
Contents

1 Cluster Computing at a Glance 1

1.1 Introduction 1

1.1.1 Eras of Computing 2

1.2 Scalable Parallel Computer Architectures 3

1.3 Towards Low Cost Parallel Computing and Motivations 5

1.4 Windows of Opportunity 7

1.5 A Cluster Computer and its Architecture 8

1.6 Clusters Classi�cations 9

1.7 Commodity Components for Clusters 12

1.7.1 Processors 12

1.7.2 Memory and Cache 13

1.7.3 Disk and I/O 13

1.7.4 System Bus 14

1.7.5 Cluster Interconnects 14

1.7.6 Operating Systems 16

1.8 Network Services/Communication SW 19

1.9 Cluster Middleware 20

1.9.1 Middleware Layers 22

1.9.2 SSI Boundaries 23

1.9.3 Middleware Design Goals 24

1.9.4 Key Services of SSI and Availability Infrastructure 25

1.10 Resource Management and Scheduling (RMS) 26

1.11 Programming Environments and Tools 28

1.11.1 Threads 28

1.11.2 Message Passing Systems (MPI and PVM) 29

1.11.3 Distributed Shared Memory (DSM) Systems 29

1.11.4 Parallel Debuggers and Pro�lers 30

1.11.5 Performance Analysis Tools 31

1.11.6 Cluster Administration Tools 31

1.12 Cluster Applications 33

vii

viii Contents

1.13 Representative Cluster Systems 33

1.13.1 The Berkeley Network Of Workstations (NOW) Project 33

1.13.2 The High Performance Virtual Machine (HPVM) Project 35

1.13.3 The Beowulf Project 36

1.13.4 Solaris MC: A High Performance Operating System for Clusters 37

1.13.5 A Comparison of the Four Cluster Environments 38

1.14 Cluster of SMPs (CLUMPS) 39

1.15 Summary and Conclusions 40

1.15.1 Hardware and Software Trends 40

1.15.2 Cluster Technology Trends 42

1.15.3 Future Cluster Technologies 42

1.15.4 Final Thoughts 43

1.16 Bibliography 44

Index 47

Chapter 1

Cluster Computing at a Glance

Mark Baker
y
and Rajkumar Buyya

z

yDivision of Computer Science

University of Portsmouth

Southsea, Hants, UK

z School of Computer Science and Software Engineering

Monash University

Melbourne, Australia

Email: Mark.Baker@port.ac.uk, rajkumar@�t.qut.edu.au

1.1 Introduction

Very often applications need more computing power than a sequential computer

can provide. One way of overcoming this limitation is to improve the operating

speed of processors and other components so that they can o�er the power re-

quired by computationally intensive applications. Even though this is currently

possible, future improvements are constrained by the speed of light, certain ther-

modynamic laws, and the high �nancial costs for processor fabrication. A viable

and cost-e�ective alternative solution is to connect multiple processors together and

coordinate their computational e�orts. The resulting systems are popularly known

as parallel computers, and they allow the sharing of a computational task among

multiple processors.

As P�ster [1] points out, there are three ways to improve performance:

� Work harder,

� Work smarter, and

� Get help.

In terms of computing technologies, the analogy to this mantra is that working

harder is like using faster hardware (high performance processors, memory, or

1

2 Cluster Computing at a Glance Chapter 1

peripheral devices). Working smarter concerns doing things more e�ciently and

this revolves around the algorithms and techniques used to solve computational

tasks. Finally, getting help refers to using multiple computers to solve a particular

task.

1.1.1 Eras of Computing

The computing industry is one of the fastest growing industries and it is fueled

by the rapid technological developments in the areas of computer hardware and

software. The technological advances in hardware include chip development and

fabrication technologies, fast and cheap microprocessors, as well as high bandwidth

and low latency interconnection networks. Among them, the recent advances in

VLSI (Very Large Scale Integration) technology has played a major role in the

development of powerful sequential and parallel computers. Software technology is

also developing fast. Mature software, such as operating systems, programming lan-

guages, development methodologies, and tools, are now available. This has enabled

the development and deployment of applications catering to scienti�c, engineering,

and commercial needs. It should also be noted that grand challenging applications,

such as weather forecasting and earthquake analysis, have become the main driving

force behind the development of powerful parallel computers.

One way to view computing is as two prominent developments/eras:

� Sequential Computing Era

� Parallel Computing Era

A review of the changes in computing eras is shown in Figure 1.1. Each comput-

ing era started with a development in hardware architectures, followed by system

software (particularly in the area of compilers and operating systems), applications,

and reaching its zenith with its growth in Problem Solving Environments (PSEs).

Each component of a computing system undergoes three phases: R&D (Research

and Development), commercialization, and commodity. The technology behind the

development of computing system components in the sequential era has matured,

and similar developments are yet to happen in the parallel era. That is, parallel

computing technology needs to advance, as it is not mature enough to be exploited

as commodity technology.

The main reason for creating and using parallel computers is that parallelism

is one of the best ways to overcome the speed bottleneck of a single processor. In

addition, the price performance ratio of a small cluster-based parallel computer as

opposed to a minicomputer is much smaller and consequently a better value. In

short, developing and producing systems of moderate speed using parallel architec-

tures is much cheaper than the equivalent performance of a sequential system.

The remaining parts of this chapter focus on architecture alternatives for con-

structing parallel computers, motivations for transition to low cost parallel comput-

ing, a generic model of a cluster computer, commodity components used in building

Section 1.2 Scalable Parallel Computer Architectures 3

Figure 1.1 Two eras of computing.

clusters, cluster middleware, resource management and scheduling, programming

environments and tools, and representative cluster systems. The chapter ends with

a summary of hardware and software trends, and concludes with future cluster

technologies.

