course Element Objects

A block is a group of AU’s in a course. By default, a block’s prerequisite applies to all of the AU’s contained inside the block. This means, if the block’s prerequisite is not satisfied, none of the AUs in the block can be executed. The block is treated as a single course element within the course.

Blocks do not have any special properties other than the membership information. The following is a description of that membership information:

Property Name
Description
Format

[Members]
The list of member AU’s belonging to this block. Each AU is identified by its systemID property here.

DEFAULT: at least 1 AU.
A list of systemID’s.

There can be an unlimited number of assignable units in a block.

1.7. User Abstract Class

The user abstract class is the base class for all concrete user types. It contains some common properties and methods that all user types have. They are:

Property
Description
Format

ID
The unique ID that will be used to distinguish the user from other users. Logging into the system requires the user ID and the user password.

DEFAULT: <1st char of first name><last name>
STRING

Max of 11 chars.

password
The password for the user to log into the system.

DEFAULT: None.
STRING

type
Whether the user is a student, instructor or administrator

DEFAULT: Student.
{ Student,

 Instructor,

 Administrator }

firstName
The first name of the student
STRING

middleName
The middle name or initial
STRING

lastName
The last name of the student
STRING

familiarName
The commonly used first name of the student.

DEFAULT: blank
STRING

birthday
The birthday of the student
DATE

sex
The sex of the student
{ “Male”, “Female” }

jobTitle
The job title of the student (i.e. Senior Software Engineer)
STRING

manager
This is person who the student goes to for general guidance. It can be the advisor in a educational environment or a manager in the corporate environment.
DEFAULT: The administrator user with the smallest user ID.
STRING

Max of 11 chars.

The user ID of the manager or advisor.

location
Place of employment. It can be the name of the employer, building + room number …
STRING

email
The e-mail address of the user. This e-mail will be the one to which all CMI information is sent.
Valid e-mail address

homeAddress
The address part of the home address
STRING

homeCity
The city part of the home address
STRING

homeState
The state part of the home address
STRING

homeCountry
The country part of the home address
STRING

nativeLanguage
The native language of the person. The possible choices are: English and Chinese

DEFAULT: English.
STRING

joiningDate
The date the employee joined
DATE

priorExperience
The amount of experience prior to joining in number of years.
UINT

workPhone
The work telephone number of the person
STRING

[Custom Fields]
The administrator can add custom properties in the setup section of the user interface.
List of

STRING

In the CMI Management Client, the user has the ability to add [Custom Fields] to the user record. Any custom fields will apply to all user types.
A skeleton class, User.java, is provide. It shows how this class should be implemented. You will need to add or modify this class to make it function fully.

1.8. Student User Object

The student is a concrete subtype of the User class that is designed for receiving training. This user has support for recording of training history, training preferences, and any other functionality related to receiving training. They can access only the CMI Student client which support the following functions:

· View and modify their own demographic information.

· View their performance information in the courses they have taken.

· View the course list.

· Enroll/Unenroll in courses.

· Execute lessons in the course the student is currently enrolled in.

Each student has two types of information. They are: training preferences and training history.

1.8.1. Training Preferences

This is a set of training preferences for CMI Compliant CBT lessons. These properties will be passed to the execution interface of the CMI Compliant CBT lesson. For a complete list of properties, please refer to section 5.1.9 of the CBT-CMI Integration Supplment document for more information. Each of the keywords under the [Student_Preferences] group should have a corresponding property in the Student object.

Property
Description
Format

Audio
The audio volume preference of the student.
-1-100

Language
The language preference of the student
STRING

Text
Audio text preference. This is like subtitles

–1 = text is off not shown.

0 = no change is status. Use default .

1 = text is on screen, shown to student
-1 to 1

1.8.2. Performance Data

The performance data is the student past performance history for every course, AU, and objective that he/she took. This list also includes courses that the student is currently enrolled in. This data gathering capability can be turned on or off by the administrator. The data is accessed through the TrainingHistoryManager interface discussed in section 4.3.1.3.

There is one record for every attempt that the student makes so this data can take a signification amount of disk space. The following is the class hierarchy for performance records:

Figure 9
All of the performance record objects may be accessed through the TrainingHistoryManager interface or through the User object itself. The User object will redirect the request to the TrainingHistoryManager.

1.8.2.1. PerformanceRecord

This is the base class for all performance records. It contains the basic set of performance information for each course and course element type.

PerformanceRecord

Property
Description
Format

studentID
The ID of the student that this performance record belongs to.

startTime
The time the course started

DEFAULT: blank
DATE_TIME

endTime
The time the student finished the course or the course ended

DEFAULT: blank.
DATE_TIME

status
The completion status of the course determined by the latest status of all of the course elements and the completion requirement conditions.

DEFAULT: “Not Attempted”
{ “Passed”, “Complete”,

“Incomplete”,

“Not attempted”,

“Failed” }

score
The score the student got.

DEFAULT: Average score of all of the AU’s latest attempt. If the AU has no score then it is not counted toward the average
UINT

A nearly complete class file is provided in PerformanceRecord.java. You should not modify the class unless it is to do one of the todo items listed in the file.

1.8.2.2. CourseRecord

This is the performance record for a course. No skeleton class is given so you must write one. It must extend the PerformanceRecord class. There may be more than one CourseRecord for each course. This is when the user attempted the course more than once.

CourseRecord

Property & Methods
Description
Format

courseID
The ID of the course taken. It corresponds to the ID field discussed in section 2.2
STRING

getMemberRecords()
Returns a list of CourseElementRecords(see next section) for all elements in the course.

1.8.2.3. CourseElementRecord

Each CourseElementRecord corresponds to one of the course elements in the course. Not every course element in a course may have a record since the student might not have used all of them. In addition, there maybe more than one CourseElementRecord for each course element. Each record represents one attempt on that course element. No skeleton class is given so you must write one and extend it from the PerformanceRecord class. Each record contains the following properties:

CourseElementRecord

Property & Methods
Description
Format

systemID
The system ID of this lesson as an AU
UNIT_ID[A|B]

getParentCourse()
The course object that this element belongs to.
Course Java Object.

This class does not have a sample source file. You must define it according to the specification written here. It should be an abstract class from which concrete course element record classes extend.

1.8.2.4. AURecord

This is a special case of the CourseElementRecord and hence extends the CourseElementRecord class. These records represent one attempt of an AU’s lesson content. Each assignable unit has additional performance properties associated with it on top of those in CourseElementRecord. They are:

AURecord

Property
Description
Format

statusFlags
Additional flags for each lesson status. This describe why the status what it is. This only applies to CMI compliant lesson types.

DEFAULT: none.
{ “Ab initio”,

“Time-out”,

“Suspend”,

“Logout” }

location
The last location the student was at within the lesson. It is passed in from the performance result files described in 3.5.2.3

This only applies to CMI compliant lesson types.

Default: blank
TEXT

coreLesson
Additional continuation information for the lesson. It is passed in from the performance result files described in section 7.4.2.3. This only applies to CMI compliant lesson types.

DEFAULT: blank
TEXT

Up to 254 chars.

There can be multiple records for a single AU since each AU can be attempted multiple times.

This class does not have a sample source file. You must define it according to the specification written here.

1.8.2.5. BlockRecord

This is also a subclass of the CourseElementRecord. It provides methods to extract CourseElementRecord’s that are members of the block; therefore, it should at least have the following method:

// Returns a vector of CourseElementRecords who are members of the block.

public Vector getMemberRecords();

1.9. Instructor

Instructors are people who run courses. They are responsible for responding to student difficulties, course problems, and enrollment adjustments. The following is a more complete list of tasks that the instructor can do:

· View the course content that the instructor is in charge of.

· Modify the course structure and data.

· Enroll/Unenroll students in the courses the instructor is in charge of

· Modify performance information for the course the instructor is in charge of for each student.

The instructor can use the CMI Management client. In addition, each instructor has a list of courses that they are in charge of. When they are logged through the CMI Management client, they can only view the “Course” main option. In addition, all course listings will only show the courses the instructor is in charge of.

1.10. Administrator

The administrator is the root user type of the CMI system. There can be multiple administrators. The CMI system comes with a single administrator user and that user can create other administrative users. The administrator can do everything that a student and instructor can do plus all other functions of the system. The following is a description of the additional tasks that the administrator can perform:

· Add/Delete/Modify all user information

· Create/Delete/Modify all course information

· Monitor all courses

· Enroll/Unenroll all students in every course

· Setup system parameters

· Import/Export courses and training material

The administrator has the same properties as the instructor. The CMI-Administrator’s user interface specification includes all possible functionality of the CMI system.

1.11. System Object Summary

In this section, all of the objects currently defined for the system are listed with their type and status. In the table, the following legends apply:

· The class is a subtype of the first class preceding it with one less arrow.

· The class is a component class of the first class preceding it with one less dot.

The status column denotes how much work has already been done for it. It can be either one of:

No Defined

The class is not defined. You will have to define it according to its description in this specification.

Skeleton

A skeleton class has been provided. Changes may have to be made to implement full functionality. The skeleton class is only a guideline for development.

Mostly Defined

Most of the class is defined. Please see the todo list in the file for a list of things still undone.

Compiled

These class have been compiled. Their interface should be considered to be frozen.

Object Class Name
Type
Status

Course
Concrete Class
Skeleton

· CourseProperties
Concrete Class
Not Defined

· CourseElements
Concrete Class
Not Defined

· CourseStructure
Concrete Class
Not Defined

· CourseEnrollment
Concrete Class
Not Defined

CourseElement
Abstract Base Class
Skeleton

· AssignableUnit
Concrete Class
Not Defined

· Block
Concrete Class
Not Defined

BaseLesson
Abstract Base Class
Compiled

· InstructorLedLesson
Concrete Class
Compiled

· CBTLesson
Abstract Class
Compiled

· (WebLesson
Concrete Class
Compiled

· (CMICompliantLesson
Concrete Class
Compiled

PerformanceRecord
Concrete Base Class
Mostly Defined

(CourseRecord
Concrete Class
Not Defined

(CourseElementRecord
Abstract Class
Not Defined

· (AURecord
Concrete Class
Not Defined

· (BlockRecord
Concrete Class
Not Defined

User
Abstract Class
Skeleton

· Student
Concrete Class
Skeleton

· Administrator
Concrete Class
Not Defined

· (Instructor
Concrete Class
Not Defined

2. Communication Protocol

Java RMI (Remote Method Invocation) is used as the communication protocol. It is easy to use and a developer can quickly build a distributed application using the tools provided with Java RMI packages in 1.1. It is similar to CORBA but designed specifically for Java. It is like an object oriented version of RPC (Remote Procedure Calls).

In this sytem, the client and servers talk to each other through one or more distributed RMI Interface Classes. These classes function like a client/server API and are usually called XXXManager where XXX is the logical component name. These classes usually have methods that allows clients access to system objects such as courses, lesson, users, and other course elements. For example, the interface class for the course management logical component is the CourseManager interface class. This class exports methods that the client would most likely use. Some of these methods include:

· getCourse()

· newCourse()

· deleteCourse()

· updateCourse()

The client part of this interface (generated by Java RMI) will do an RPC like call to the server part of this interface (also generated by Java RMI). The server implementation will then create the Java Course object and returns it over the network. All of the data conversion and data transfer are handled by the Java RMI packages.

For more information about Java RMI, you can download the whole specification from http://java.sun.com/
3. CMI Application Server Specifications

This section gives the specifications for all of the logical components within the CMI Application Server. Each logical component provides a certain set of functionality. More can be added in the future. These logical components are:

· Course Management

· User Management

· Logging Center

· Lesson Import

· Database Interface

Please see Figure 1 for an illustration of how these components relate to the rest of the system.

Each of these components exports their functionality through a manager interface class. The client will be able to use the server’s functions by invoking member functions of this manager interface class. Typically, the public methods of these manager classes support the retrieval and modification of the Java objects described in section 2
The client would first grab an client instance of the appropriate manager class through the RMI protocol. The client would then invoke one of the public methods to retrieve the correct Java object for the information it wants to modify. For example, if the client wants to modify a course, it would use the CourseManager interface class to retrieve the Course Java object representation of the course over the network. It would then manipulate the course through the Course Java object. When changes need to be saved, it would again use one of the “Save” methods in the CourseManager interface class.

Java RMI is used as the underlying communication protocol. It frees up the developer on having to implement import/export code for transferring objects and using custom RPC code.

3.1. Physical Specifications

Basic Requirements

Platform
Windows NT 4.0

GUI size
None

Language
Java 1.1

Application Type
Java Application

Development Environment
· No AFC (Microsoft’s Application Foundation Classes)

· Use JFC

· One of IBM VisualAge, JBuilder, Visual Café that supports JFC

Memory Requirement
64 MB. Program fits in under 10 MB. Grows no more than 2 MB per client connected.

Machine Speed
266 MHz PII

Disk Requirement
None

Network Requirement
Performs well on 10 Mbps

Important Environment Variables:

%TS_PATH%
 The root installation path of the training software packages

%TS_CMI_SERVER_PATH%
 The path of the CMI server installation (relative to %TS_PATH%)

Installation Paths:

Command Line(NT):
C:> %TS_PATH%\%TS_CMI_SERVER_PATH%\BIN\CMISERVER.EXE
 %TS_PATH%\%TS_CMI_SERVER_PATH%\CONFIG\CMISERVER.CFG

Configuration File:
%TS_PATH%\%TS_CMI_SERVER_PATH%\CONFIG\CMISERVER.CFG

Configuration File Format(WIN.INI Format):

3.2. Course Management Logical Component Overview

This server component provides the ability to manage training material. It exports its functionality through a set of three manager classes: CourseTableManagerImpl, CourseManagerImpl, and LessonManagerImpl. The corresponding Java objects these classes manage are: Course, Lesson, AssignableUnit, and Block .

In the following figure, the general architecture is illustrated. It also illustrate how the client uses these manager classes. Please read the CMI Student Client Specification and CMI Management Client Specification for details on these user interface components.

Figure 10
3.2.1. Manager Interface Classes

The three manager interface classes that serve as the server API for the course management component are:

· CourseTableManagerImpl
This provides all of the functionality for a listing of the courses with sort and find functionalities. This interface is design for least amount of traffic over the network. All of the actual processing load is done on the server side.

· CourseManagerImpl
This provides all of the functionality of adding, deleting, and finding Course objects. It also provides helper functions to load subcomponents of the Course object.

· LessonTableManagerImpl
An implementation of the RemoteTableManager for the lesson repository. Used in Slide 24 of the CMI Management Client specifications. This manager is very similar to the CourseTableManagerImpl except it represents a table of lesson rather than a table of courses. Only the generic lesson properties are represented.

· LessonManagerImpl
This provides management capability for the lesson repository. This interface returns Lesson objects to the client.

The “XXXImpl” extension is merely a naming convention to specify this class is an implementation of the XXX interface.

3.2.1.1. CourseTableManagerImpl

The CourseTableManagerImpl class must be written by the developer. It implements the RemoteTableManager interface class so that the FancyTableBean displaying the course listings can get the correct information from the server. Please see RemoteTableManager.java for the interface definition. Once the class is implemented, RMIC should be applied to generate the necessary server skeleton and client stubs. You may need to add additional member functions to the interface to make it work fully. Please document any changes.

For a description of how the FancyTableBean works, please refer to the FancyTableBean specifications for more details.

This manager class takes a database of course records and creates a tabled view of it. In this table, each course is a row and each property of the course is a column. It provides table browsing and searching capability so that the client can scroll through the courses quickly.

3.2.1.2. CourseManagerImpl

Figure 11
The CourseManagerImpl class provides course management capabilities by implementing the CourseManager

interface. You will need to write this class and then run the RMIC tool on it to make it RMI compliant. The client will invoke this interface to get to the Course objects. The client can then manipulate the course represented by the Course object. All changes to the Course objects needs to be saved back to the server with the updateCourse() function.

The CourseManagerImpl class allows clients to retrieve and modify courses through the Course object. When the client requests a Course object, not all of the subcomponents are loaded across the network. One subsequent accesses to the Course object at the client side, the subcomponents are incrementally loaded as necessary. This design reduces the bandwidth requirement. Skeleton classes for the Course object is available in Course.java.