1.2 Scalable Parallel Computer Architectures

During the past decade many di�erent computer systems supporting high perfor-

mance computing have emerged. Their taxonomy is based on how their processors,

memory, and interconnect are laid out. The most common systems are:

� Massively Parallel Processors (MPP)

� Symmetric Multiprocessors (SMP)

� Cache-Coherent Nonuniform Memory Access (CC-NUMA)

4 Cluster Computing at a Glance Chapter 1

� Distributed Systems

� Clusters

Table 1.1 shows a modi�ed version comparing the architectural and functional

characteristics of these machines originally given in [2] by Hwang and Xu.

An MPP is usually a large parallel processing system with a shared-nothing ar-

chitecture. It typically consists of several hundred processing elements (nodes),

which are interconnected through a high-speed interconnection network/switch.

Each node can have a variety of hardware components, but generally consists of

a main memory and one or more processors. Special nodes can, in addition, have

peripherals such as disks or a backup system connected. Each node runs a separate

copy of the operating system.

Table 1.1 Key Characteristics of Scalable Parallel Computers

Character- MPP SMP Cluster Distributed

stic CC-NUMA

Number 0(100) - 0(100) 0(10) - 0(100) 0(100) or less 0(10) - 0(100)

of Nodes

Node Fine grain Medium or Medium grain Wide Range

Complexity or medium coarse grained

Internode Message Passing or Centralized and Message Shared �les,

communi- shared variables Distributed Passing RPC, Message

cation for distributed Shared Memory Passing

shared memory (DSM) and IPC

Job Single run Single run Multiple queue Independent

Scheduling queue on host queue mostly but coordinated queues

SSI Support partially Always in SMP Desired No

and some

NUMA

Node OS N micro-kernels One monolithic N OS platforms N OS

copies monolithic or SMP and may -homogeneous platforms

and type layered OSs for NUMA or micro-kernel homogeneous

Address Multiple - Single Multiple Multiple

Space single or

for DSM single

Internode Unnecessary Unnecessary Required Required

Security if exposed

Ownership One One One or more Many

organization organization organizations organizations

SMP systems today have from 2 to 64 processors and can be considered to have

shared-everything architecture. In these systems, all processors share all the global

Section 1.3 Towards Low Cost Parallel Computing and Motivations 5

resources available (bus, memory, I/O system); a single copy of the operating system

runs on these systems.

CC-NUMA is a scalable multiprocessor system having a cache-coherent nonuni-

form memory access architecture. Like an SMP, every processor in a CC-NUMA

system has a global view of all of the memory. This type of system gets its name

(NUMA) from the nonuniform times to access the nearest and most remote parts

of memory.

Distributed systems can be considered conventional networks of independent

computers. They have multiple system images, as each node runs its own operating

system, and the individual machines in a distributed system could be, for example,

combinations of MPPs, SMPs, clusters, and individual computers.

At a basic level a cluster 1 is a collection of workstations or PCs that are inter-

connected via some network technology. For parallel computing purposes, a cluster

will generally consist of high-performance workstations or PCs interconnected by a

high-speed network. A cluster works as an integrated collection of resources and

can have a single system image spanning all its nodes. Refer to [1] and [2] for a

detailed discussion on architectural and functional characteristics of the competing

computer architectures.

1.3 Towards Low Cost Parallel Computing and Motivations

In the 1980s it was believed that computer performance was best improved by

creating faster and more e�cient processors. This idea was challenged by paral-

lel processing, which in essence means linking together two or more computers to

jointly solve some computational problem. Since the early 1990s there has been an

increasing trend to move away from expensive and specialized proprietary parallel

supercomputers towards networks of workstations. Among the driving forces that

have enabled this transition has been the rapid improvement in the availability of

commodity high performance components for workstations and networks. These

technologies are making networks of computers (PCs or workstations) an appealing

vehicle for parallel processing, and this is consequently leading to low-cost commod-

ity supercomputing.

The use of parallel processing as a means of providing high-performance com-

putational facilities for large-scale and grand-challenge applications has been inves-

tigated widely. Until recently, however, the bene�ts of this research were con�ned

to the individuals who had access to such systems. The trend in parallel computing

is to move away from specialized traditional supercomputing platforms, such as the

Cray/SGI T3E, to cheaper, general purpose systems consisting of loosely coupled

components built up from single or multiprocessor PCs or workstations. This ap-

proach has a number of advantages, including being able to build a platform for a

given budget which is suitable for a large class of applications and workloads.

1Clusters, Network of Workstations (NOW), Cluster of Workstations (COW), and Workstation

Clusters are synonymous.

6 Cluster Computing at a Glance Chapter 1

The use of clusters to prototype, debug, and run parallel applications is becoming

an increasingly popular alternative to using specialized, typically expensive, parallel

computing platforms. An important factor that has made the usage of clusters a

practical proposition is the standardisation of many of the tools and utilities used by

parallel applications. Examples of these standards are the message passing library

MPI [8] and data-parallel language HPF [3]. In this context, standardization enables

applications to be developed, tested, and even run on NOW, and then at a later

stage to be ported, with little modi�cation, onto dedicated parallel platforms where

CPU-time is accounted and charged.

The following list highlights some of the reasons NOW is preferred over special-

ized parallel computers [5], [4]:

� Individual workstations are becoming increasingly powerful. That is, work-

station performance has increased dramatically in the last few years and is

doubling every 18 to 24 months. This is likely to continue for several years,

with faster processors and more e�cient multiprocessor machines coming into

the market.