There is also a cache of course objects on the client side. This cache will need to be implemented by the developer and should be modular so that it can be used in different client programs. The cache should prevent duplicate Course objects in the client. Duplicate Course objects can lead to erroneous program execution.

In general, whenever the manager interface technique is used, a cache is needed on the server and client side to prevent duplicates and increase performance.

3.2.1.3. LessonManagerImpl

Figure 12
The LessonManagerImpl class is an implementation of the LessonManager interface. The lesson manager interface is an API for managing all of the lesson objects in the lesson repository. It is mainly used by the AssignableUnit object when it tries to load the lesson content information for that AU. In the diagram, it shows the AU object (itself found by accessing the Course object) requesting a lesson object from the LessonManager interface. You will need to implement the LessonManagerImpl class and use the RMIC tool on it to generated the necessary server skeleton and client stub objects.

There will also need to be a lesson object cache. This cache manager must prevent duplicate Lesson objects from appearing in the client. It should also speed up performance and reduce bandwidth requirements.

The LessonManager interface has already been defined in LessonManager.java.

IMPORTANT

The LessonManager interface has already been defined. You may not modify the interface unless there is an extremely compelling performance or functionality reason (of course if there is a bug).

3.2.2. CourseManagement Component Caches

Each of the manager interface classes has it own server side cache. This is to reduce the number of database calls in order to increase performance. As illustrated in Figure 10, the following caches must be implemented:

· CourseTableCache
This cache should save part of the converted table data for the courses. It should prevent having to convert the RDBMS storage format into a table like structure for every call to the CourseTableManagerImpl interface..

· CourseCache
This cache should cache Course object and its related component objects. It should reduce the number of RDBMS-to-“Course object” conversions as much as possible.

· LessonCache
This cache should store Lesson objects to reduce the number of RDBMS to Lesson Java object conversions.

These cache should make use of the CacheManager interface class in CacheManager.java. This means, you should implement some generic cache manager by providing an implementation of the CacheManager interface. The caching policy should try to achieve the performance specifications described in section 4.6. This also means that any objects that needs to be cached such as Course, Lesson, etc. should also implement the CacheObject interface.

You will need to modify the objects classes that need to be cache (i.e. Course, Lesson, etc.) to implement the CacheObject interface.

3.2.2.1. Caching Scheme

By default, the caches should be write back. This means, writes are not written until specifically flushed.

The cache algorithm is up to the developer. You should use whatever caching scheme would achieve the performance targets described in section 4.6.
The server cache should flush once every X hours where X is settable from the cache manager. The default time is 1 hour.
All caches should perform garbage collection to free up some space when the cache becomes full. The amount of space to be freed up should be settable from the CacheManager interface.

A Note About Cache Coherency

In this project, you do not have to implement cache coherency across multiple clients. This means you do not have to worry about the cached object being up to date and synchronized with all other client and server caches at all times. Once an object is cached, you can assume that it is the most up to date object there is. All modifications can be made to that object as if it was the most recent object.

If the object is written back to the server, it will overwrite whatever is in the server cache and the database even if it is newer. If the cache coherency causes an error condition that prevents normal execution, an error dialogue box should be displayed describing the error. The error should also be logged to the logging center.

You do have to worry about cache coherency in the same client. This means if multiple read/write accesses to the same cache object in the client occurs, you have to guarantee the object’s coherency and correctness.

3.3. User Management Component

This server component provides the ability to manage users. It exports its functionality through a set of three manager classes: UserTableManagerImpl, UserManagerImpl, and TrainingHistoryImpl. The corresponding Java objects these classes manage are: Student, Administrator, Instructor, CourseRecord, AURecord, BlockRecord .

The following is an illustration of its internal structure. The client side is also included in this figure.
Figure 13
3.3.1. Manager Interface Classes

The server side logic for this component also has three manager interface classes. They are: UserTableManagerImpl, UserManagerImpl, and TrainingHistoryManagerImpl.

3.3.1.1. UserTableManagerImpl

The application server needs to implement the UserTableManagerImpl class to support the user table FancyJavaBean on the client side. This is very similar to the CourseTableManagerImpl except it accesses the user database rather than the course database. This class is a concrete implementation of the RemoteTableManager interface. It will present the User objects in the user database as a table of records and fields (rows and columns).

For a detailed specification on how the FancyTableBean works, please see the FancyTableBean specification for more details.

Like the CourseTableManagerImpl, this manager class converts user objects in the database into a table view where each row is a user and each column is a user property.

3.3.1.2. UserManagerImpl

Figure 14
The application server side’s UserManagerImpl class implements the UserManager interface. This interface allows all user information be represented by Java User objects. After implementing the class, the RMIC tool should be run to generate the RMI server skeleton and client stub. This class will need to access the user database through the database interface defined in section 3.0

Please see UserManager.java for the interface definition. You may need to change the interface in order make certain things work. Please let me know before making any major changes.

3.3.1.3. TrainingHistoryManagerImpl

Figure 15
The TrainingHistoryManagerImpl class implements the TrainingHistoryManager interface. This class resides on the application server and provides the functions to manage and manipulate training records of a particular user. It will return the training information as a set of training objects such as CourseRecord, AURecord, and BlockRecord. The AURecord and BlockRecord are implementations of the CourseElementRecord interface.

Please see TrainingHistoryManager.java for the interface definition. You might need to add to it during development to support necessary functionality and correctness. Please let me know about any major changes.

3.3.2. UserManagement Component Caches

Like the caches in the CourseManagement component, there are also caches in the UserManagement component for each of the manager interface classes. As illustrated in Figure 13, the following caches must be implemented:

· UserTableCache
This cache should save part of the converted table data for the users. It should prevent having to convert the RDBMS storage format into a table like structure for every call to the UserTableManagerImpl interface..

· UserCache
This cache should cache User object such as Student, Instructor, and Administrator. It should reduce the number of times a RDBMS-to-“User object” conversions as much as possible.

· TrainingRecordCache
This cache should store Lesson objects to reduce the number of RDBMS-to –“Training Record object” conversions.

The design of the cache is left up the developer. They should serve as the generic access points for all objects they cache. This means anything that wants to retrieve objects stored by these caches must go through the cache first before going to the database. It should also prevent redundant objects that represent the same thing in the server.

Please use the CacheManager interface in the design of the caches.

4.4 Logging Center Component

The logging center is the central location where CMI system and client logs are stored. It consists of a LogManagerImpl distributed object (concrete implementation of the LogManager interface described in LogManager..java) residing on the application server. All applications that needs to use its facilities must use the Java RMI client stub of the object to register log message.

Each log message can be different types. It can come from the CMI application server or any one of the clients. The following is a list of its properties:

Property
Description
Format

Type
The type of message.

DEFAULT: Non-Fatal Error
{ “Fatal Error”,

 “Non-Fatal Error”,

 “Warning”,

 “Event” }

Level
The level of the message. You can use this to further differentiate different message types such as DEBUG and production. System errors, GUI errors, etc.

DEFAULT: 0
INT

Message
The body of the message.

DEFAULT: Required on creation
STRING

Source
What part of the system caused the message.

This is up to the component that cause the message to decide what to put in this field.

DEFAULT: Required on creation
STRING

Time
The time the message was generated

DEFAULT: Time stamp when object is created.
DATE_TIME

All log messages should be written to a log file located, by default, in:

%TS_PATH%\%TS_CMI_SEVER_PATH%\LOGS\system.log

The user can override this with the location specified in the LogFile parameter in the application sever configuration file discussed in section 4.1.

The LogManager class refers to a LogMessage class which has not been defined. A LogMessage class should represents the log message. It should contain a get/set property for ever property listed in the table above. Both of these classes are not yet defined. Use the specification given in this section to implement them.

You must log all error conditions. The following is the minimal error condition list:

· All client and server execution errors

· All file parsing errors

· All errors generated by the execution interface while trying to execute a lesson or collect data from the lesson

· All file not found

· All database errors.

· All errors that prevent the normal operation of the system.

I would recommend using this facility for debug messages as well.

3.4. Lesson Import Component

This component allows the user to import lessons from ASCII files and detect what lessons are available for import. The server interface through which clients can invoke this set of functionality is the ImportExportManager Java class.

The skeleton class ImportExportManager is provided in ImportExportManager.java. You must write a implementation of the ImportExportManager interface class called ImportExportManagerImpl. This concrete class should contain the logic to serve clients requesting information and import commands on the server side. You should use the RMIC tools to make ImportExportManagerImpl a client/server RMI class.

The lessons that are created or imported are saved in the lesson repository part of the persistent storage.

Detecting Lessons Available For Import

To determine the list of lessons available for import, you can use the ImportExportManager.getImportList().

To implement this method, you can assume that all ASCII import files are located in directory specified by the CBT_Import_Path parameter in the CMISERVER.CFG file discussed in section 4.1of the Application Server.

By default, it is: %TS_PATH%\%TS_CMI_SERVER_PATH%\CONFIG\CMISERVER.CFG

Importing A Lesson From ASCII files

The format of the import files for each lesson type is specified in Appendix B4.4. To import it, the developer should do the following steps:

(1) Get the full list of lessons available for import through the ImportExportManager.getImportList(). Each lesson is returned as an ImportLesson object (See ImportLesson.java)
(2) The getImportList() method should filter out all those that have been already imported. This can be determined by the System_Vendor and Vendor_ID fields of the import file.

(3) Invoke the ImportLesson.newLessonObject() function to import the lesson in persistent storage and create the corresponding lesson object.

3.5. Database Interface Component

You must use JDBC as the database interface component. There is no other requirement.

3.6. Performance Requirements

The server should support unlimited number of clients up to the memory limit. It should also provide reasonable performance where performance is measured the amount of time it takes the server to respond to a client’s request once the request is received. We will call this time T. Reasonable performance is:

· All of the XXXManagerImpl get methods should have the following performance characteristics:
average(T) < 2 seconds

· All of the XXXManagerImpl set method s should have the following performance characterisitcs:
average(T) < 3 seconds

This set of requirements must be true up to a maximum of 5 simultaneous users on a Pentium II 266 machine running Windows NT.

3.7. Termination Conditions

3.7.1. Normal Termination Conditions

The server exits normally if a Ctrl-C key sequence is entered in the window where the server is running. The following sequence of events should occur when the server receive the signal:

(1) Stop listening to new requests

(2) Wait for all current requests to finish

(3) Save all unsaved data

(4) Log the exit to the logging center with:
“<host>:<port> server exited on: <date> <time>”
The <date and time> should be in DATE_TIME format.

(5) Exit

3.7.2. Abnormal Termination Conditions

You are not responsible for correct operation under abnormal termination conditions. The following are those conditions:

(1) Operating System Crash

(2) Machine Crash

(3) Power Failure or Power Surge

(4) “Act of God”
This category is natural disasters like earthquake causing the ceiling to fall on the machine, etc.

4. Persistent Storage

You must use Microsoft SQL Server for the persistent storage. You must also use JDBC as the interface to access the database.

You will most likely need to create following tables:

· User Information Table
This table contains all of the user information. You may need to create additional tables to support custom user fields.

· Training History Table
This table contains all of the training information. Each training record would have the following fields indexed:
* Course ID
* System ID
* User ID
This way, the training record for any course element can be retrieved quickly.

· Lesson Table
This table will contain lesson repository information.

· Course Tables
You will need to create one or more table to store course properties, course enrollment, course structure, and course element list information.

The storage implementation design is up to the developer, please submit a proposed design specification for these components before implementing anything. We can then decide on the final design.

The design should be submitted to Mr. John Yin no later than two week after the signing of the contract.

5. Management Client

The CMI Management client used by the administrator and instructor user type. Only these two user types may use this interface. Through this client they can manage training material and user information. It is divided into the following logical components:

· Course Management
This component contains the user interfaces that allows the user to manipulate course information access through the application server. Typically, the user interfaces gets and modifies information through training material objects returned by one of the manager interface class implemented on the server.

· User Management
This component contains the user interface components that allows the user to mainpulate user information. It works with the User and User related Java objects returned by one of the manager interface classes.

· Lesson Import
This component provides the user interface through which users can see which lessons are available for import. It also allows the user to initiate an import process. It uses the ImportExportManager manager interface class.

The complete set of user interface screen as described in detail in the CMI Management Client Specifications. This document describes its physical characteristics, internal support architecture and some of the unique interface components.

The Lesson Import component is fairly simple. It consists of one interface show in screen 19 of the CMI Management Client Specifications. It uses the ImportExportManagerImpl RMI client stub directly. Since it is so simple, there is no subsection for this component.

5.1. Physical Specifications

The management client is used by the administrator and instructor user types to manage students and courses. From here, all information the CMI system manages is presented in a visual interface so that the users can manipulate the data.

Basic Requirements

Platform
Windows 95/98, NT Workstation, NT Server

GUI size
<= 800x600 pixels. Resizable.

Language
Java 1.1

Application Type
Java Application

Development Environment
· No AFC (Microsoft’s Application Foundation Classes)

· Use JFC

· Same IDE as the one used for the Application Server

Memory Requirement
32 MB. Client fits in under 5 MB.

Machine Speed
200 MHz Pentium

Disk Requirement
None

Network Requirement
Performs reasonably well on a 56kpbs modem connection

Important Environment Variables:

%TS_PATH%
 The root installation path of the training software packages

%TS_CMI_CLIENT_PATH%
 The path of client installations (relative to %TS_PATH%)

Installation Paths:

The 7 files under the <Course ID> directory are the Course export files specified in Appendix A.

Command Line(NT):
C:> %TS_PATH%\%TS_CMI_CLIENT_PATH%\BIN\MCLIENT.BAT
 %TS_PATH%\%TS_CMI_CLIENT_PATH%\CONFIG\CLIENT.CFG

Configuration File:
%TS_PATH%\%TS_CMI_CLIENT_PATH%\CONFIG\CLIENT.CFG

Configuration File Format(WIN.INI Format):

Other Limits:

· A user can only log in with only one client at a time.

5.2. Course Management Component

The course management component of the management client presents training material information to the user and allows to user to manipulate it. In the following sections the internal architecture of this component is given first. Then the user interface specification is discussed.

5.2.1. Internal Architecture Specification

The following is an illustration of the internal architecture:

Figure 16
In the above illustration, the management client access the server through the three manager interfaces. It must also implement the two caches illustrated above to increase performance and prevent duplicate objects.

The ClientCourseManager and ClientLessonManager classes should be concrete implementation of the CourseManager and LessonManager interfaces respectively. They should implement the ability to look in the cache first before attempting an actual server request. All access to objects should be through these two manager classes. Only they are allowed access to the CourseManagerImpl and LessonManagerImpl RMI client stubs

You will have to define and implement both ClientCourseManager and ClientLessonManager classes in addition to the caches described above. The caches should reuse the CacheManager implementation mentioned in section 4.2.2.

6.2.2 User Interface Specification

All of the user interface screens are specified in the CMI Management Client Specifications. Screens 8-16 are the ones that contain GUI components belonging to the course management component. These screens are located under the “Courses” main option and the enrollment panels of the “Student” main option.

This series of user interface provides the following functionality:

1. Display All Course Listing

2. Display Limited Course Listings By Instructor
(For all of the screens above when an instructor is the user logged on)

3. Display Limited Course Listings for Student’s past training history

4. Modify Courses

5. Display course information

6. Display and Modify Course enrollment information

The client contains 4 GUI components that should be implemented as Java Beans for maximum modularity.

5.2.1.1. Course Listing Table (FancyTableBean)

They look like the following table:

You should use the FancyTableBean architecture described in the FancyTableBean specifications for this component.

5.2.1.2. Course Information Panel Bean

This interface component looks like the following:

The custom panel (box with 3 buttons in it) is not part of the Java bean. The bean should allow the developer to insert a GUI panel there. The content of this panel may change depending on where this component appears. An example is the difference between screen 4 of the CMI Student client and screen 10 of the CMI Administrator client. This panel will mostly use the ClientCourseManager interface illustrated in Figure 16.

Properties

It should allow the user to set whether or not the fields are editable.

Events

It should generate an event when the following occurs:
(1) The user double clicks on one of the AU’s.

(2) The user selects one of the AU’s

5.2.1.3. Lesson Information Panel Bean

This interface component looks like the following:
This component contains 2 panels in the middle and at the bottom. The middle panel should be replaceable by one of the three other Java Beans:
* One that displays and allow possible modification to CMI-Compliant CBT lesson information
* One that displays and allow possible modification to Instructor-Led CBT lesson information
* One that displays and allow possible modification to Web launched CBT lesson information.
Each of the three Java Beans should allow the developer to set which properties can be modified and which can not.

This component will use the ClientLessonManager interface illustrated in Figure 16.

5.2.1.4. Course Content Information Panel:

This GUI bean lets the user browser the course structure. It is also used in the Course Management component of the CMI Student client. Please see section 7.2.1.1 for more details.

5.2.2. Creating and Modifying A Course

The CMI main system does not deal with the creation of a new course. Instead, it will export this functionality to a Course Builder program which you are not responsible for. This is the same course builder program specified in the configuration file under the “Course_Builder_Path” parameter.

The course builder is invoked every time the “New” or “Modify” action is taken on a course. Detailed specifications on what steps to take are given in the CMI Management Client Specifications on screens 13.1 and 13.2

5.3. User Management

The user management component of the CMI Management Client presents user related information to an administrator or instructor. It is very similar in architecture to the course management component.

5.3.1. Internal Architecture Specification

The following is an illustration of the internal architecture:

Figure 17
The user management component is very similar to the course manager component in terms of its architecture. Both the “User Object Cache” and “Training Record Cache” caches user related objects and training history related objects respectively. They should also make use of earlier implementations of the CacheManager interface.

The ClientUserManager and ClientTrainingHistoryManager are concrete implementations of the UserManager and TrainingHistoryManager interface classes respectively. All its methods should support the caching features. These are the only classes that will have access to the UserManagerImpl and TrainingHistoryManagerImpl RMI client stub objects.

5.3.2. User Interface Specifications

The management client side logic provides the GUI through which administrators can manipulate user information. The user interface provides the following functionality:

1. Display a user list

2. Display a user’s demographic information

3. Display a user’s past performance information for one course at a time

4. Allow modification to the user list(Add/Delete)

5. Allow modification to the user demographic information

6. Allow modification to the user performance information

7. Setup custom user properties

The GUI components will use the three interfaces illustrated in Figure 17 to retrieve and modify information through the application server. The three interfaces are:

· RemoteTableManager
This interface provides the fast user list browsing logic used used by the FancyTableBean. The definition of the interface is in the RemoteTableManager.java file.

· UserManager
This interface provides the logic for accessing and modifying User objects. These objects represent each user. The definition of the User and User related objects are given in section 5.0

· TrainingHistoryManager
This interface provides the logic for accessing training history information for a particular user. The performance records are stored separately from the user because it takes a large amount of disk space and require special searching and statistical functionality.

All of the user interface screens are specified in detail in the CMI Management Client Specifications. This section describes some unique interface components are reused in different places.

5.3.2.1. User Information Panel

The “User Information” panel appears in many places in the management client and student client. It should be made a class that extends the JPanel class. It should also have a method setUser(User u) that will refresh the interface with the new user object.

5.3.2.2. Performance History Panel

This panel should also be a single class since it is used in more than one place. It should extend the JPanel class and take as input a CourseRecord. It should have member functions to set whether the ability to modify the performance record statuses are allowed. This class will access the TrainingHistoryManager interface as well as the CourseManager interface.

5.4. Access Rights

Instructors and administrators have different access rights when they log on to the system. The administrator has access to all screens and functions. The instructor is limited to the following screens in the CMI Management Client Specifications:

Screen 7

The user list will only show the students that have taken the instructor’s course.

Screen 13-16

· The course table list will only show the courses that the instructor is in charge of.

· The “New” course button is not available.

Panels in the interface specification the instructor does not have access to will not show up. All buttons that the instructor is denied access to will not show up either.

5.5. Performance Requirements

The following performance requirements must be met:

· The scrolling response time of any table-like GUI component, on the average, must take less than 1 second.
For example, when scrolling through the user list or course list, the GUI should respond in less than 1 second on a machine specified in section 7.5
· The display of all detailed information panels after an object is selected must take, on the average, less than 3 seconds. (For example, when a course is selected in a FancyTableBean table, the course information panel should appear in less than 3 seconds on the average.

5.6. Termination Conditions

5.6.1. Normal Termination Conditions

The management client is considered to have terminated for a certain user if the “Logout” button is clicked. The “Logout” button is located on the left most control panel toward the bottom. If it is clicked, an exit confirmation dialogue box will appear. If the user confirms the action, all unsaved data that needs to be written to the server should be saved before exiting. If the user does not confirm the action, then the action is aborted and the client continues normal operation. Once the action is confirmed, the following set of events should happen in order:

(1) Save all unsaved data to the server.

(2) Log the exit to the logging center with:
“Manage client exited: <date and time>”
The <date and time> should be in DATE_TIME format.

(3) Exit the application

If the user choose “Close” or the “X” icon available in all window frames, it should be treated the same as if the user clicked the “Exit” button.

If the user choose “Close” or the “X” icon available in all window frames, it should be treated the same as if the user clicked the “Exit” button.

5.6.2. Abnormal Termination Conditions

You are not responsible for correct operation under abnormal termination conditions. The following are those conditions:

(5) Operating System Crash

(6) Machine Crash

(7) Power Failure or Power Surge

(8) “Act of God”
This category is natural disasters like earthquake causing the ceiling to fall on the machine, etc.

6. CMI Student Client Specifications

The CMI student client is used by the student to manage their training process. Only the Student user type may use this client. It is divided into the following components:

· Course Management
This component contains the user interfaces that allow students to manage their training.

· User Management
This component contains the user interfaces that allow students to change part of their information.

· CBT-CMI Integration
This component allows the execution of training material.

The complete set of user interface screens as described in detail in the CMI Management Client Specifications. This document describes its physical characteristics, internal support architecture and some of the unique interface components.

6.1. Physical Specification

Basic Requirements

Platform
Windows 95/98, NT Workstation, NT Server

GUI size
<= 800x600 pixels. Resizable.

Language
Java 1.1

Application Type
Java Application

Development Environment
· No AFC (Microsoft’s Application Foundation Classes)

· Use JFC

· Same IDE as the one used for the Application Server

Memory Requirement
32 MB. Client fits in under 3 MB.

Machine Speed
200 MHz Pentium

Disk Requirement
None

Network Requirement
Performs reasonably well on a 56kpbs modem connection

Important Environment Variables:

%TS_PATH%
 The root installation path of the training software packages

%TS_CMI_CLIENT_PATH%
 The path of CMI client installations (relative to %TS_PATH%)

Installation Paths:

The LESSON_DATA subdirectory is used for data collection and parameter passing between the CMI Compliant CBT lessons and the CMI student client. The usage of these directories is discussed in section 7.4. They are created as needed. Each of the properties have the following meanings:
<USER ID> - The ID property of the student taking the lesson.
<COURSE ID> - The Course_ID property of the course record the lesson
 belongs to.
 <AU ID> - The System_ID property of the AU record.

Command Line(NT):
C:> %TS_PATH%\%TS_CMI_CLIENT_PATH%\BIN\SCLIENT.BAT

 %TS_PATH%\%TS_CMI_CLIENT_PATH%\CONFIG\CLIENT.CFG

Configuration File:
%TS_PATH%\%TS_CMI_CLIENT_PATH%\CONFIG\CLIENT.CFG
Configuration File Format(WIN.INI Format):

Same as the configuration file for the CMI management client.
Other Limits:

· A user can only log in with only one client at a time.
6.2. Course Management

This component allows the student to enroll/unenroll in courses and examine courses. Students are essentially restricted to read only access with the exception of being able to enroll themselves.

The internal architecture of the course management component is virtually the same as the course management component in the CMI Management Client. Both uses the same interfaces, caches, and objects. The real differences lies in the way the data is presented to the user; therefore, no internal architecture section is written. Please use the architecture defined for the course management component in the CMI Management client and adapt it to the CMI Student Client.

6.2.1. User Interface Specifications

The user interface for the student differs from the CMI Management Client greatly although it uses some of the same user interface components. It is designed primarily for a student to manage their training progress. It also does not support majority of the user management and course management capabilities the management client provides.

The complete set of GUI screens and their specifications for the student client are in the CMI Student Client Specifications. Please read that before continuing.

In this section, some of the unique GUI components that should be made Java Beans is discussed. They are:

· Course Content Information Panel

· Course Schedules Panel

6.2.1.1. Course Content Information Panel

This Java Bean GUI component appears in the CMI Student Client as well as the CMI Management Client. It resides inside the “Course Overview” tabbed pane in screen 3 of the Student Client.

You must develop this Java Bean by filling out the CourseGraphicalDisplay class in CourseGraphicalDisplay.java. The following specification must be follows:

Events

· Clicking the “Start” button
When the “Start” button is pressed, a CDActionEvent will be generated and all ActionEventListeners are notified.

· Selecting A Course Element (or row)
When a course element is selected, a CDSelectionEvent will be generated and all CDSelectionChangeListeners are notified.

Properties

· setDisplay()
It takes as input the following:
(1) A series of ASCII text files with exported course structure information.
The Course Java class implements the ASCIIImportExport interface. This means the Course information can be exported to and imported from a ASCII file. You will need to implement these two functions. The details on the format of the file is given in Appendix A.
(2) A Java Hashtable of PerformanceRecords
The hashtable should contain a complete list of the latest performance records of each course element in the course for a particular user(the student who is viewing this panel).

The display is changed when the CourseGraphicalDisplay.setDisplay() method is invoked. The following series of events must occur before this method can be invoked:

(1) The course information must be exported to a series of ASCII files defined by Appendix A.
The directory where the files are exported to should be:
%TS_PATH%\%TS_CMI_CLIENT_PATH%\<USER ID>\<COURSE ID>\COURSE.XXX
Where the <USER ID> is the id of the student who is executing the client.
Where the <COURSE ID> is the id of the course that is going to be displayed.
The file names of these export files is always: COURSE.XXX where XXX is the extension discussed in Appendix A.

(2) Retrieve the latest performance records for the user on this course.
All the performance records must be inserted into a hashtable and passed in as the second input parameter to CourseGraphicalDisplay.setDisplay(). The key of each performance record is the system ID of the course element.
6.2.1.2. Course Schedules Panel

Please see the CMI Student Client Specifications for more details on this panel. The following specification must be followed:

Events

· When the user selects a date.

· When the user selects an AU

· When the user double clicks on the AU.

Properties

· setCourses()
It takes as input a vector of Course objects to display the schedules for.

· setUser()
It takes as input a User object.

If only the courses are set, the status column will not appear.

If only the user is set, nothing is displayed.

If both the courses and user are set, the above display is shown with a valid status column.

Please see CMI Student Client Specification for more on this panel.

6.3. User Management

Like the course management component, the student client’s user management component has only a very limited subset of the functions available in the management client. The limited set of functions are as follows:

· View and Modify Student’s Own Demographic Information
This includes properties such as Name, Title, Position, User ID, Password, and others. A full list of these properties is in section 2.8 to 2.9.

· View Student’s Own Training History Information
Students may view the performance records in the courses that he or she has taken.

Again, the internal architecture is virtually the same as the one for the user management component in the CMI management client. Please use that as a guideline. No special internal architecture specification for this component is given.

The student GUI has limited functionality of the management client. It can only:

1. Display and modify the student’s own demographic information

2. Display student’s past performance information for one course at a time

It reuses the many of the same GUI components as in the CMI Management client. For more details, please see the CMI Student Client Specifications. There are no new GUI components.

CBT-CMI Integration

This section describes what happens when the “Start” button is clicked in the Course Content Information Panel discussed in section 7.2.1.1. This can happen both in the Student Client as well as the Management client.

When the “Start” button is clicked, a listener should receive the CDActionEvent from the Content Information Panel GUI component. The following sets of events then occurs if it was on a Student Client:

(1) For the assignable unit that the “Start” button was clicked on, the execution interface of its Lesson object is retrieved.

(2) The execution interface’s execute() method is invoked.

(3) The execute() method returns when the lesson is finished and returns a performance record.
When the performance record is received by the client, it must also first determine the final status by consulting the completion behavior discussed in section 2.2.3.4. Then, the client must update all other performance records that might be affected by it. For example, completing an assignable unit might cause the course’s completion status to change to Complete as well. Or completing a block may cause another assignable unit’s completion status to change to incomplete. These dependencies are fully described by the Completion Requirements discussed in section 2.2.3.5.

On a management client, only step 2 occurs. The performance record is ignored.

The CBT-CMI Integration module is actually made up of a library of LessonExecution interface implementations. Each implementation is meant to be a “driver” for executing different kinds of training content. Typically, the three general things that each execution interface does is:

(1) Execute the lesson content

(2) Wait for the lesson execution to finish

(3) Collect performance data

Depending on the lesson content type, some or all of these steps may be ignored. Please see LessonExecution.java for details on the interface specification.

You must write the following implementations of the LessonExecutionInterface:

· WebLessonExecution
Implements web based CBT lesson execution.

· CMICompliantCBTExecution
Implements the CMI specifications for executing CBT lesson and collecting performance data.

· InstructorLedExecution
Implements the Instrutor led class execution. This will simply pop up a dialogue box with an error message: “You must go to the lesson location to get trained!”

6.3.1. WebLessonExecution

No code is provided for this class so you must implement it. This execution interface implementation must be given a URL to execute upon creation. It then does the following:

· Launches a web browser and point it to the URL.

· If no errors occurred, it immediately notifies all event listeners with the executionStarted() method.

· When the browser exits, it notifies listeners with the executionDone() method.

· The AURecord is created with the status being Complete.

· If there is an error starting the browser then event listeners will be notified through the executionError() method and an ExecutionErrorEvent is passed in as argument. The ExecutionErrorEvent object should contain an detailed error string explaining what caused the error.

6.3.2. CMICompliantCBTExecution

This execution implementation takes as input the original AssignableUnit object the system wants to execute. The following diagram illustrate what should happen when the execute() method is invoked in the CMICompliantCBTExecution object.

Figure 18
6.3.2.1. Setting up the parameter files

The first step in the execution is to write a parameters file to disk. This file contains critical parameters that the CBT client needs to execute the lesson and is in the WIN.INI format. This parameter file must be generated in the following location.

%TS_PATH%\%TS_CLIENT_PATH%\LESSON_DATA\<Student ID>\<Course ID>\<AU_ID>\LESSON.CMI

Please see section 7.1 for a description of each subdirectory. The following is a brief overview of the parameters in this file.

Keyword
Corresponding Properties
Section
Value

Lesson_ID
vendorID
2.3.1
The lesson id.

Student_ID
ID
2.7
The user id.

Student_Name
firstName

middleName

lastName
2.7
<Last Name>, <First Name> <Middle Name>

The complete name of the student.

Credit
N/A
N/A
Hard code it to c

Output_File
TS_CMI_CLIENT_PATH

systemID

ID (course)

ID (user)
6.1
2.4
2.2
2.7
TS_CMI_CLIENT_PATH/LESSON_DATA/<User Id>/<Course ID>/<AU ID>/lesson.txt

Lesson_Location
location

2.8.2.4
The content of the location property in the AURecord. Blank if the Status property for that AURecord is not Suspend or Log-out flag.

Lesson_Mode
N/A
N/A
Blank for the prototype.

Lesson_Status
status

2.8.2.1

The Status property of the latest AURecord for the input AU. Blank if the AURecord doesn’t exist.

Path
N/A
N/A
TS_CMI_CLIENT_PATH/LESSON_DATA/<User Id>/<Course ID>/<AU ID>

Score
score
2.8.2.1
The score property from the latest AURecord for the input AU. Blank if no AURecord exists.

Time
startTime

endTime
2.8.2.1
SUM(endTime – startTime) in all AURecords for the input AU. 0 if no AURecord exists.

 [Core_Lesson]

group
coreLesson

2.8.2.4

The contents of the coreLesson property of the latest AURecord for the input AU. Blank if the statusFlag property for the AURecord is not either Suspend or Log-out.

Core_Vendor
coreVendor
2.3.4
The contents of the coreVendor property of the CMICompliantLesson object.