� The communications bandwidth between workstations is increasing and la-

tency is decreasing as new networking technologies and protocols are imple-

mented in a LAN.

� Workstation clusters are easier to integrate into existing networks than special

parallel computers.

� Typical low user utilization of personal workstations.

� The development tools for workstations are more mature compared to the

contrasting proprietary solutions for parallel computers, mainly due to the

nonstandard nature of many parallel systems.

� Workstation clusters are a cheap and readily available alternative to special-

ized high performance computing platforms.

� Clusters can be easily grown; nodes capability can be easily increased by

adding memory or additional processors.

Clearly, the workstation environment is better suited to applications that are not

communication-intensive since a LAN typically has high message start-up latencies

and low bandwidths. If an application requires higher communication performance,

the existing commonly deployed LAN architectures, such as Ethernet, are not ca-

pable of providing it.

Traditionally, in science and industry, a workstation referred to a UNIX plat-

form and the dominant function of PC-based machines was for administrative work

and word processing. There has been, however, a rapid convergence in proces-

sor performance and kernel-level functionality of UNIX workstations and PC-based

Section 1.4 Windows of Opportunity 7

machines in the last three years (this can be attributed to the introduction of high-

performance Pentium-based machines and the Linux and Windows NT operating

systems). This convergence has led to an increased level of interest in utilizing PC-

based systems as a cost-e�ective computational resource for parallel computing.

This factor coupled with the comparatively low cost of PCs and their widespread

availability in both academia and industry has helped initiate a number of software

projects whose primary aim is to harness these resources in some collaborative way.

1.4 Windows of Opportunity

The resources available in the average NOW, such as processors, network interfaces,

memory and hard disk, o�er a number of research opportunities, such as:

Parallel Processing - Use the multiple processors to build MPP/DSM-like sys-

tems for parallel computing.

Network RAM - Use the memory associated with each workstation as aggregate

DRAM cache; this can dramatically improve virtual memory and �le system

performance.

Software RAID (Redundant Array of Inexpensive Disks) - Use the arrays

of workstation disks to provide cheap, highly available, and scalable �le storage

by using redundant arrays of workstation disks with LAN as I/O backplane. In

addition, it is possible to provide parallel I/O support to applications through

middleware such as MPI-IO.

Multipath Communication - Use the multiple networks for parallel data trans-

fer between nodes.

Scalable parallel applications require good oating-point performance, low la-

tency and high bandwidth communications, scalable network bandwidth, and fast

access to �les. Cluster software can meet these requirements by using resources

associated with clusters. A �le system supporting parallel I/O can be built using

disks associated with each workstation instead of using expensive hardware-RAID.

Virtual memory performance can be drastically improved by using Network RAM

as a backing store instead of hard disk. In a way, parallel �le systems and Network

RAM reduces the widening performance gap between processors and disks.

It is very common to connect cluster nodes using the standard Ethernet and spe-

cialized high performance networks such as Myrinet. These multiple networks can

be utilized for transferring data simultaneously across cluster nodes. The multipath

communication software performs demultiplexing of data at the transmitting end

across multiple networks and multiplexing of data at the receiving end. Thus, all

available networks can be utilized for faster communication of data between cluster

nodes.

8 Cluster Computing at a Glance Chapter 1

1.5 A Cluster Computer and its Architecture

A cluster is a type of parallel or distributed processing system which:

� consists of a collection of networked computers, and

� is used as a single, integrated computing resource.

A computer node can be a single or multiprocessor system (PCs, workstations,

or SMPs) with memory, I/O facilities, and an operating system. A cluster generally

refers to two or more computers (nodes) connected together. The nodes can exist

in a single cabinet or be physically separated and connected via a LAN. An inter-

connected (LAN-based) cluster of computers can appear as a single system to users

and applications. Such a system can provide a cost-e�ective way to gain features

and bene�ts (fast and reliable services) that have historically been found only on

more expensive proprietary shared memory systems. The typical architecture of a

cluster is shown in Figure 1.2.

Figure 1.2 Cluster computer architecture.

The following are some prominent components of cluster computers:

� Multiple High Performance Computers (PCs, Workstations, or SMPs)

� State-of-the-art Operating Systems (Layered or Micro-kernel based)

� High Performance Networks/Switches (such as Gigabit Ethernet and Myrinet)

� Network Interfaces Cards (NICs)

� Fast Communication Protocols and Services (such as Active and Fast Mes-

sages)

Section 1.6 Clusters Classi�cations 9

� Cluster Middleware (Single System Image (SSI) and System Availability In-

frastructure)

{ Hardware (such as Digital (DEC) Memory Channel, hardware DSM, and

SMP techniques)

{ Operating System Kernel or Gluing Layer (such as Solaris MC and GLU-

nix)

{ Applications and Subsystems

� Applications (such as systemmanagement tools and electronic forms)

� Runtime Systems (such as software DSM and parallel �le system)

� Resource Management and Scheduling software (such as LSF (Load

Sharing Facility) and CODINE (COmputing in DIstributed Net-

worked Environments))

� Parallel Programming Environments and Tools (such as compilers, PVM (Par-

allel Virtual Machine), and MPI (Message Passing Interface))

� Applications

{ Sequential

{ Parallel or Distributed

The network interface hardware acts as a communication processor and is re-

sponsible for transmitting and receiving packets of data between cluster nodes via

a network/switch. (Refer to Chapter ?? for further details on cluster interconnects

and network interfaces.)