[Comments] group
comments
2.5
The instructor comments for the input AU.

Course_ID
ID
2.2
The course ID the input AU of this lesson belongs to.

Comments_File
TS_CMI_CLIENT_PATH

systemID

ID (course)

ID (user)
6.1
2.4
2.2
2.7
TS_CMI_CLIENT_PATH/LESSON_DATA/<User Id>/<Course ID>/<AU ID>/LESSON.CMT

Interaction_File
TS_CMI_CLIENT_PATH

systemID

ID (course)

ID (user)
6.1
2.4
2.2
2.7
TS_CMI_CLIENT_PATH/LESSON_DATA/<User Id>/<Course ID>/<AU ID>/LESSON.INT

Objective_Status_File
TS_CMI_CLIENT_PATH

systemID

ID (course)

ID (user)
6.1
2.4
2.2
2.7
TS_CMI_CLIENT_PATH/LESSON_DATA/<User Id>/<Course ID>/<AU ID>/LESSON.OBJ

Path_file
TS_CMI_CLIENT_PATH

systemID

ID (course)

ID (user)
6.1
2.4
2.2
2.7
TS_CMI_CLIENT_PATH/LESSON_DATA/<User Id>/<Course ID>/<AU ID>/LESSON.PTH

Performance_file
TS_CMI_CLIENT_PATH

systemID

ID (course)

ID (user)
6.1
2.4
2.2
2.7
TS_CMI_CLIENT_PATH/LESSON_DATA/<User Id>/<Course ID>/<AU ID>/LESSON.PFS

Attempt_Number
N/A
2.8.2.4

The number of AURecords for the input AU.

Lesson_Status.X
status
2.8.2.1
The status of each AURecord for the input AU. Lesson_Status.1 is the status property of the earliest AURecord. Lesson_Status.2 is the second earliest, etc.

Score.X
score
2.8.2.1
The score of each AURecord for the input AU.

Score.1 is the score property of the earliest CourseElementRecord. Score.2 is the second earliest, etc.

Mastery_Score
masteryScore
2.5
The masteryScore property value of the AU’s lesson. The AU may have overriden this field so the AU’s masteryScore would take precedence

Max_Time_Allowed
maxTimeAllowed
2.5
The maxTimeAllowed property value of the AU’s lesson. The AU may have overriden this field so the AU’s maxTimeAllowed would take precedence

Time_Limit_Action
timeLimitAction
2.5
The timeLimitAction property value of the AU’s lesson. The AU may have overriden this field so the AU’s timeLimitAction would take precedence

Experience
priorExperience

joiningDate
2.7
priorExperience + today’s date – joiningDate

[Student_Demographics]

2.7
Each keyword of this group corresponds directly to the property of the same name in section 2.7 and section 2.8

[Student_Preferences]

2.8.1
Each keyword of this group corresponds directly to the property of the same name in section 2.8.1

For a specification on the file format, please refer to section 5.1 in the CBT-CMI Integration Supplement document.

6.3.2.2. Starting the Lesson

After the parameters file has been setup, the execution interface implementation must execute the lesson. This is accomplished by starting a new command shell and executing the following command:

> %TS_PATH%\<CBT_Client_Path> <parameters file>

For example:

C:> C:\%TS_PATH%\<CBT_Client_Path>
 C:\%TS_PATH%\%TS_CMI_CLIENT_PATH%\LESSON_DATA\…\LESSON.CMI

· <CBT_Client_Path> is the parameter in the CLIENT.CFG file discussed in section 7.1.

· The argument is the file discussed in the previous section.

Once the lesson is launched, the execution interface implementation will call the executionStarted() method of the ExecStatusChangeListener interface for all listeners. If there is an error then the executionErrorEvent() method will be invoked. The ExecutionEvent object will contain the error message. This error message should be the error string returned by the operating system.

If the lesson was started successfully, the status property of the AURecord for this attempt will become “Incomplete”

6.3.2.3. Collecting the Performance Data

After the CMI Compliant CBT lesson exits, it will send a significant amount of return information to CMI student client. This is done through a single return file in the location specified by the Output_File parameter in the CMI-to-CBT parameter file.

From this file, training information will be parsed and placed in some kind of training history object (to be implemented by the developer). The executionDone() method in the execution interface will be fired after the training history object is built. The ExecutionEvent object that is passed to the executionDone() method will contain the training history object. Inside the implementation of the CMICompliantCBT execution interface’s executionDone() method, new AURecords shuld be created from the training history object. Use the TrainingHistoryManager interface to accomplish this.

By default, the Output_File is in the following location:

%TS_CMI_CLIENT_PATH%/<User ID>/<Course_ID>/<AU’s System_ID>/LESSON.TXT
where:

· TS_CMI_CLIENT_PATH is the environment variable discussed in section 7.1.

· ID is the user id of the student taking the lesson

· Course_ID is the id of the course that the lesson belong to

· System_ID is the systemID of the assignable unit within the course.

The file is in the WIN.INI format.

In the following table, each keyword in the return file is associated with a property in one of the training record objects. From this table, you can translate from the output file into performance record objects described in section 2.8.2
Return File “Output_File”

Keyword
Corresponding Properties
Section
Description

Lesson_Location
location
2.8.2.4
The location where the user exited in the lesson.

Lesson_Status
status
2.8.2.1
The exit status of the lesson.

Score
score
2.8.2.1
The score the student received in this attempt.

A new attempt record will be created for the student.

Time
N/A
N/A
ignored

[Core_Lesson]

group
coreLesson
2.8.2.4
The continuation information passed by the CBT lesson to the CMI. This is stored into the Core_Lesson property of the AURecord.

[Comments] group

Ignored

Tries_During_Lesson

This determines the number of AURecords to create.

Try_Score.X
score
2.8.2.1
The score field of the appropriate new AURecord.

Try_Status.X
status
2.8.2.1
The status field of the appropriate new AURecord.

Try_Time.X
startTime

endTime
2.8.2.1
The amount of time spent on this each try.

Each time corresponds to a new pair of startTime/endTime parameters the new AURecords. The AURecord will have the startTime recorded by the CMI system as the time the lesson is launched. The endTime for that AURecord can be calculated by adding the Try_Time of that try.

(See below for an example).

 [Student _Preferences] group
N/A
N/A
Ignored

The Try_XXXX.X parameters may be a little confusing. For each launch of a lesson, the student may attempt it more than once. Each attempt is recorded in the return properties Try_XXXX.X. Each X corresponds to a new AURecord up to the number specified in the Tries_During_Lesson. The Try_Status, Try_Time and Try_Score keywords are then used to fill out the properties of the new AURecords.

The startTime and endTime property of each AURecord is a little more complicated. Basically, the start time of the first AURecord will be the launch time of the lesson. The end time of that AURecord is the launch time plus the Try_Time.1 property. The start time of the second AURecord is the end time of the first AURecord and so forth. The following is an example:

A student takes the “Intro To Java AWT” lesson. The lesson is launched by the CMI system at 10:00:00. During the lesson, he tries it 2 times and achieves the scores of 40, 50 and the statuses of Fail, Pass. The following AURecord objects are be created for the returned Output_File:

Launch Time: 10:00:00

Figure 19
Please refer to section 5.2 of the CBT-CMI Integration Supplement for the specification on the file format.

6.4. Termination Conditions

6.4.1. Normal Termination Conditions

If the student clicks either the “Exit” or “Logout” button in the “My Message Panel”, a confirm dialogue box will appear. If the student confirms the action, the student client will perform the following set of events:

(1) Save all unsaved data to the server.

(2) Log the exit to the logging center with:
“<user id>’s student client exited: <date and time>”
The <date and time> should be in DATE_TIME format.
The <user id> should be the user who was running the client.

(3) If the action is an “Exit”, the student client application will exit. If the action is “Logout”, the login screen will be redisplayed.

If the user choose “Close” or the “X” icon available in all window frames, it should be treated the same as if the user clicked the “Exit” button.

6.4.2. Abnormal Termination Conditions

You are not responsible for correct operation under abnormal termination conditions. The following are those conditions:

(9) Operating System Crash

(10) Machine Crash

(11) Power Failure or Power Surge

(12) “Act of God”
This category is natural disasters like earthquake causing the ceiling to fall on the machine, etc.

7.
7.1.

7.2.
7.2.1.

(1)
(2)
(3)
(4)

7.2.2.

(1)
(2)

7.2.3.

(1)
(2)
(3)

7.2.4.

(1)
(2)
(3)
7.3.

(1)
·
·
·
(2)
·
·
·
·
·
(3)
·
·
·
(4)
·
·
·
(5)
·
·
·
·

·
·
·

8. Documentation Requirements

In this section, the documentation requirements are discussed. All documents must be in English. There are three different documentation types:

(1) Main Documentation

(2) Design Documentation

(3) Implementation Documentation

(4) Test Documentation

For the Implementation Documentation, please refer to section 0.1.2 for more information.

For the Test Documentation, please refer to section 0.1 for more information.

All documentation should be in English and should be in Microsoft Word format unless otherwise specified.

8.1. Main Documentation

You must write a main documentation file that contains the following information:

(1) A list of deviations from the specification and the reason.

(2) A list of other documentation files and a brief description.

(3) A list of people(With their Chinese names in Chinese Star)who worked on the project and:
* What component they worked on. (Just the component and not a detailed description)
* Their e-mail address.

8.2. Design Documentation

These documents describe the design of a particular component in the system. For each of the design documents, there should be the following information in addition to what is listed below:

· People who worked on this document, design, and implementation with a list

· For every person who worked on it, list what they did.

A design document for at least the following is expected:

Data Storage Format

This document should describe how the database portion is implemented. This should including:

· What tables are used

· What fields are index and what are they used for

For each Java object that has a persistent storage record, include the following:

· Each property and what their corresponding database field is

· Where they are located in persistent storage

· How they are retrieved from persistent storage

Localization Design

This document describes how the localization of the project is done. It must contain:

· A description of all the necessary steps to localize the applications to another language.

· A list of all resource files and a brief description what they do.

· An example of how localization to Chinese is done.

Class Diagrams

This is a set of diagrams similar to what I have draw in Figure 16 and Figure 17. They should illustrate the relationship between each class. There should be one such diagram for every logical component/physical component pair. For example, there should be one for the course management component on the server, one for the course management component on the client, etc.

These diagrams do not have to include miscellaneous classes like events, temporary return objects, etc. They should include all Java classes that have persistent storage equivalents, all interface classes, and all manager classes.

They can be hand-drawn as long as they are legible. There does not have to be a diagram if there is already an existing one in this specification and it is the same.

Appendix A. Course Import/Export Files Specification

A.1 The Course Filetc "6.1 The Course File" \l 2

Description

xe "course file"
This file contains information about the course as a whole. It offers information that relates to more than just a single element in the course.

File type
Group/Keyword (MS Windows INI)

File name
xxxxxxxx.CRS

The extension for this file is CRS. Any legal eight characters may be used for the primary file name.

Groups and keywords
This file contains three groups.

Group Names and Keywords
Function of Keywords

[Course]

Course_Creator

Course_ID

Course_System

Course_Title

Home_Page

Max_Fields_CST

Total_AUs

Total_Blocks

Level

Location

Start_Time

End_Time

Max_Score

Max_Enrollment

Instructor
This group contains information that applies to the course as a whole. Some of this data is designed to help in processing the other files that provide more detailed information on the elements in the course and how they are ordered.

[Course_Description]

Textual description of the course.

A.1.1
[Course] Keywords

tc "6.1.2 [Course] Keywords" \l 3

Keywords
This list of keywords is in a logical order for their appearance in the file.

Course Class Property

Keyword
Description

creator

Course_Creator
Name of group that authored the course.

ID

Course_ID
Identifier for the course

systemVendor

Course_System
Name of the authoring system used to create the course.

title

Course_Title
Common name given to the course.

homePage

Home_Page
The home page of the course if any

level

Level
The complexity level of the file and the course description contained in the file.

N/A

Max_Fields_CST
Maximum number of fields appearing in the Course Structure Table file.

N/A

Total_Aus
Total number of AUs in the course.

N/A

Total_Blocks
Total number of blocks in the course.

location

Location
The location of the course if any.

startTime

Start_Time
Time the course starts

endTime

End_Time
Time the course ends

maxScore

Max_Score
The maximum score possible on the score

maxEnrollment

Max_Enrollment
The maximum number that can enroll in the course.

instructor

Instructor
The instructor in charge of the course.

A.1.1 [Course] Keyword

Course_Creator=

xe "course_creator keyword"
Definition
Name of the vendor and/or author of the course.

Data format
Alphanumeric. All characters, beginning with the first printable character after the equals sign are significant.

Examples
Course_Creator = Boeing Commercial Airplane Group, \

Customer Services

Course_Creator = Airbus

Course_ID=

xe "course_id keyword"
Description
The unique identifier for the course in the CMI system.

Course_System=

xe "course_system keyword"
Definition
Name of the predominant authoring system used to create the course. The authoring system used to create the greatest number of units in the course.

Data format
Alphanumeric. All characters, beginning with the first printable character after the equals sign are significant.

Examples
Course_System=Authorware

Course_system = PCD3

Course_System=WISE

Course_System=VACBI

course_system = AIS II

Course_Title=

xe "course_title keyword"
Definition
Common name given to the course. Probably used by the CMI system when identifying course for student.

Data format
Alphanumeric. All characters, beginning with the first printable character after the equals sign are significant.

Examples
Course_Title = 747 Flight Crew Training

Course_Title = Maintaining 747 Avionics

Home_Page=

xe "max_fields_cst keyword"

Definition
The home page of the course.

Format
URL String

Examples
Home_Page=http://www.trainingsoft.com/course/A12

A.1.1 [Course] Keyword (cont.)

Level=

xe "level keyword"
Definition
Hard coded to 3.

Max_Fields_CST=

xe "max_fields_cst keyword"

Definition
Identifies the maximum number of fields that are in the course structure table (any.CST file).

Format
Numeric characters.

Examples
Max_fields_CST=12

; There is at least one block (or the course itself) that

; has 11 members.

Max_Fields_CST = 9

Total_AUs=

xe "total_aus keyword"
Definition
The total number of unique assignable units in the course. This information aids in the processing of information in the file.

This number does not necessarily represent the largest digit used to identify an AU. If there are 5 lessons in a course, they do not have to be identified as A

.001, A.0021, A2, A3, A

.003, A.004, and A.004, and A5. AU identifiers do not have to be consecutive. A course with 5 lessons (Total_AUs=5) could have the identifiers A

.00008, A.00064, A.00512, 8, A64, A512, A4096, A2768

Format
Numeric characters.

Examples
Total_AUs = 3

; There are three assignable units in the course.

Total_AUs= 84

total_aus = 138

Total_Blocks=

xe "total_blocks keyword"
Definition
The total number of unique blocks in the course. This information aids in the processing of the rest of the data in the file.

This number does not have to be equal to the largest number used in an extension. Identifier extensions do not have to be consecutive.

Format
Numeric characters.

A.1.1 [Course] Keyword

Location=

xe "course_id keyword"
Definition
Alpha numeric string that identifies the main location where this course is held. This value is generated from the location property in all of the AU’s belonging to this course.

AU’s that have no empty location properties do not count. If the remaining AU’s have multiple locations, this field should have the value “Multi-location”

This value is generated by the CMI Management Client when the export files are passed in from the Course Builder.

Argument format
Alphanumeric characters. All characters, beginning with the first printable character after the equals sign are significant.

Examples
Location=Builder 14, Room 4a, Santa Teresa Site

Location=Multi-location

Start_Time=

xe "total_blocks keyword"
Definition
The time the scheduled portion of the course officially start. It is the earliest start time of all of the AU’s in the course. If no start time is available then it defaults to 0

Format
Time Text: MM/DD/YYYY HH:MM [AM/PM], GMT

MM = Month

DD = day

YYYY = year

HH = hour

MM = minute

Examples
Start_Time = 12/08/1971 08:00 AM, GMT

End_Time=

xe "total_blocks keyword"
Definition
The time the scheduled portion of the course ends. It is the latest start time of all of the AU’s plus the duration of that AU. If no end time is available then it defaults to 0 which stands for no end time.