Communication software o�ers a means of fast and reliable data communication

among cluster nodes and to the outside world. Often, clusters with a special net-

work/switch like Myrinet use communication protocols such as active messages for

fast communication among its nodes. They potentially bypass the operating system

and thus remove the critical communication overheads providing direct user-level

access to the network interface.

The cluster nodes can work collectively, as an integrated computing resource, or

they can operate as individual computers. The cluster middleware is responsible for

o�ering an illusion of a uni�ed system image (single system image) and availability

out of a collection on independent but interconnected computers.

Programming environments can o�er portable, e�cient, and easy-to-use tools

for development of applications. They include message passing libraries, debuggers,

and pro�lers. It should not be forgotten that clusters could be used for the execution

of sequential or parallel applications.

1.6 Clusters Classi�cations

Clusters o�er the following features at a relatively low cost:

10 Cluster Computing at a Glance Chapter 1

� High Performance

� Expandability and Scalability

� High Throughput

� High Availability

Cluster technology permits organizations to boost their processing power using

standard technology (commodity hardware and software components) that can be

acquired/purchased at a relatively low cost. This provides expandability{an a�ord-

able upgrade path that lets organizations to increase their computing power{while

preserving their existing investment and without incurring a lot of extra expenses.

The performance of applications also improves with the support of scalable soft-

ware environment. Another bene�t of clustering is a failover capability that allows

a backup computer to take over the tasks of a failed computer located in its cluster.

Clusters are classi�ed into many categories based on various factors as indicated

below.

1. Application Target- Computational science or mission-critical applications.

� High Performance (HP) Clusters

� High Availability (HA) Clusters

The main concentration of this book is on HP clusters and the technologies

and environments required for using them in parallel computing. However, we

also discuss issues involved in building HA clusters with an aim for integrating

performance and availability into a single system (see Chapter ??).

2. Node Ownership- Owened by an individual or dedicated as a cluster node.

� Dedicated Clusters

� Nondedicated Clusters

The distinction between these two cases is based on the ownership of the nodes

in a cluster. In the case of dedicated clusters, a particular individual does not

own a workstation; the resources are shared so that parallel computing can be

performed across the entire cluster [6]. The alternative nondedicated case is

where individuals own workstations and applications are executed by stealing

idle CPU cycles [7]. The motivation for this scenario is based on the fact that

most workstation CPU cycles are unused, even during peak hours. Parallel

computing on a dynamically changing set of nondedicated workstations is

called adaptive parallel computing.

In nondedicated clusters, a tension exists between the workstation owners and

remote users who need the workstations to run their application. The former

Section 1.6 Clusters Classi�cations 11

expects fast interactive response from their workstation, while the latter is

only concerned with fast application turnaround by utilizing any spare CPU

cycles. This emphasis on sharing the processing resources erodes the concept

of node ownership and introduces the need for complexities such as process

migration and load balancing strategies. Such strategies allow clusters to

deliver adequate interactive performance as well as to provide shared resources

to demanding sequential and parallel applications.

3. Node Hardware- PC, Workstation, or SMP.

� Clusters of PCs (CoPs) or Piles of PCs (PoPs)

� Clusters of Workstations (COWs)

� Clusters of SMPs (CLUMPs)

4. Node Operating System- Linux, NT, Solaris, AIX, etc.

� Linux Clusters (e.g., Beowulf)

� Solaris Clusters (e.g., Berkeley NOW)

� NT Clusters (e.g., HPVM)

� AIX Clusters (e.g., IBM SP2)

� Digital VMS Clusters

� HP-UX clusters.

� Microsoft Wolfpack clusters.

5. Node Con�guration- Node architecture and type of OS (Operating System)

it is loaded with.

� Homogeneous Clusters: All nodes will have similar architectures and run

the same OSs.

� Heterogeneous Clusters: All nodes will have di�erent architectures and

run di�erent OSs.

6. Levels of Clustering- Based on location of nodes and their count.

� Group Clusters (#nodes: 2-99): Nodes are connected by SANs (System

Area Networks) like Myrinet and they are either stacked into a frame or

exist within a center.

� Departmental Clusters (#nodes: 10s to 100s)

� Organizational Clusters (#nodes: many 100s)

� National Metacomputers(WAN/Internet-based): (#nodes: many depart-

mental/organizational systems or clusters)

12 Cluster Computing at a Glance Chapter 1

� International Metacomputers(Internet-based): (#nodes: 1000s to many

millions)

Individual clusters may be interconnected to form a larger system (clusters of

clusters) and, in fact, the Internet itself can be used as a computing cluster.

The use of wide-area networks of computer resources for high performance

computing has led to the emergence of a new �eld called Metacomputing.

(Refer to Chapter ?? for further details on Metacomputing.)

1.7 Commodity Components for Clusters

The improvements in workstation and network performance, as well as the availabil-

ity of standardized programming APIs, are paving the way for the widespread usage

of cluster-based parallel systems. In this section, we discuss some of the hardware

and software components commonly used to build clusters and nodes. The trends

in hardware and software technologies are discussed in later parts of this chapter.

1.7.1 Processors

Over the past two decades, phenomenal progress has taken place in microprocessor

architecture (for example RISC, CISC, VLIW, and Vector) and this is making the

single-chip CPUs almost as powerful as processors used in supercomputers. Most

recently researchers have been trying to integrate processor and memory or network

interface into a single chip. The Berkeley Intelligent RAM (IRAM) project [9]

is exploring the entire spectrum of issues involved in designing general purpose

computer systems that integrate a processor and DRAM onto a single chip { from

circuits, VLSI design, and architectures to compilers and operating systems. Digital,

with its Alpha 21364 processor, is trying to integrate processing, memory controller

and network interface into a single chip.