Format
Time Text: MM/DD/YYYY HH:MM [AM/PM], GMT

MM = Month

DD = day

YYYY = year

HH = hour

MM = minute

Examples
End_Time = 12/09/1971 08:00 PM, GMT

Max_Score=

xe "total_blocks keyword"
Definition
The maximum score a student can get on the course.

Format
Numeric characters

Examples
Max_Score = 100

Max_Enrollment=
Definition
The maximum number of students that can enroll in the course. Anyone who tries to enroll when the course is full is denied enrollment.

Format
Numeric characters

Examples
Max_Enrollment = 50

Instructor=

xe "total_blocks keyword"
Definition
The instructor in charge of the course.

Format
User ID (Alpha numeric string of up to 11 chars).

Examples
Instructor = joeyoung5

A.1.2
[Course_Description]

tc "6.1.4 [Course_Description]" \l 3

Definition
This is a textual description of the contents of the course. It may contain the purpose, or the scope, or a summary of the course objectives. The content of this field is determined by the desires of the author.

Corresponding Course Class Property
description

Format
Freeform text. Each line is limited to 254 characters. On long lines carriage returns can be indicated with the characters "<cr>" embedded in the string. Also, carriage returns are implied (explicitly) at the end of each line.

A.2 Assignable Unit Filetc "6.2 Assignable Unit File" \l 2

xe "assignable unit file"

Description
Information relating to the assignable units (AU) in the course. Each AU has its own record (or row in the table).

File type
Table (Comma-delimited ASCII)

File name
xxxxxxxx.AU

The extension for this file is AU. Any legal eight characters may be used for the primary file name.

Fields

The first record contains the field identifiers. The order in which these field identifiers appear determines the order of the data in subsequent records. Each following record in this file describes a different assignable unit. Each record has the following fields.

Assignable Unit File: the fields
Field Name
System ID
Type
Home_Page

AssignableUnit
systemID
N/A (Use to denote type of the lesson)
homePage

Class Equivalent

Continued (
Location
Start_Time
End_Time

location
startTime
endTime

Continued (
Lesson
Mastery_Score
Max_Time_Allowed

lesson
masteryScore
maxTimeAllowed

Continued (
Time_Limit_Action
Comments

timeLimitAction
comments

Example file contents
The three records below are extracted from the beginning of a hypothetical file.

"system_id","type”,”homePage”,”location”,”startTime”,”endTime”,”lesson”,”masteryScore”,”maxTimeAllowed”,”timeLimitAction”,”comment”

"A11", “WebLesson”,,,,,”L1”,”95”,”99:99:99”,”Continue”,”Take this lesson<cr>at your own risk”

"A12", “CMICompliantLesson”,,,,,”L23”,”80”,”02:15:00”,”Exit, Message”,

"A13", “InstructorLedLesson”,”http://a.b.c/56.html”,”Building 14, Room 4A”,”7/12/1998 05:00 AM, GMT”,”7/12/1998 06:00 AM, GMT”,”L56”,”100”,”01:00:00”,”Exit, Message”,

A.2 Assignable Unit Fields

System ID

xe "system id field"
Description
The system ID of the assignable unit. Same as the systemID property of the AssignableUnit Java Class.

Type

xe "type field"
Definition
The type of the lesson that belongs to the AU.

Data format
Alphanumeric. Not case sensitive. May contain spaces and commas. The valid types are:
WebLesson

CMICompliantLesson

InstructorLedLesson

Examples
"WebLesson"

"CMICompliantLesson"

“InstructorLedLesson

Home_Page

xe "command line field"
Definition
The home page for the AU. Optional

Data format
URL String

Examples
"http://www.trianingsoft.com/course/c5/a12.html"

Location

xe "command line field"
Definition
The physical location where the training will take place.

Data format
Alphanumeric

Examples
"Building 14, Room 4A"

“T.S. Training Center, 456 Training Blvd., San Jose, CA”

Start_Time

xe "total_blocks keyword"
Definition
The time the AU starts. If blank then there is no start time which means it is most likely a CBT lesson.

Format
Time Text: MM/DD/YYYY HH:MM [AM/PM], GMT

MM = Month

DD = day

YYYY = year

HH = hour

MM = minute

Examples
Start_Time = 12/08/1971 08:00 AM, GMT

A.2 Assignable Unit Fields (cont.)

End_Time

xe "total_blocks keyword"
Definition
The time the AU ends. If blank then there is no end time which means it is most likely a CBT lesson.

Format
Time Text: MM/DD/YYYY HH:MM [AM/PM], GMT

MM = Month

DD = day

YYYY = year

HH = hour

MM = minute

Examples
End_Time = 12/09/1971 08:00 PM, GMT

Lesson
Definition
The lesson that belongs to this AU. Recall that lesson objects represents the training material and its behavior on execution.

Format
Lesson ID (It is the ID field of the corresponding lesson object).

Examples
“TS-5-198”

“L56”

A.2 Assignable Unit Fields (cont.)

Mastery Score

Description
See Mastery_Score description under CMI to CBT [Student_Data] keywords. in the CBT-CMI Integration Supplemental documentation.

Max_Time_

Allowed=

xe "max_time_allowed keyword"
Definition
The amount of time the student is allowed to have in the current attempt on the lesson. See time_limit_action (next) for the lesson's expected response to exceeding the limit.

Data format
TIME: Hours, minutes, and seconds separated by a colon.

hh:mm:ss

Examples
“0:14:30”

“ 2:03:00”

Time_Limit_

Action=

xe "time_limit_action keyword"
Definition
Tells the lesson (or test) what to do when the max_time_allowed is exceeded. There are two arguments for this keyword.

\SYMBOL 183 \f "Symbol" \s 12 \h
What the lesson should do -- Exit or Continue

\SYMBOL 183 \f "Symbol" \s 12 \h
What the student should see -- Message or No message

Format
Two letters, words, or phrases separated by a comma. The possible arguments are

Exit (or E or e)
Continue (or C or c)
Message (or M or m)
No_Message (or N or n)

Only the first letter of each word or phrase is significant. Capitalization is ignored.

Examples
“ Exit, Message”

; The lesson presents a message to the student

; indicating he has exceeded the time

; limit in the lesson, and then exit or quit.

“E,N”

; The lesson quits or exits with no message to the

; student. He jumps to the CMI environment.

Comments

xe "time_limit_action keyword"
Definition
Comments for this Assignable Unit. Used for sending bulletin messages about a particular AU to students who are taking the course.

Format
TEXT, carriage returns are encoded by <cr>

Examples
“This has been canceled<cr>Moved to Wed @ 3:00 p.m.”

A.3 Descriptor Filetc "6.3 Descriptor File" \l 2

xe "descriptor file"

xe "course descriptor file"

Description
This file contains a complete list of every course element in the course. It is used as the basic cross reference file showing the correspondence of system generated IDs with user defined IDs for every element. This file also contains any textual description created for an element in the course. Course elements include

\SYMBOL 167 \f "Wingdings" \s 12 \h
Assignable Units

\SYMBOL 167 \f "Wingdings" \s 12 \h
Blocks

File type
Table (Comma-delimited ASCII)

File name
xxxxxxxx.DES

The extension for this file is DES. Any legal eight characters may be used for the primary file name.

Fields
Each record in this file describes a different element in the course. Each record has the following fields. Their order is determined by the order in which the field titles appear in the first record.

Required fields
Although all field titles must be in the file for level 1 compliance, only the following field values are required:

System_ID

Developer_ID

Title

Descriptor File: the fields
System ID

(for course element)
Developer ID

(for course element)
Title
Line number
Description

System_ID
Developer_ID
Title
Line_Number
Description

A.3 Descriptor Fields

Example file contents
The records below are extracted from the beginning of a hypothetical file.

"system_id","developer_id","title","line_number","description"

"A1","PP1-2","Power Plant Introduction",1,"An overview of the operation of the primary"

"A1","PP1-2","Power Plant Introduction",2,"systems in the Pratt & Whitney PW2037 engine."

"A2","PP2-1","Power Plant Fuel System",1,"Fuel movement from the tank to the combustors."

"A3","PP3-1","Power Plant Oil System",1,"Oil circulation system in the PW2037 engine."

* The developer_id corresponds to the vendorID property of the BaseLesson class.

A.3 Descriptor Fields (cont.)

System_ID

xe "system_id field"
Definition
System assigned ID. The exporting system for the course structure, generates a simple ID for every course element. That ID must appear in this file.

This simple ID has two parts. A letter and a number.

The letter identifies to what category element the record refers. Possible categories (types) are:

\SYMBOL 167 \f "Wingdings" \s 12 \h
A -- Assignable Unit

\SYMBOL 167 \f "Wingdings" \s 12 \h
B -- Block

The number is a simple integer to distinguish each unique item in a category.

Data format
Alphanumeric. Not case sensitive. The first letter is an A, or B. That is followed by an integer number.

Examples
"A15"

"B1"

Developer_ID

xe "developer_id field"
Definition
Developer assigned ID. Unique identifier for an assignable unit or block. Used outside of this structure file to refer to a specific element.

Data format
Alpha-numeric string. No internal spaces.

Examples
"APU-747-003"

"747-423-ELEC-001"

A.3 Descriptor Fields (cont.)
Title

xe "title field"
Definition
Commonly used name for an assignable unit, block, objective, or complex objective. Probably used by CMI system in menu screens where students can select an assignable unit or block, or select to see the status of an objective.

Data format
Alphanumeric. Not case sensitive. May contain spaces and commas.

Examples
"Auxiliary Power Unit, Part 1"

"Auxiliary Power Unit Start"

"Electrical Power, Part 3"

Line number

xe "line number field"
Definition
Identifies the line number of the description field that follows. In some cases, a description might be too long to fit into a two-hundred-fifty-four character field. When the description is too long, it requires multiple records. All fields are the same for these records, except the line number and description.

Data format
Integer number.

Examples
1

12

2

Description

xe "description field"
Definition
This is a textual description of the assignable unit and block. It may contain the purpose, or the scope, or a summary of the element. The content of this field is determined by the desires of the author.

Data format
Text. Limited to 254 characters. For longer descriptions, multiple records are required. It is possible to embed carriage returns in a single line by using the "<CR>" combination. (Not case sensitive -- <cr> works as well.)

A.4 Course Structure Filetc "6.4 Course Structure File" \l 2

xe "course structure table"

Description
This file contains the basic data on the structure of the course. It includes all of the assignable units and blocks in the course. The order in which these appear in the file implies (but does not force) an order for presentation to the student.

Even though the student may have the option of selecting any assignable unit or block, the CMI router will probably list them in the order in which they appear in this file.

If a specific order is required by the developer, that order is specified in the prerequisites table.

File type
Table (Comma-delimited ASCII)

File name
xxxxxxxx.CST

The extension for this file is CST. Any legal eight characters may be used for the primary file name.

Records
Each record in this file describes the members of a course or block, and implies a level in the course hierarchy. The order of the records must be respected both upon import and export to achieve minimum AICC compliance.

Fields
Each record has a variable number of fields, limited by the Max_Fields_CST keyword in the Course file. Each different assignable unit or block that appears in the file must have a unique identifier.

The first field in each record is always the course or block identifier. The course is always identified by the word “root”, and the block identifier is always arbitrarily determined by the course generation routine. The block identifier is found in the “system_id” column of the Descriptor File.

Each block identifier will always appear more than once in a file -- the first appearance identifies where the block is in the hierarchy; the second appearance identifies the members of the block. Assignable units may appear more than once.

Usage rules
The first entry in the file is always "root."

Each subsequent entry is a system generated ID (system ID). The ID indicates the type of element and that it is a member of the course (root) or block that is identified in the first field.

A block will always appear in the file first as a member of another group (another block or the root). The second appearance of the block usually defines the membership of the block. (In some cases a block may appear in more than a single block in the course, in which case the membership may be described in the third or fourth appearance of the block ID.)

Course Structure Table, v1.1

Block
Members -- Assignable units & other blocks

Root
Member
Member
Member
Member

A.4.1
Example 1

tc "6.4.1 Example 1" \l 3

Description
This is a simple course that is described in three ways. The first description is a diagram, the second is a table, and the third is the contents of a Course Structure File.

[image: image1.wmf]A

P

U

E

l

e

c

t

P

w

r

P

o

w

e

r

p

l

a

n

t

C

o

u

r

s

e

I

n

t

r

o

d

u

c

t

i

o

n

B

l

o

c

k

1

B

l

o

c

k

2

E

l

e

c

,

P

a

r

t

1

E

l

e

c

,

P

a

r

t

2

A

U

1

A

U

2

A

U

3

P

w

r

,

P

a

r

t

1

A

U

4

A

U

5

P

w

r

,

P

a

r

t

2

P

w

r

,

P

a

r

t

3

A

U

6

Example table
The table below reflects the diagram above. Each course element in this table uses the "Developer ID" -- the unique identifier assigned by the ISD organization during development of the course.

Table for Introduction Course

Root
AU 1
Block 1
Block 2

Block 1
AU 2
AU 3

Block 2
AU 4
AU 5
AU 6

Example file contents
The records below reflect the table and diagram above. Each ID is a "System ID" -- ID assigned by the system that generated the files for the export of this course.

"block","member","member","member"

 "root","A1","B1","B2"

"B1","A2","A3",""

"B2","A4","A5","A6"

A.4.2
Example 2

tc "6.4.2 Example 2" \l 3

Description
This is a simple course that was described in the introduction to this chapter. It is described here in three ways. The first description is a diagram, the second is a table, and the third is the contents of two key files: the Descriptor File and the Course Structure File.

[image: image2.wmf]Electrical

AC

DC

Proc.

Power Plant

Fuel

Oil

Pneum.

Proc.

Fuel

System

Proc.

Example table
The table below reflects the diagram above. Because each entry in the file must be a unique identifier, the table also includes the exporting-system generated ID (System ID).

Table for Example Course

Root
Electrical

B1
Power Plant

B2
Fuel

B3

Electrical

B1
AC

A1
DC

A2
Procedures

A3

Power Plant

B2
Fuel

A4
Oil

A5
Pneumatics

A6
Procedures

A7

Fuel

B3
System

A8
Procedures

A9

Example file contents
The records below represent the contents of the Descriptor File, and reflect the table and diagram above.

Filename: example.DES

"system_id","developer_id","title","line_number","description"

"A1",,"AC Electrical",,

"A2",,"DC Electrical",,

"A3",,"Electrical Procedures",,

"A4",,"Power Plant Fuel",,

"A5",,"Power Plant Oil",,

"A6",,"Power Plant Pneumatics",,

"A7",,"Power Plant Procedures",,

"A8",,"Fuel System",,

"A9",,"Fuel Procedures",,

“B1”,,”Electrical Power”,,

“B2”,,”Power Plant”,,

“B3”,,”Fuel”,,

Example file contents
The records below represent the Course Structure File, and reflect the table and diagram above.

Filename: example.CST

"block","member","member","member","member"

"root","B1","B2","B3",

"B1","A1","A2","A3",

"B2","A4","A5","A6","A7"

"B3","A8","A9",,

A.5 Prerequisites Filetc "6.6 Prerequisites File" \l 2

Description
Sometimes it may be desirable to prevent a student from entering a lesson until he has met certain prerequisites. This file allows that sort of constraint to be placed on each block or assignable unit (AU) in a course.

File type
Table (Comma-delimited ASCII)

File name
xxxxxxxx.PRE

The extension for this file is PRE. Any legal eight characters may be used for the primary file name.

Records
Each record allows a single prerequisite (Level 2) or list of prerequisites (Levels 3 - 4) to be defined for a block or AU.

Fields
The first record identifies the order of the fields with the field names: Structure_Element, Prerequisite, and Mode.

The system generated ID is in the structure_element field. The prerequisite field is an expression (See the section on Logic Statements) that identifies the course elements that determine whether a student can begin the block or AU.

Prerequisites File

Level 3
Structure Element

(Block or AU)
Prerequisite Logic Statement

(Blk, AU or Obj)

(Correpsonds to the
Structure_Element
Prerequisite

 hard coded level 3 in
System ID
System ID & System ID

 the Course fields)
System ID
System ID | System ID

System ID
System ID

System ID
System ID & (System ID | System ID)

Usage rules
When there is no prerequisite defined for an AU or block, the student may select that course element at any time.