Intel processors are most commonly used in PC-based computers. The cur-

rent generation Intel x86 processor family includes the Pentium Pro and II. These

processors, while not in the high range of performance, match the performance of

medium level workstation processors [10]. In the high performance range, the Pen-

tium Pro shows a very strong integer performance, beating Sun's UltraSPARC at

the same clock speed; however, the oating-point performance is much lower. The

Pentium II Xeon, like the newer Pentium IIs, uses a 100 MHz memory bus. It is

available with a choice of 512KB to 2MB of L2 cache, and the cache is clocked at

the same speed as the CPU, overcoming the L2 cache size and performance issues

of the plain Pentium II. The accompanying 450NX chipset for the Xeon supports

64-bit PCI busses that can support Gigabit interconnects.

Other popular processors include x86 variants (AMD x86, Cyrix x86), Digital

Alpha, IBM PowerPC, Sun SPARC, SGI MIPS, and HP PA. Computer systems

based on these processors have also been used as clusters; for example, Berkeley

NOW uses Sun's SPARC family of processors in their cluster nodes. (For further

Section 1.7 Commodity Components for Clusters 13

information on industrial high performance microprocessors refer to web-based VLSI

Microprocessors Guide [11].)

1.7.2 Memory and Cache

Originally, the memory present within a PC was 640 KBytes, usually `hardwired'

onto the motherboard. Typically, a PC today is delivered with between 32 and

64 MBytes installed in slots with each slot holding a Standard Industry Memory

Module (SIMM); the potential capacity of a PC is now many hundreds of MBytes.

Computer systems can use various types of memory and they include Extended

Data Out (EDO) and fast page. EDO allows the next access to begin while the

previous data is still being read, and fast page allows multiple adjacent accesses to

be made more e�ciently.

The amount of memory needed for the cluster is likely to be determined by the

cluster target applications. Programs that are parallelized should be distributed

such that the memory, as well as the processing, is distributed between processors

for scalability. Thus, it is not necessary to have a RAM that can hold the entire

problem in memory on each system, but it should be enough to avoid the occurrence

of too much swapping of memory blocks (page-misses) to disk, since disk access has

a large impact on performance.

Access to DRAM is extremely slow compared to the speed of the processor,

taking up to orders of magnitude more time than a single CPU clock cycle. Caches

are used to keep recently used blocks of memory for very fast access if the CPU

references a word from that block again. However, the very fast memory used for

cache is expensive and cache control circuitry becomes more complex as the size of

the cache grows. Because of these limitations, the total size of a cache is usually in

the range of 8KB to 2MB.

Within Pentium-based machines it is not uncommon to have a 64-bit wide mem-

ory bus as well as a chip set that supports 2 MBytes of external cache. These

improvements were necessary to exploit the full power of the Pentium and to make

the memory architecture very similar to that of Unix workstations.

1.7.3 Disk and I/O

Improvements in disk access time have not kept pace with microprocessor perfor-

mance, which has been improving by 50 percent or more per year. Although mag-

netic media densities have increased, reducing disk transfer times by approximately

60 to 80 percent per year, overall improvement in disk access times, which rely upon

advances in mechanical systems, has been less than 10 percent per year [12].

Grand challenge applications often need to process large amounts of data and

data sets. Amdahl's law implies that the speed-up obtained from faster processors is

limited by the slowest system component; therefore, it is necessary to improve I/O

performance such that it balances with CPU performance. One way of improving

I/O performance is to carry out I/O operations in parallel, which is supported by

parallel �le systems based on hardware or software RAID. Since hardware RAIDs

14 Cluster Computing at a Glance Chapter 1

can be expensive, software RAIDs can be constructed by using disks associated with

each workstation in the cluster.

1.7.4 System Bus

The initial PC bus (AT, or now known as ISA bus) used was clocked at 5 MHz

and was 8 bits wide. When �rst introduced, its abilities were well matched to the

rest of the system. PCs are modular systems and until fairly recently only the

processor and memory were located on the motherboard, other components were

typically found on daughter cards connected via a system bus. The performance of

PCs has increased by orders of magnitude since the ISA bus was �rst used, and it

has consequently become a bottleneck, which has limited the machine throughput.

The ISA bus was extended to be 16 bits wide and was clocked in excess of 13 MHz.

This, however, is still not su�cient to meet the demands of the latest CPUs, disk

interfaces, and other peripherals.

A group of PC manufacturers introduced the VESA local bus, a 32-bit bus that

matched the system's clock speed. The VESA bus has largely been superseded

by the Intel-created PCI bus, which allows 133 Mbytes/s transfers and is used

inside Pentium-based PCs. PCI has also being adopted for use in non-Intel based

platforms such as the Digital AlphaServer range. This has further blurred the

distinction between PCs and workstations, as the I/O subsystem of a workstation

may be built from commodity interface and interconnect cards.

1.7.5 Cluster Interconnects

The nodes in a cluster communicate over high-speed networks using a standard net-

working protocol such as TCP/IP or a low-level protocol such as Active Messages.

In most facilities it is likely that the interconnection will be via standard Ether-

net. In terms of performance (latency and bandwidth), this technology is showing

its age. However, Ethernet is a cheap and easy way to provide �le and printer

sharing. A single Ethernet connection cannot be used seriously as the basis for

cluster-based computing; its bandwidth and latency are not balanced compared to

the computational power of the workstations now available. Typically, one would

expect the cluster interconnect bandwidth to exceed 10 MBytes/s and have message

latencies of less than 100 �s. A number of high performance network technologies

are available in the marketplace; in this section we discuss a few of them.