When there is no prerequisite for an AU that is part of a block, and the block does have prerequisites, then that AU may be taken anytime the block prerequisites are met.

When an AU or block does not appear in the file, it is assumed to be an AU or block with no prerequisites. (i.e. The above rules apply.)

Example file contents
The records below are extracted from the beginning of a hypothetical file.

structure_element, prerequisite

"B13","B12 & A14"

"A48","B12 | B11"

"A49","A48"
"A50","B12 & (A15 | A16)"

A.5.1
Assignable Unit and Objective Status

tc "6.6.1 Assignable Unit and Objective Status" \l 3

Assignable Unit (lesson) status
Prerequisites are a listing of those course elements that a student has completed. Completed is a status. Lesson status is often determined within the lesson by the logic designed into it.

There are five possible statuses for each lesson.

\SYMBOL 183 \f "Symbol" \s 12 \h
Passed

\SYMBOL 183 \f "Symbol" \s 12 \h
Completed

\SYMBOL 183 \f "Symbol" \s 12 \h
Failed

\SYMBOL 183 \f "Symbol" \s 12 \h
Not attempted

\SYMBOL 183 \f "Symbol" \s 12 \h
Incomplete

In any logic statement, a structure element may be made equal to any of these statuses. However, if not explicitly identified these five statuses are resolved into two statuses: complete or incomplete as follows:

(
Complete

· Passed

· Completed

(
Incomplete

\SYMBOL 183 \f "Symbol" \s 12 \h
Failed

\SYMBOL 183 \f "Symbol" \s 12 \h
Not attempted

\SYMBOL 183 \f "Symbol" \s 12 \h
Incomplete

In a prerequisite record the following statement

"A4","A1 & A2 & A3"

Means that the status of lessons (assignable units) 1, 2, and 3 must be Complete before the student can begin lesson 4. That is, the student must achieve a pass or completed in lessons 1, 2, and 3 as prerequisites before he can take lesson 4.

In a prerequisite record the following statement

"A4","A1 = P & A2=P & A3 = P"

Means that the status of lessons (assignable units) 1, 2, and 3 must be Pass before the student can begin lesson 4.

A.5.2
Logic Statements

tc "6.6.3 Logic Statements" \l 3

Logic statement

xe "logic statement"
A logic statement is a list of course elements (block, assignable unit, objective) with their status (Complete, Incomplete, etc.) separated by logic operators (&, |, ~). A special logic statement is the single word "never". This is used to prevent a student from ever entering the lesson in the mode (normal, review, browse) for which the record is applicable.

Logic operators

xe "logic operator"
A logic operator describes how course elements are to be combined to determine whether a logical prerequisite is complete or incomplete. This table lists the available logic operators.

Operator Meaning
Symbol

and
&

or
|

never
never

not
~

group or set
{ }

separator for set members
,

complete X number out of a set
X*{ }

evaluate first
()

Definitions

When evaluating course elements in a logic statement, and status is not explicitly stated, one of two states is possible: complete or incomplete.
 These correspond to the traditional logical values of true and false. The following operators can be used to create a logical statement with course elements.

xe "AND logic operator"
xe "& logic operator"
and
All elements separated by an & must be compete for the expression to be evaluated as complete.

A34 & A36 & A38
Assignable units number 34, 36, and 38 must all be complete for the group to be considered complete.

xe "OR logic operator"
xe "| logic operator"
or
If any of the elements separated by an | are passed the expression is considered true.

A34=P | A36=P | A38=P
If any one of the lessons, 34, 36, or 38, are passed then the group is considered complete.

xe "NEVER logic statement"
never
Special statement. When the second field in a prerequisite file has “never”, then the third field identifies the mode in which the course element in the first field may not be used or entered.

A34, never, R
Assignable unit 34 may not be entered in the Review mode.

xe "not logic operator"
xe "~ logic operator"
not
An operator that returns incomplete (false) if the following element or expression is complete, and returns complete (true) if the following element or expression is incomplete (false).

A34, ~A35
The student may enter unit 34 as long as unit 35 has not been completed (that is, the status of A35 must be Incomplete, Failed, or Not attempted). If assignable unit 35 is complete, the student may not enter unit 34.

xe "sets in logic statement"
xe "{ }"
set
A list of course elements separated by commas and surrounded by curly brackets -- { }. A set differs from a block, in that the set is defined only for purposes of the prerequisite file. A set has no effect on the structure of the course.

{A34, A36, A37, A39}
Assignable units 34, 36, 37, and 39 are part of a set.

separator
The comma is used to separate the members of a set. Each member of the set can be evaluated as a Boolean element – complete or incomplete.

{A34, A36, A37, A39}
Assignable units 34, 36, 37, and 39 are each separated by a comma in this set.

xe "X* logic operator"
X*
X is an integer number. This operator means that X or more members of the set that follows must be complete for the expression to be complete (true).

“A38”, “3*{A34, A36, A37, A39}”
Any three or more of the following units – 34, 36, 37, 39 -- must be complete before the student can enter unit 38.

xe "()"
evaluate 1st
The expression inside the parenthesis () must be evaluated before combining its results with other parts of the logical statement. Parentheses may be nested.

“A39”, “A34 & A35 | A36”

In this statement, completing A36 all by itself enables the student to enter A39.

“A39”, “A34 & (A35 | A36)”
Adding the parenthesis, makes it necessary to complete at least two units (A36 all by itself is no longer enough) to enter unit A39.

Examples

These records are from prerequisites files.

Level 3

A31,A23 & A28

Means that before the student can begin Assignable Unit #31, he must complete units 23 and 28. This record

Level 3

"A31","3*{A23 , A25 , A26 , A28 , A29}"

Means that before he begins unit 31, the student must complete at least three of the five lessons listed in the parentheses.

Level 3

"A31","3*{A23 , (A25 & A26) , A28 , A29}"

In this case units 25 and 26 together comprise one member of the set. Therefore, the student may have to complete 4 units in order to enter lesson (assignable unit) number 31. For instance, having completed A23, A25, and A28, he would NOT be able to enter lesson 31.

Level 3

"B31","~J31"

Means that he may begin any unit in block 31 if he has not completed objective 31 (that is, if Objective 31 has a status of Incomplete, Fail, or Not Attempted the student may begin Block 31). After completing objective 31, he may not enter block 31.

Level 3

"B31","~(J31=F)"

Means that he may begin any unit in block 31 if he has not failed objective 31 (that is, if Objective 31 has a status of Fail, the student may not begin Block 31). After failing objective 31, he may not enter block 31.

Level 3

A15, A14 & ~J15

Means that before he begins unit 15 the student must complete unit 14 and not have completed objective 15. If he has mastered objective 15 he may not enter lesson 15. If he has not completed lesson 14, he may not enter lesson 15.

A.6 Completion Requirements Filetc "6.7 Completion Requirements File" \l 2

File justification
While lesson and objective status is frequently determined within the lesson by the logic designed into it, this is not always true. For instance, there may be an assignable unit designed to pre-test the student. By demonstrating mastery of some objectives in this pre-test, the student may get credit for passing parts of a lesson – or even a complete lesson – without ever having seen it

In other words, the CMI system may sometimes determine the status of a element by factors outside the element itself. Similarly block and complex objective status is defined in terms of other structure elements. Therefore, block and complex objective status must be determined by the CMI system.

The Completion Requirements file is designed to allow the explicit specification of when an assignable unit or block should be assigned a specific status; when that status does not conform to the defaults. It is essentially an exception file.

Default status
Block
Block status is determined by the status of all of its members. Unless specially defined in a completion requirements file, a block is considered complete when all members of the block are complete.

Lesson
Lesson status is determined by the lesson when the student leaves the lesson. Additionally, a pass or fail status can be determined by the CMI by comparing the lesson’s score with the lesson’s mastery score.

File type
Table (Comma-delimited ASCII)

File name
xxxxxxxx.CMP

The extension for this file is CMP. Any legal eight characters may be used for the primary file name.

Records
Each record in this file defines how the CMI system may determine the status of an assignable unit or block.

There may be an unlimited number of logic statements to determine the status of each lesson. For instance, just to define Pass, Fail, Complete, and Incomplete for a single lesson would require 4 completion records.

The order of these records is significant. To determine the status of a lesson, the CMI system should evaluate each statement relating to the lesson in the same order in which it appears in this file. The first statement to evaluate True determines the status of the lesson.

It is important that the order of these records be respected by the CMI system during the import and export of the Completion Requirements file.

Fields
Each record has three parts (fields). These fields may be in any order. The first record identifies the order with the field titles: Structure_element, Requirement, and Result.

STRUCTURE_ELEMENT: This field contains the exporting-system generated ID of an assignable unit, block or objective.

REQUIREMENT: A logic statement that enables a true or false decision to be made by the CMI system. The logic notation is the same as described in Section A.5.

RESULT: This field indicates the status of the element when the requirement statement is found TRUE. This does NOT mean that if a PASS is in the result field and the requirement statement is false, then FAIL must be assumed. If the requirement statement evaluates as FALSE, the status of the element is determined by other factors – either an additional completion record or default.

Example records
The records below are extracted from the beginning of a hypothetical file.

Level 3 or 4

“Structure_Element”, ”Requirement”, ”Result”

"B8", "A14| A15| A16",”Complete”

Block 8 is considered complete when any one of these three assignable units is complete or passed.

Level 3 or 4

“Structure_Element”, ”Requirement”, ”Result”

"B21", "3*{A36 | A37 | A38 | A39 | A40}", “Complete”

This tells the CMI system that the block is complete when any 3 of these 5 assignable units is complete or passed. An example of when this might be useful would be in a block with 5 exercises. The course designer wants the student to perform at least 3 of the five exercises. That is what this logic statement is indicating.

Level 3 or 4

“Structure_Element”, ”Requirement”, ”Result”

"B13","A8=P | A9=P | A10=P | A11=P", “Incomplete”

"B13"," A8=P & A9=P & A10=P & A11=P ", “Complete”

Notice that in this case, Block 13 will never be considered Complete. The first statement will always evaluate True before the second. And the first statement to evaluate True determines the status of the course element.

Level 3 or 4

“Structure_Element”, ”Requirement”, ”Result”

"B13","A8=P & A9=P & A10=P & A11=P ", “Complete”

"B13","A8=P | A9=P | A10=P | A11=P", “Incomplete”

This corrects the problem in the example above. Now, as soon as the student has passed a single lesson in the block the block status will be changed from Not attempted to Incomplete. When the student has passed all of the lessons, the status of the block will change to Complete because the first statement will evaluate True and the CMI system will never get to the second statement to re-evaluate the Block status.

Level 3 or 4

“Structure_Element”, ”Requirement”, ”Result”

"A14", "A3=F",”Fail”

Lesson 14 is considered Failed, if Lesson 3 (probably a pre-test) is failed.

Course Layout File

Description
This file contains layout information of the course.

File type
Can be binary.

File name
xxxxxxxx.LYO

The extension for this file is LYO. Any legal eight characters may be used for the primary file name.

Appendix B. Lesson Import File Specifications

B.1 The CMICompliantLesson Filetc "6.1 The Course File" \l 2

Description

xe "course file"
This file contains information about a CMICompliantLesson type. When imported, it corresponds to exactly one CMICompliantLesson Java class as described in section 2.3.4

File type
Group/Keyword (MS Windows INI)

File name
xxxxxxxx.TSL

The extension for this file is TSL. Any legal eight characters may be used for the primary file name.

Groups and keywords
This file contains 2 groups

Group Names and Keywords
Function of Keywords

[Core]

Vendor_ID

Lesson_Title

Lesson_Description

Lesson_Type

Max_Score

Mastery_Score

System_Vendor

Core_Vendor

Max_Time_Allowed

Time_Limit_Action
This group of keywords describes the lesson content in full. It includes data on how to execute the training material, meta-data information, and mastery information.

[Keywords]
This group specifies a list of keywords that is associated with this lesson.

B.1.1
[Core] Keywords

tc "6.1.2 [Course] Keywords" \l 3

Keywords
This list of keywords is in a logical order for their appearance in the file.

CMICompliantLesson Class Property

Keyword
Description

vendorID

Vendor_ID
The ID of the lesson

title

Lesson_Title
The title of the lesson

description

Lesson_Description
A description of the lesson content

type

Lesson_Type
Type of the lesson (i.e. CMICompliantLesson)

maxScore

Max_Score
The maximum score possible in the lesson

masteryScore

Mastery_Score
The recommended mastery score. Can be overriden in the AU.

systemVendor

System_Vendor
The development tool used primarily to build the lesson.

coreVendor

Core_Vendor
Parameters necessary to execute the lesson content.

maxTimeAllowed

Max_Time_Allowed
Recommended maximum time allowed to take the lesson. Can be overriden in the AU.

timeLimitAction

Time_Limit_Action
Recommended time limit action when Max_Time_Allowed is exceeded. Can be overriden in the AU.

B.1.1 [Core] Keyword

Vendor_ID=

xe "course_creator keyword"
Definition
The developer ID for the lesson. Corresponds to the vendorID field

Data format
ALPHAN_ID

Examples
Vendor_ID = TS-56-T

Vendor_ID = 56

Title=

xe "course_id keyword"
Description
The title given to the lesson.

Data format
STRING. Max 254 chars.

Examples
Title=Introduction To Java AWT

Title = Competency Test

Description=

xe "course_system keyword"
Definition
A textual description of course contents

Data format
TEXT. Max 254 chars. Carriage returns encoded by <cr>

Examples
Description=This course gives you a basic understanding of the Java AWT package<cr>There are no tests.

Type=

xe "course_system keyword"
Definition
See the Type field in Assignable Unit File

Max_Score=

xe "course_system keyword"
Definition
The maximum score a student can get in the lesson.

Data format
Numeric

Examples
Max_Score = 50

Mastery_Score=

xe "course_system keyword"
Definition
This is the recommended value for the mastery score. See the Mastery_Score field in Assignable Unit File for details.

System Vendor
xe "system vendor field"
Definition
Authoring system used to create the lesson.

Data format
Alpha-numeric. Any characters, including spaces, up to end-of-line and carriage return.

Core_Vendor

xe "core vendor field"
Definition
Unique information required by the lesson's design. Without this information, a lesson may not execute.

Data format
Text field. This contains whatever system-unique information is necessary for this lesson to function well. This field is limited to 254 characters. If more information is required, the field may contain a reference to a separate file with the necessary data.

To enable the storage of several keywords and their values in this field, embedded carriage returns (<CR>) may be used. When this information is passed to a lesson in an INI (group-keyword) file, a real carriage return is substituted for each "<CR>" symbol.

Example
The following field in an assignable unit file

"Testmode=on<cr>Special_add=0<cr>Backon=off"

goes into the INI file for the lesson at launch and becomes

[Core_Vendor]

Testmode=on

Special_add=0

Backon=off

Max_Time_Allowedxe "core vendor field"
Definition
The recommend maximum amount of time allowed for this lesson. See Max_Time_Allowed keyword in section 2.5 for more information on how to override this value.

Time_Limit_Actionxe "core vendor field"
Definition
The recommended time limit action when the maximum time allowed is past. See Max_Time_Allowed keyword in section 2.5 for more information on how to override this value.

B.1.2
[Keywords]

tc "6.1.4 [Course_Description]" \l 3

Definition
This is a list of keywords describing the lesson. This keyword list can be used to search for lessons while building a course.

Corresponding BaseLesson Class Property
keywords

Format
A list of keywords separated by a carriage return.

Each line is a single keyword describing the lesson.

Examples
[Keywords]

Java

AWT

Graphics

GUI

B.2 The WebLesson Filetc "6.1 The Course File" \l 2

Description

xe "course file"
This file contains information about a WebLesson type. When imported, it corresponds to exactly one WebLesson Java class as described in section 2.3.3

File type
Group/Keyword (MS Windows INI)

File name
xxxxxxxx.WBL

The extension for this file is WBL. Any legal eight characters may be used for the primary file name.