Ethernet, Fast Ethernet, and Gigabit Ethernet

Standard Ethernet has become almost synonymous with workstation networking.

This technology is in widespread usage, both in the academic and commercial sec-

tors. However, its 10 Mbps bandwidth is no longer su�cient for use in environments

where users are transferring large data quantities or there are high tra�c densities.

An improved version, commonly known as Fast Ethernet, provides 100 Mbps band-

width and has been designed to provide an upgrade path for existing Ethernet

Section 1.7 Commodity Components for Clusters 15

installations. Standard and Fast Ethernet cannot coexist on a particular cable,

but each uses the same cable type. When an installation is hub-based and uses

twisted-pair it is possible to upgrade the hub to one, which supports both stan-

dards, and replace the Ethernet cards in only those machines where it is believed

to be necessary.

Now, the state-of-the-art Ethernet is the Gigabit Ethernet2 and its attraction

is largely due to two key characteristics. First, it preserves Ethernet's simplicity

while enabling a smooth migration to Gigabit-per-second (Gbps) speeds. Second,

it delivers a very high bandwidth to aggregate multiple Fast Ethernet segments

and to support high-speed server connections, switched intrabuilding backbones,

interswitch links, and high-speed workgroup networks.

Asynchronous Transfer Mode (ATM)

ATM is a switched virtual-circuit technology and was originally developed for the

telecommunications industry [13]. It is embodied within a set of protocols and stan-

dards de�ned by the International Telecommunications Union. The international

ATM Forum, a non-pro�t organization, continues this work. Unlike some other

networking technologies, ATM is intended to be used for both LAN and WAN,

presenting a uni�ed approach to both. ATM is based around small �xed-size data

packets termed cells. It is designed to allow cells to be transferred using a number

of di�erent media such as both copper wire and �ber optic cables. This hardware

variety also results in a number of di�erent interconnect performance levels.

When �rst introduced, ATM used optical �ber as the link technology. However,

this is undesirable in desktop environments; for example, twisted pair cables may

have been used to interconnect a networked environment and moving to �ber-based

ATM would mean an expensive upgrade. The two most common cabling technolo-

gies found in a desktop environment are telephone style cables (CAT-3) and a better

quality cable (CAT-5). CAT-5 can be used with ATM allowing upgrades of existing

networks without replacing cabling.

Scalable Coherent Interface (SCI)

SCI is an IEEE 1596-1992 standard aimed at providing a low-latency distributed

shared memory across a cluster [14]. SCI is the modern equivalent of a Processor-

Memory-I/O bus and LAN combined. It is designed to support distributed multi-

processing with high bandwidth and low latency. It provides a scalable architecture

that allows large systems to be built out of many inexpensive mass-produced com-

ponents.

SCI is a point-to-point architecture with directory-based cache coherence. It

can reduce the delay of interprocessor communications even when compared to the

newest and best technologies currently available, such as Fiber Channel and ATM.

SCI achieves this by eliminating the need for runtime layers of software protocol-

paradigm translation. A remote communication in SCI takes place as just part of

2Gigabit Ethernet is Ethernet, only faster!

16 Cluster Computing at a Glance Chapter 1

a simple load or store process in a processor. Typically, a remote address results in

a cache miss. This in turn causes the cache controller to address remote memory

via SCI to get the data. The data is fetched to the cache with a delay in the order

of a few �ss and then the processor continues execution.

Dolphin currently produces SCI cards for SPARC's SBus; however, they have

also announced availability of PCI-based SCI cards. They have produced an SCI

MPI which o�ers less than 12 �s zero message-length latency on the Sun SPARC

platform and they intend to provide MPI for Windows NT. A SCI version of High

Performance Fortran (HPF) is available from Portland Group Inc.

Although SCI is favored in terms of fast distributed shared memory support, it

has not been taken up widely because its scalability is constrained by the current

generation of switches and its components are relatively expensive.

Myrinet

Myrinet is a 1.28 Gbps full duplex interconnection network supplied by Myri-

com [16]. It is a proprietary, high performance interconnect. Myrinet uses low

latency cut-through routing switches, which is able to o�er fault tolerance by au-

tomatic mapping of the network con�guration. This also simpli�es setting up the

network. Myrinet supports both Linux and NT. In addition to TCP/IP support, the

MPICH implementation of MPI is also available on a number of custom-developed

packages such as Berkeley active messages, which provide sub-10ms latencies.

Myrinet is relatively expensive when compared to Fast Ethernet, but has real ad-

vantages over it: very low-latency (5ms, one-way point-to-point), very high through-

put, and a programmable on-board processor allowing for greater exibility. It can

saturate the e�ective bandwidth of a PCI bus at almost 120 Mbytes/s with 4Kbytes

packets.

One of the main disadvantages of Myrinet is, as mentioned, its price compared

to Fast Ethernet. The cost of Myrinet-LAN components, including the cables and

switches, is in the range of $1,500 per host. Also, switches with more than 16 ports

are unavailable, so scaling can be complicated, although switch chaining is used to

construct larger Myrinet clusters.