Groups and keywords
This file contains 2 groups

Group Names and Keywords
Function of Keywords

[Core]

URL
Vendor_ID

Lesson_Title

Lesson_Description

Lesson_Type

Max_Score

Mastery_Score

System_Vendor
The URL keyword specifies the starting URL of the web lesson.

The rest of the keywords are the same as those in the CMICompliantLesson file.

[Keywords]
The keyword list. Same as those for the CMICompliantLesson file.

B.3 The InstructorLedLesson Filetc "6.1 The Course File" \l 2

Description

xe "course file"
This file contains information about a InstructorLedLesson type. When imported, it corresponds to exactly one InstructorLedLesson Java class as described in section 2.3.5.

File type
Group/Keyword (MS Windows INI)

File name
xxxxxxxx.ILL

The extension for this file is ILL. Any legal eight characters may be used for the primary file name.

Groups and keywords
This file contains 1 groups

Group Names and Keywords
Function of Keywords

[Core]

Lecturer=
Lecturer_Info=

Lesson_Title

Lesson_Description

Lesson_Type

Max_Score

Mastery_Score
This section contains information about the lecturer for this lesson.

Except for Lecturer and Lecturer, the other fields are the same as those in the CMICompliantLesson file.

B.3.1
[Core] Keywords

tc "6.1.2 [Course] Keywords" \l 3

Keywords
This list of keywords is in a logical order for their appearance in the file.

CMICompliantLesson Class Property

Keyword
Description

lecturer

Lecturer
The name of the lecturer

lecturerInfo

Lecturer_Info
Background information on the lecturer

B.3.1 [Core] Keyword

Lecturer=

xe "course_creator keyword"
Definition
The name of the lecturer.

Data format
Alphanumeric. Including spaces but no carriage returns.

Examples
Vendor_ID=Don Juan

Lecturer_Info=

xe "course_creator keyword"
Definition
Background information on the lecturer.

Data format
TEXT. Carriage returns are encoded with a “<cr>”. Maximum of 254 characters

Examples
Lecturer=He has 15 years experience with XXX research division.

Appendix C. Windows INI File Formattc "4.3 MS Windows INI Files" \l 2

This file structure is based on the Microsoft WINDOWS *.INI files. The INI file contains three types of data -- group, keyword, and comment. The structure of the file and these data types are discussed in the following sections.

C.1
File Structure

tc "4.3.1 File Structure" \l 3

3 types
Each item in the file is one of three types -- GROUP, KEYWORD, or COMMENT. These are defined in Section C.3.

Naming rules

Group and keyword names are case insensitive. The names may include alphanumeric characters and the underscore character, but may not include spaces.xe "name, group or keyword"

xe " keyword name"

xe "group name"

Group names are left justified and surrounded by brackets. Keywords are left justified and followed by an equals sign (=). Comments are lines whose first character is a semicolon.

Appearance in file
Element name

[group] # keyword=parameter# ; groups and keywords

; may have comments
Group

Valid Keyword

Comment

The # in this table means CR LF (0x0A 0x0D) (carriage return, line feed). Comments must always be on a separate line from group names and keywords.

Limitation
The maximum number of characters allowed in an INI file line is 254.

Example
This file was created by a Lesson to pass information to a CMI system.

[CORE]

LESSON_STATUS = Passed

LESSON_LOCATION = End

SCORE = 87

TIME = 00:25:30

; this is the core group of data

; this is the lesson performance data

; for a passed lesson that required a

; time of 25 minutes, 30 seconds and

; a score of 87

C.2
Comments

tc "4.3.2 Comments" \l 3

Definition

xe "comments"
Comments are text that is of use to a human viewing a file. They are essentially invisible to a computer processing the data in the file. No action is taken by the processor as a result of comments.

Format
First character in the line is a semicolon. All characters following the semicolon, up to and including the carriage return are considered part of the comment.

Usage rules
Comments may appear anyplace in any order in the file. Comments are only possible in INI files, they are not available in the Comma Delimited table files.

Example

; Comments can appear before

[CORE]

; and after group names.

; Comments can also appear before

SCORE = 87

; and after keywords.

TIME = 00:25:30

; Their existence has no impact on the

; processing of the file.

C.3
Groups

tc "4.3.3 Groups" \l 3

Concept
Groups provide a mechanism for dividing a file into manageable segments that are more easily accessed by data retrieval routines. They also provide a means to organize a file of data into logically related parts. This is helpful for human-processing of a file as well as computer processing.

Definition
Groups are logically related assemblies of data items, generally several lines in length. A group extends from its group identifier to the next group identifier, and may include multiple lines. Although groups may contain keywords, they may not contain other groups.

All carriage returns and symbols between group identifiers may be significant, depending on the definition of the specific group. However, if a group contains keywords, then blank lines and extra carriage returns are ignored.

Format
A group is identified by its name enclosed by square brackets. The left bracket is at the far left margin, or preceded by spaces or tabs. It cannot be preceded by any other characters. It cannot be embedded in a line of information. The name is case insensitive.

Spaces: The name must be an alpha-numeric string with no spaces, inside square brackets. There should be no spaces either preceding or following the name – in other words, no spaces should appear between the brackets.

Usage rules
Groups may appear in any order. Although groups may appear multiple times in the file, only the first occurrence of the group is meaningful.

Group name examples:

[comments]

[OBJECTIVES_STATUS]

[student_demographics]

Document convention
When a group name appears in this document it is identifiable for one of two reasons:

1) It is surrounded by brackets, for example:

[Objectives_Status]

[COMMENTS]

[student_data]

2) It is accompanied by the word "group", for example:

the Objectives_Status group

group COMMENTS

student_data group

C.4
Keywords

tc "4.3.4 Keywords" \l 3

Definition
Keywords are names of data items that are limited in size to a single line. This generally limits the data to 60 or 70 characters. The data items associated with a keyword are referred to as keyword arguments or keyword values.xe "argument, keyword"

xe "value, keyword"

xe "keyword argument"

xe "keyword value"

Format
Keywords appear at the left-hand margin followed by an equals sign. Spaces before and after the equals sign are ignored. Keywords are case insensitive.

Keyword extensions

xe "keyword extension"

xe "extension, keyword"
Each keyword within a single group must be unique. If keywords are duplicated, only the first one is taken into account. To avoid duplicates, when there are multiple instances of a keyword inside a group, each keyword in the group has an extension. Keyword extensions consist of a period and a simple two digit number, 00 through 99.

Example
An examples of a group with multiple instances of a keyword requiring an extension is the [Objectives_Status] group. It has multiple objective ID's and a different status for each objective recorded in the group

[Objective_Status]

J_ID.01= AB112

J_Status.01 = Pass

J_ID.02= AB124

J_Status.02 = Pass

J_ID.03= AB196

J_Status.03 = Fail

C.4 Keywords (cont.)

Argument format
The first non-space character after the "=" identifies the beginning of the data. Capitalization and spaces in the keyword data may or may not be significant, depending on the definition of the data associated with a specific keyword.

Examples:

Student_ID = JQH2142

OUTPUT_FILE=C:\STURECS\JQH2142.DTA

postal_code = 98124-2207

Usage rules

xe "keyword usage rules"
Blank lines between keywordsxe "blank lines between keywords" are ignored. Keywords are always members of a group, although there may be groups without keywords in them. An example of a group without a keyword is the [COMMENT] group.

Keyword order

xe "keyword order"

xe "sequencing keywords"

xe "order of keywords"
The order in which the keywords appear within any group is irrelevant. In this document, they are ordered alphabetically for the convenience of the reader. However, it is important that the keyword appear within its proper group.

Sometimes the same keywords are used in different groups. For instance, in the same file there is a group called LESSON_DATA with a keyword ID, and a group STUDENT_DATA with a keyword ID. Obviously, these ID's are both different. They can only be different by being members of a different group.

Like group names, keyword names may only appear once. If there are multiple occurrences of the same keyword, only the first one is significant.

Document convention

xe "keyword identification"
When a keyword name appears in this document it is identifiable for one of two reasons:

1) It is followed by an equals sign, for example:

Score=

TIME=

max_time_allowed=

2) It is accompanied by the word "keyword", for example:

the score keyword

the keyword Max_Time_Allowed

time keyword

Appendix D. Comma Delimited ASCIItc "4.4 Comma Delimited ASCII" \l 2

xe "comma delimited file"

File flexibility
Data stored in a comma delimited ASCII file can be imported easily into virtually any off-the-shelf database product or spreadsheet. Many programs use this format to exchange data.

This format is more than just a text file that is saved in ASCII form. Comma delimited format supplies a simple mechanism for separating records and fields, and for distinguishing data types.

Though some systems and applications may support delimiters other than a comma, AICC files of this type require the use of a comma as a separator.

Records and fields
The format requires division of the data into records and fields. The record is the data found on a single line. The field is the data that is found between commas (comma delimited) on the line. There is no fixed length for each field, and there is no fixed length for the records in the file.

Critical characters
There are certain characters that are important in this file format. The format does not allow carriage returns within a record, double quotes (") within any field, or commas within a number field. In this format, carriage returns, double quotes, and commas are interpreted as record or field delimiters. However, you can use commas and single quote marks (') within text field (fields delimited by double quotes).

Embedded carriage returns

xe "embedded carriage return"

xe "carriage return, embedded"
One unique addition to the standard comma delimited ASCII file is supported by this standard -- embedded carriage returns. Since

each field may be up to 254 characters in length, it may be desirable to indicate where carriage returns are to be placed. Embedded carriage returns are indicated by the characters "<CR>".

When fields with the embedded <cr> are placed by the CMI system into a file in the INI format, the <cr> should be passed as an actual carriage return. This enables a single field to contain several lines of group-

fields to contain group-keyword data that otherwise could not be held in a single field.

Tables and files
Notice in the example table below, there are labels for each column. Each entry in a column corresponds to a field. Each row in the table corresponds to a record. In the conversion of this table to a comma-

comma-delimited file, the name of each field

is gone. Only the field data itself is in the file.only appears once, in the first record, at the top of the table.

Notice also, that empty field, or blank fields may have to exist in the comma delimited file. In the third record there are two blank fields. The first is an empty number field, and the second is an empty text field. This is true because all records, or rows, in a file must have the same number of fields.

Usage rules
Some files will have different numbers of meaningful data elements in each record. This means that records with fewer members must be padded with blank fields at the end of the record, so that all records have the same number of fields as the record with the most members.

This is necessary for some off-the-shelf database and spreadsheet products to import a comma-delimited file.

Notice the first record in the file. It identifies the name of each field. This identifies the order of the fields in any single file. Two files with exactly the same contents would not have to have the fields in the same order. The first record will always identify the order of all the fields to follow.

In the examples below the first field in the first file is “Lesson_ID”. The first field in the second file is “Lesson_File_Name”. The order in which the fields appear is different, but the content is the same. The CMI system must be able to interpret the two files, and determine that the information in each is the same.

Example Table

Lesson ID
Title
Type
Max Score
Max_Time_Allowed
Lesson

File Name

777APU-1
Auxiliary Power Unit
Tutorial
38
00:18:00
APU.EXE

777EL-1
Electrical Power, Part 1
Tutorial
41
00:23:00
ELEC1.EXE

777EL-2
Electrical Power, Part 2
Practice

ELEC2.EXE

Comma Delimited File with Same Contents

“Lesson_id”,”title”,”type”,”Max_Score”,”max_time_allowed”,”lesson_file_name”

"777APU-1","Auxiliary Power Unit","Tutorial",38,"00:18:00","APU.EXE"

"777EL-1","Electrical Power, Part 1","Tutorial",41,"00:23:00","ELEC1.EXE"

"777EL-2","Electrical Power, Part 2","Practice",,"","ELEC2.EXE"

Second Comma Delimited File with Same Contents

”lesson_file_name”,“Lesson_id”,”title”,”type”,”Max_Score”,”max_time_allowed”

"APU.EXE","777APU-1","Auxiliary Power Unit","Tutorial",38,"00:18:00"

"ELEC1.EXE","777EL-1","Electrical Power, Part 1","Tutorial",41,"00:23:00"

"ELEC2.EXE","777EL-2","Electrical Power, Part 2","Practice",,""

Differences between INI and Table files

The following table summarizes some of the differences between the Keyword/Group file (sometimes called an INI file) and the Comma-Delimited Table file.

Keyword/Group
Table

Smallest unit of data
keyword
field

Size limit for smallest unit
60 to 70 characters (one line)
256 characters

Frequency that the unit’s name appears in file
keyword name appears every time a keyword is used
field name appears only once, at beginning of file

Number of small data units in a line of data
one keyword per line
many fields per line

Largest unit of data
group
record

Number of lines allowed for large unit of data
each group can have many lines
only one line per record

Maximum size of one line of data
80 characters
unlimited (many times 256)

Appendix E. Version Changes

E.1 Major Changes From Version 2 to Version 3

These are additions to the document:

Location:
Screen 19 of the CMI Management Client, Section 4.2.1 of the Functional Specification

Additions:
Added specification for LessonTableManagerImpl.

Location:
Section 0.1.1

Problem:
Garbage collection w/ JDK 1.1

Additions:
Added 8. Override the finalize() method and set all member variables to null.

Location:
Section 4.2.2

Problem:
Caching schemes and properties not described fully. Topics such as cache coherency and caching schemes were not discussed.

Solution:
Added clarifications

Location:
CMI Management & Student Client Specifications

Problem:
No “Exit” or “Logout” button specified

Solution:
Added “Exit” to the mamagement client on the bottom of the left most panel. Added “Exit” and “Switch User” to the student client on the bottom left of the “My Messages” tabbed pane.

Location:
Section 2.2.2, 2.4, 2.6

Problem:
No mention on the max number of AU’s, block in a course or # of AU’s in a block

Solution:
Added unlimited.

Location:
-

Problem:
Exit condition not specified

Solution:
Added sections 4.7, 7.5, 6.6

Location:
7.1, A.7, 2.2.1

Problem:
The course structure information panel does not have a place to save its display layout information.

 Solution:
Added COURSE.LYO file to store course display layout information. Added the vendorInformation property for the Course object to store this information.

These are bug fixes:

Location:
Appendixes

Problem:
Bad numbering scheme for the Appendixes

Solution:
Fixed table of contents and appendix numbering.

Location:
Appendix A

Problem:
No definition for Location

Solution:
Bug Added to Appendix A.

Location:
Section 2.2.1’s startTime property

Problem:
The property description is incorrect

Solution:
Bug Fixed

Location:
Section 2.2

Problem:
Did not mention the export/import capability of the course here although it is mentioned elsewhere.

Solution:
Fixed

Location:
Section 2.5 Assignable Unit

Problem:
The masteryScore, maxTimeAllowed, and timeLimitAction properties do not have the correct default value.

Solution:
All of these properties will have a copy of the lesson’s property value. If the lesson’s property value changes later then these properties will not change.

Location:
Appendix A, Assignable Unit File

Problem:
Error! Bookmark not defined for Mastery Score

Solution:
Look in the supplement document for a definition of mastery score.

Location:
LessonManager.java’s newLesson() method

Problem:
Comment is out of date

Solution:
// Returns: BaseLesson - The lesson object that was passed in with its

// ID field filled out.

Location:
Section 6.1

Problem:
Never specified explicitly what files to export to for a course.

Solution:
Fixed

Location:
4.6

Problem:
Redundant Logging Center Section

Solution:
section removed

Location:
Student Client, screen 3.1.3

Problem:
No specification for when startTime and endTime are invalid.

Solution:
Display “Anytime”.

Location:
Student Client, screen 5

Problem:
No specification for “Generate Report” button.

Solution:
This button does nothing.

Location:
uiBeans packages

Problem:

Solution:
Split into two packages: fancyTableBean and courseDisplay.

fancyTableBean contains source code for the FancyTableBean.

courseDisplay contains source code to do with the CourseGraphicalDisplay.

E.2 Changes From Version 3.2 to 3.3

Changes or Addtions:

Location:
section 0.1.1, number 6

Original:
Generate a standard output message for all unexpected input errors

Change:
Generate an IllegalArgumentException with a detailed error message.

Location:
section 0.1.1, number 7

Original:
Log overwrite or duplicate record errors to the loggin center.

Change:
Generate a RuntimeException instead with an error message attached.

Location:
section 2.2.3.5
Original:
Completion Requirement for a course has the target system ID starting with ‘C’.