1.7.6 Operating Systems

A modern operating system provides two fundamental services for users. First, it

makes the computer hardware easier to use. It creates a virtual machine that di�ers

markedly from the real machine. Indeed, the computer revolution of the last two

decades is due, in part, to the success that operating systems have achieved in shield-

ing users from the obscurities of computer hardware. Second, an operating system

shares hardware resources among users. One of the most important resources is the

processor. A multitasking operating system, such as UNIX or Windows NT, divides

the work that needs to be executed among processes, giving each process memory,

system resources, atleast one thread of execution, and an executable unit within a

process. The operating system runs one thread for a short time and then switches

Section 1.7 Commodity Components for Clusters 17

to another, running each thread in turn. Even on a single-user system, multitasking

is extremely helpful because it enables the computer to perform multiple tasks at

once. For example, a user can edit a document while another document is printing

in the background or while a compiler compiles a large program. Each process gets

its work done, and to the user all the programs appear to run simultaneously.

Apart from the bene�ts mentioned above, the new concept in operating system

services is supporting multiple threads of control in a process itself. This concept

has added a new dimension to parallel processing, the parallelism within a process,

instead of across the programs. In the next-generation operating system kernels,

address space and threads are decoupled so that a single address space can have mul-

tiple execution threads. Programming a process having multiple threads of control

is known as multithreading. POSIX threads interface is a standard programming

environment for creating concurrency/parallelism within a process.

A number of trends e�ecting operating system design have been witnessed over

the past few years, foremost of these is the move towards modularity. Operating

systems such as Microsoft's Windows, IBM's OS/2, and others, are splintered into

discrete components, each having a small, well de�ned interface, and each commu-

nicating with others via an intertask messaging interface. The lowest level is the

micro-kernel, which provides only essential OS services, such as context switching.

Windows NT, for example, also includes a hardware abstraction layer (HAL) be-

neath its micro-kernel, which enables the rest of the OS to perform irrespective of

the underlying processor. This high level abstraction of OS portability is a driving

force behind the modular, micro-kernel-based push. Other services are o�ered by

subsystems built on top of the micro-kernel. For example, �le services can be o�ered

by the �le-server, which is built as a subsystem on top of the microkernel. (Refer

to Chapter ?? for details on a micro-kernel based cluster operating system o�ering

single system image.)

This section focuses on the various operating systems available for workstations

and PCs. Operating system technology is maturing and can easily be extended

and new subsystems can be added without modifying the underlying OS structure.

Modern operating systems support multithreading at the kernel level and high per-

formance user level multithreading systems can be built without their kernel inter-

vention. Most PC operating systems have become stable and support multitasking,

multithreading, and networking.

Unix and its variants (such as Sun Solaris and IBM's AIX, HP UX) are popularly

used on workstations. In this section, we discuss three popular operating systems

that are used on nodes of clusters of PCs or Workstations.

LINUX

Linux [17] is a UNIX-like OS which was initially developed by Linus Torvalds, a

Finnish undergraduate student in 1991-92. The original releases of Linux relied

heavily on the Minix OS; however, the e�orts of a number of collaborating pro-

grammers have resulted in the development and implementation of a robust and

18 Cluster Computing at a Glance Chapter 1

reliable, POSIX compliant, OS.

Although Linux was developed by a single author initially, a large number of au-

thors are now involved in its development. One major advantage of this distributed

development has been that there is a wide range of software tools, libraries, and

utilities available. This is due to the fact that any capable programmer has access

to the OS source and can implement the feature that they wish. Linux quality

control is maintained by only allowing kernel releases from a single point, and its

availability via the Internet helps in getting fast feedback about bugs and other

problems. The following are some advantages of using Linux:

� Linux runs on cheap x86 platforms, yet o�ers the power and exibility of

UNIX.

� Linux is readily available on the Internet and can be downloaded without cost.

� It is easy to �x bugs and improve system performance.

� Users can develop or �ne-tune hardware drivers which can easily be made

available to other users.

Linux provides the features typically found in UNIX implementations such as:

preemptive multitasking, demand-paged virtual memory, multiuser and multipro-

cessor support [18]. Most applications written for UNIX will require little more

than a recompilation. In addition to the Linux kernel, a large amount of applica-

tion/systems software is also freely available, including GNU software and XFree86,

a public domain X-server.

Solaris

The Solaris operating system from SunSoft is a UNIX-based multithreaded and

multiuser operating system. It supports Intel x86 and SPARC-based platforms. Its

networking support includes a TCP/IP protocol stack and layered features such as

Remote Procedure Calls (RPC), and the Network File System (NFS). The Solaris

programming environment includes ANSI-compliant C and C++ compilers, as well

as tools to pro�le and debug multithreaded programs.

The Solaris kernel supports multithreading, multiprocessing, and has real-time

scheduling features that are critical for multimedia applications. Solaris supports

two kinds of threads: Light Weight Processes (LWPs) and user level threads. The

threads are intended to be su�ciently lightweight so that there can be thousands

present and that synchronization and context switching can be accomplished rapidly

without entering the kernel.

Solaris, in addition to the BSD �le system, also supports several types of non-

BSD �le systems to increase performance and ease of use. For performance there

are three new �le system types: CacheFS, AutoClient, and TmpFS. The CacheFS

caching �le system allows a local disk to be used as an operating system managed

cache of either remote NFS disk or CD-ROM �le systems. With AutoClient and

Section 1.8 Network Services/Communication SW 19

CacheFS, an entire local disk can be used as cache. The TmpFS temporary �le

system uses main memory to contain a �le system. In addition, there are other

�le systems like the Proc �le system and Volume �le system to improve system

usability.

Solaris supports distributed computing and is able to store and retrieve dis-

tributed information to describe the system and users through the Network Infor-

mation Service (NIS) and database. The Solaris GUI, OpenWindows, is a combi-

nation of X11R5 and the Adobe Postscript system, which allows applications to be

run on remote systems with the display shown along with local applications.