Change:
Each completion requirement always belongs to a particular course. If the completion requirement’s system ID is “Root” then it refers to the course and not to one of the course element.
Location:
section 2.2.1
Original:
version property exists.

Change:
this property is removed.

Location:
section 0.4.7, section 8
Original:
Other Reqruirement Section
Change:
All testing requirement has been moved to the “Test Spec 1_0.doc”. This was everything in section 8. The test cases have been elaborated on.
“Bug Fixes” or clarifications:
Location:
section 8, section 0.1.2
Problem:
Unclear what language documentation should be in.

Fix:
All documentation must be in English.

� EMBED PowerPoint.Slide.8 ���

Java Applets

public class AlarmEvent extends EventObject {

 public String toString() { return “Alarm!”; }

 ...other functions...

}

public interface AlarmEventListener extends EventListener {

 public void alarmOccurred(AlarmEvent e);

}

class Clock {

 private Date currentTime;

 private Date alarmTime;

 public void setCurrentTime(Date d) { currentTime = d; }

 public Date getCurrentTime(Date d) { return currentTime; }

 public void setAlarmTime(Date d) { alarmTime = d; }

 public Date getAlarmTime(Date d) { return alarmTime; }

 public addAlarmEventListener(AlarmEventListener l);

 public removeAlarmEventListener(AlarmEventListener l);

 public void resetClock();

}

class A {

 boolean checked;

 boolean isChecked() { return checked; }

 void setChecked(boolean c) { checked = c; }

}

 Assignable Unit

masteryScore: 60

homePage: …

System ID: A3

AURecord

…

Score = 50

Status = Pass

Start_Time=11:00:00

End_Time = 11:35:00

….

CBT-CMI Return File

(Output_File)

….

Tries_During_Lesson=2

Try_Score.1=40

Try_Status.1=Fail

Try_Time.1=01:00:00

Try_Score.2=50

Try_Status.2=Fail

Try_Time.2=00:35:00

….

Instead, you should do the following:

Class A {

 public int i;

}

A a = new A;

a.i = 1;

//Title: CMI Main System

//Version:

//Copyright: Copyright (c) 1998

//Author: John Yin

//Company: Training Software LLC

//Date:	 8/3/1998

//Description: The StudentDatabase class is the interface for reading and

//		 student information records to persistent storage. To

//		 implement an actual storage class, implement this

//		 interface.

//Related Classes: StudentDatabaseImpl

AURecord

…

Score = 40

Status = Fail

Start_Time = 10:00:00

End_Time = 11:00:00

….

Client Side

AURecord

AWT

Java Packages

LessonBlock

Java

Applications

Notify main thread of new data and exit.

Starts the Lesson and wait for it to finish.

Status=Incomplete

BlockRecord

The Java

Language

Lesson: Intro To Java

Mastery Score: 50

Vendor: T.S. LLC

….

Overrides

Lesson Repository

Course Repository

Web based CBT Lesson

Introduction

To OO Programming

Figure � SEQ Figure * ARABIC �5�

AU: A1

Introduction to Java

AU: A2

Java Hands-on

CMI Compliant CBT lesson

….

CBT

Lesson

Instructor-led

Lesson

Class A {

 private int i;

 public int getValue() {

return i;

 }

 public int setValue(int value) {

	i = value;

 }

}

A a = new A;

a.i = 1;

Basic Lesson

AU: A3

Java Level 1 Exam

� EMBED PowerPoint.Slide.8 ���

Lesson ends and collect data

Status=Complete

Lesson Execution Thread

Setup parameter files to pass

Main Thread

execute()

invoked

CourseTableManagerImpl

Client Stub

class

Administrator

class

Instructor

AU: Java Introduction

Course: Introduction To Java

� EMBED PowerPoint.Slide.8 ���

class AssignableUnit

Windows Machine

%TS_PATH%	Root Path for Training Software Packages

	%TS_CMI_CLIENT_PATH%	CMI clients’ root path

		BIN	Path for executables

		LIB	Path for JAR files, DLL’s, etc.

		CONFIG	Configuration files directory

		LESSON_DATA	Temporary directory for parameter passing

		 <USER ID>	Training data for this user.

				<COURSE ID>	Training data for a course�					<AU ID>	Training data for an AU in a course.

					LESSON.CMI	The CMI to CBT parameters file created when the CBT

							client is launched.

					LESSON.TXT	Main Output_File for this AU exectuion �					LESSON.CMT	Student comment file for this AU.

					LESSON.OBJ	AU objective status file.

					LESSON.INT	AU’s interaction file

					LESSON.PTH	AU’s path file

				LESSON.PFSPFC	AU’s performance file

; CMI Application server location. This is in the form of�; <server name>:<port number> or <IP address>:<port number>

; i.e. localhost:3000 or 127.0.0.0:3000

CMI_Server=

; Location of the CBT client. It is a relative path to

; %TS_PATH%. It can contain environment variables in

; in the form of %<ENV_VAR>%

CBT_Client_Path=

; Location of the Course Builder client

; Relative to %TS_PATH%

Course_Builder_Path=

; Location of the browser

Browser=

NT Machine

%TS_PATH%	Root Path for Training Software Packages

	%TS_CMI_CLIENT_PATH%	CMI clients’ root path

		BIN	Path for executables

		LIB	Path for JAR files, DLL’s, etc.

		CONFIG	Configuration files directory

		LESSON_DATA	User specific data.

		 <USER ID>	Training data for this user.

			<COURSE ID>	Exported Course ASCII files location.�				COURSE.CRS	The Course File

				COURSE.AU	The Assignable Unit File

				COURSE.DES	The Descriptor File

				COURSE.CST	The Course Structure File

				COURSE.PRE	The Prerequisites File

				COURSE.CMP	The Completion Requirements File

				COURSE.LYO	The Course display layout file.

; Port number that the server listens on

Port=�; Path where lesson import files �; are expected to be. When importing, this directory will �; be read. It is relative to %TS_PATH%�CBT_Import_Path=

; Log file location. The default is the LOGS subdirectory

; above.

LogFile=

NT Machine

%TS_PATH%	Root Path for Training Software Packages

	%TS_CMI_SERVER_PATH%	Application Server root path

		BIN	Path for executables

		LIB	Path for JAR files, DLL’s, etc.

		CONFIG	Configuration files directory

		LOGS	log path

			

Spawn a new thread to run the interface module in.

Main thread receives information, evaluate final status and updates w/ CMI application server.

Java RMI

Custom Panel

abstract class

User

� EMBED PowerPoint.Slide.8 ���

class Student

class

Block

abstract class CourseElement

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

Input

Server Side

Course Object

Lesson Object

Instructor-Led

GUI Bean

Web-based CBT GUI Bean

Takes as input, an AssignableUnit object

Assignable Unit

Object

CMI-Compliant CBT GUI Bean

CourseElementRecord

CourseRecord

CourseElementRecord

CourseElementRecord

List

CourseRecord

CourseRecord List

setCourseElementRecord (User,CourseElement)

getCourseElementRecord (User,CourseElement)

get/set CourseRecord (User)

getCourseRecords(User)

TrainingHistoryManager Interface

User

TrainingObjectCache

Training Record Objects

User

Objects

User Object Cache

Training Record Cache

ClientUserManager

ClientTrainingHistoryManager

UserTableManagerImpl

Client Stub

TrainingHistoryManagerImpl

Client Stub

UserManagerImpl

Client Stub

Management Client’s User Management Component

To Server

ClientLessonManager

ClientCourseManager

Lesson

Object

Course

Object

User Interface Components

Management Client’s Course Management Component

To Server

Lesson Cache

User Object Cache

Java RMI

CourseRecord�List

User

Gets a user object.

getUser(ID, Password)

updateUser()

deleteUsers()

newUser()

getUser(ID)

UserManagerImpl

UserManager Client Stub

Server Side

Client Side

PerformanceRecord

Course & Related Object Cache

LessonManagerImpl

Client Stub

CourseManagerImpl

Client Stub

User Interface Components

� Operator precedence is the same as in the C programming language – including the use of parenthesis.

� Quotation marks are not required in a comma delimited data file unless there are commas in one of the fields. However, quotation marks are commonly used around all fields for the sake of consistency.

� In this record, quotation marks are required. Otherwise, the commas separating set members would be interpreted as field separators.

�PAGE \# "'Page: '#'�'" ��

Page 1 of 1
Page 52 of 139

_968504849.ppt

Client Side

Course Management Component on the Server

CourseTableManagerImpl

extends UnicastRemote...

implements RemoteTable

FancyTableBean

RemoteTableModel

RemoteTableManager

Interface

RemoteTableManager

Interface

Java RMI

Courses

Courses

All Course Information Panels

CourseManager

Interface

Courses

Lessons

CourseManagerServerImpl

extends UnicastRemoteObject

implements CourseManager

CourseManager

Interface

All Lesson Information Panels

LessonManager

Interface

LessonManagerServerImpl

extends UnicastRemoteObject

implements LessonManager

LessonManager

Interface

Lessons

Course Management Component Interfaces

CourseTableCache

Ordered List Mapping

(Read Only)

CourseCache

LessonCache

Courses

Find

Sort

View

Table Controls

Course Name

Type

Location

Safety

Avail

MS Office 97

Java Basics

Java Intermediate

Java Crash

Couse

Santa Teresa

5/15

Scheduled

CBT CD

Training Soft

Training Soft

See Details...

Santa Teresa

N/A

N/A

Multi

-location

Safety

Almaden

5/15

Scheduled

Java Crash

Couse

More …

Introduction to OOP

See Details...

Multi

-

locatiion

Java Crash

Couse

Introduction to C++

See Details...

Multi

-location

Required safety training for all

employees.

Course Description:

Safety Training

Course Title:

Course ID:

C56

Course Type:

Instructor:

Big Bad Wolf

Deadline:

Mastery Score:

Location:

Santa Teresa Labs.

Room 4A

Lesson

Facilities Safety

7/17/1998 M

8 am - 9 am

Times

Location

Santa Teresa

Labs, Room 4A

Type

Scheduled

50/100

Mixed

7/21/98

Equipment Safety

7/19/1998 W

8 am - 9 am

Santa Teresa

Labs, Room 4A

Scheduled

Dev

. System:

T.S. Course Builder

Version:

1.0

The web page has handouts that you should print. They are

in the

 pdf

 format.

Instructor Comments:

Start Date:

7/17/98

Safety Exam

Training

Soft

None

None

Web Page:

http

://

www

.

trainings

Current # Enrolled:

10/15

Generate Report

Course Structure

Instructor led lecture on facility and earthquake safety.

Lesson Description:

Facilities Safety

Lesson Title:

Lesson ID:

L-I-56

Type:

Instructor:

Big Bad Wolf

Mastery Score:

Location:

Santa Teresa Labs. Room 4A

None

Scheduled

Comments

Instructor led lecture on facility and earthquake safety.

Vendor:

T.S. Course Builder

Instructor-Led Lesson

Start Time:

End Time:

Duration:

7/17/1998 08:00

7/17/1998 09:00

01:00 Hours

_968505857.ppt

Client Side

User Management Component on The Server

UserTableManagerImpl

User Listing w/ FancyTableBean

RemoteTableModel

RemoteTableManager

Interface

RemoteTableManager

Interface

Java RMI

User Objects

All User Information

UserManager

Interface

Training History

Objects

UserManagerlmpl

UserManager

Interface

All Performance History Information

TrainingHistoryManager

Interface

TrainingHistoryManagerImpl

TrainingHistoryManager

Interface

User Management Component Interfaces

UserTableCache

Ordered List Mapping

(Read Only)

UserCache

TrainingRecordCache

Sort

Find

View

Table Controls

Full Name

ID

Group

User Type

E-mail

Bunny, Bugs

bbunny

HR

Instructor

Duck, Donald

dduck

Engineering

Student

Duck, Daffy

dduck2

Instructor

Pig,

Porky

ppig

Administrator

Mouse, Mickey

mmouse

Student

Simpson

, Bart

Bsimpson

Student

Simpson

Lisa

lsimpson

Student

HR

HR

HR

Engineering

Engineering

Porky

First Name:

Last Name:

Middle Name:

The

Pig

Sex:

M

Job Title:

Peon

Manager:

Bugs Bunny

E-mail:

ppig

@

toon

.land

Familiar Name:

Location:

Santa Teresa

City:

State:

Zip:

Experience:

Phone:

Address:

Home

x7526

Work

Native Language:

English

3 Years 6 month

User ID:

Password

User Preferences

Birthday:

7/19/1945

Prior Experience:

3

Years

Joining Date:

12 / 8 / 1990

ppig

Group:

Engineering

Social Security Number

123-56-7890

Administrator

User Type:

7/15/97

7/15/96

Lesson

Facilities Safety

Final Status

Complete

Type

Instructor-Led

Start Time:

Course Score:

87/100

7/12/97 1:45

pm

Status:

Pass

Safety Training Exam

Pass: 87/100

Training Software

Equipment Safety

Complete

Instructor-Led

Generate Report

Training Details For “Safety” course:

End Time:

7/15/97 2:15

pm

Time Completed

Attempts

7/12/97 2:30

pm

1

7/13/97 2:30

pm

7/15/97 2:15

pm

Time Spent On Course

03:15 Hours

1

1

Course Title

ID

Status

Time Completed

Oracle 8 Administration

C74

In Progress

10/12/97 5:00

pm

Introduction To Java

C1

In Progress

10/12/97 2:00

pm

Safety Training

C56

Pass

7/15/97 2:15

pm

Introduction To JFC

C5

Pass

9/9/98 1:00

pm

Introduction To JFC

C5

Fail

9/9/98 1:00

pm

Score

80/100

70/100

95/100

_968593001.ppt

CMI System

CMI System Architecture

CMI Application Server

“User Management”

Server Component

“Course Management”

Server Component

Course

Repository

Lessons

Repository

User

Database

CMI Management Client

DB Interface

“Course Management”

Client Component

“User Management”

Client Component

Functional Components

Communication Flow

Legends

CMI Student Client

CBT-CMI Integration

Component

“Course Management”

Client Component

“User Management”

Client Component

Persistent Storage

CBT Interface

Logging Center

Lesson Import

Lesson Import Files

Physical Components

_968505644.ppt

Lesson Object Cache

LessonManagerImpl

Returns Lesson objects.

Client Side

Server Side

Java RMI

Transferring lesson objects between the client and server

LessonManager Interface

AU

Course

CourseElements

CourseProperties

CourseStructure

Course Enrollment List

Interface Function Stubs

LessonManagerImpl Client Stub

Lesson Data

LessonManager Interface

getLessons()

newLesson()

deleteLesson()

updateLesson()

Lesson

_968505509.ppt

Course

CourseElements

CourseProperties

CourseStructure

Course Enrollment List

Interface Function Stubs

CourseManagerImpl

Returns a course object.

Client Side

Server Side

Java RMI

Transferring course objects between the client and server

CourseManager Interface

CourseManagerImpl Client Stub

Course Object Cache

CourseManager Interface

getCourse()

get/set CourseProperties

get/set CourseStructure()

get/set CourseElements()

get/set CourseEnrollmentList()

newCourse()

deleteCourse()

Funtions used directly by the client

Funtions used by the client Course object

to incrementally load course information

updateCourse()

_968495387.ppt

Legend

Course & Course Elements

AU

A1

AU

A4

AU

A2

AU

A3

AU

A9

AU

A10

AU

A11

AU

A12

AU: A10

Block (B1)

AU

A5

AU

A6

AU

A7

Prereq.

Logic

Prerequisite

Logic

Control

Logic

Block

Assignable

Unit

Course

Starting Points

(No prereqs)

Complete

Failed

Not Attempted

Pass

Incomplete

AU

Starting Point

Sample Course

Pass/Fail

Logic

Training Content(Lesson)

_968496143.ppt

Course

CourseElements

CourseProperties

CourseStructure

CourseEnrollment

Interface Function Stubs

CourseProperties

CourseStructure

CourseElements

CourseEnrollment

CourseElement List

AssignableUnit

Block

Lesson

AU List

User List

User

Course Related Objects

AssignableUnit

Lesson

AssignableUnit

Lesson

User