Microsoft Windows NT

Microsoft Windows NT (New Technology) is a dominant operating system in the

personal computing marketplace [19]. It is a preemptive, multitasking, multiuser,

32-bit operating system. NT supports multiple CPU's and provides multi-tasking,

using symmetrical multiprocessing. Each 32-bit NT-application operates in its own

virtual memory address space. Unlike earlier version of Windows (such as Windows

for Workgroups and Windows 95/98), NT is a complete operating system, and not

an addition to DOS. NT supports di�erent CPUs and multiprocessor machines with

threads: Intel x86, IBM PowerPC, MIPS, and DEC Alpha. NT has an object-based

security model and its own special �le system (NTFS) that allows permissions to

be set on a �le and directory basis.

A schematic diagram of the NT architecture is shown in Figure 1.3. NT has the

network protocols and services integrated with the base operating system.

Packaged with Windows NT are several built-in networking protocols, such as

IPX/SPX, TCP/IP, and NetBEUI and APIs, such as NetBIOS, DCE RPC, and

Windows Sockets (WinSock). TCP/IP applications use WinSock to communicate

over a TCP/IP network.

1.8 Network Services/Communication SW

The communication needs of distributed applications are diverse and varied and

range from reliable point-to-point to unreliable multicast communications. The

communications infrastructure needs to support protocols that are used for bulk-

data transport, streaming data, group communications, and those used by dis-

tributed objects.

The communication services employed provide the basic mechanisms needed

by a cluster to transport administrative and user data. These services will also

provide the cluster with important quality of service parameters, such as latency,

bandwidth, reliability, fault-tolerance, and jitter control. Typically, the network

services are designed as a hierarchical stack of protocols. In such a layered system

each protocol layer in the stack exploits the services provided by the protocols below

it in the stack. The classic example of such a network architecture is the ISO OSI

7-layer system.

20 Cluster Computing at a Glance Chapter 1

Figure 1.3 Windows NT 4.0 architecture.

Traditionally, the operating system services (pipes/sockets) have been used for

communication between processes in message passing systems. As a result, commu-

nication between source and destination involves expensive operations, such as the

passing of messages between many layers, data copying, protection checking, and

reliable communication measures. Often, clusters with a special network/switch

like Myrinet use lightweight communication protocols such as active messages for

fast communication among its nodes. They potentially bypass the operating system

and thus remove the critical communication overheads and provide direct, user-level

access to the network interface.

Often in clusters, the network services will be built from a relatively low-level

communication API (Application Programming Interface) that can be used to sup-

port a wide range of high-level communication libraries and protocols. These mech-

anisms provide the means to implement a wide range of communications methodolo-

gies, including RPC, DSM, and stream-based and message passing interfaces such

as MPI and PVM. (A further discussion of communications and network protocols

can be found in Chapter ??.)

1.9 Cluster Middleware

If a collection of interconnected computers is designed to appear as an uni�ed re-

source, we say it possesses a Single System Image (SSI). The SSI is supported

by a middleware layer that resides between the operating system and user-level

Section 1.9 Cluster Middleware 21

environment. This middleware consists of essentially two sublayers of software in-

frastructure [20]:

� Single System Image infrastructure.

� System Availability infrastructure.

The SSI infrastructure glues together operating systems on all nodes to o�er

uni�ed access to system resources. The system availability infrastructure enables

the cluster services of checkpointing, automatic failover, recovery from failure, and

fault-tolerant support among all nodes of the cluster.

The following are the advantages/bene�ts of a cluster middleware and SSI, in

particular:

� It frees the end user from having to know where an application will run.

� It frees the operator from having to know where a resource (an instance of

resource) is located.

� It does not restrict the operator or system programmer who needs to work

on a particular region; the end user interface (hyperlink - makes it easy to

inspect consolidated data in more detail) can navigate to the region where a

problem has arisen.

� It reduces the risk of operator errors, with the result that end users see im-

proved reliability and higher availability of the system.

� It allows to centralize/decentralize system management and control to avoid

the need of skilled administrators for system administration.

� It greatly simpli�es system management; actions a�ecting multiple resources

can be achieved with a single command, even where the resources are spread

among multiple systems on di�erent machines.

� It provides location-independent message communication. Because SSI pro-

vides a dynamic map of the message routing as it occurs in reality, the operator

can always be sure that actions will be performed on the current system.

� It helps track the locations of all resources so that there is no longer any

need for system operators to be concerned with their physical location while

carrying out system management tasks.

The bene�ts of a SSI also apply to system programmers. It reduces the time,

e�ort and knowledge required to perform tasks, and allows current sta� to handle

larger or more complex systems.

22 Cluster Computing at a Glance Chapter 1

1.9.1 Middleware Layers

Single system image and system availability services can be o�ered by one or more

of the following levels/layers:

� Hardware (such as Digital (DEC) Memory Channel, hardware DSM, and SMP

techniques)

� Operating System Kernel or Gluing Layer (such as Solaris MC and GLUnix)

� Applications and Subsystems

{ Applications (such as system management tools and electronic forms)

{ Runtime Systems (such as software DSM and parallel �le system)

{ Resource Management and Scheduling software (such as LSF and CO-

DINE)

It should also be noted that programming and runtime systems like PVM can also

serve as cluster middleware.

The SSI layers support both cluster-aware (such as parallel applications de-

veloped using MPI) and non-aware applications (typically sequential programs).

These applications (cluster-aware, in particular) demand operational transparency

and scalable performance (i.e., when cluster capability is enhanced, they need to

run faster). Clusters, at one operational extreme, act like an SMP or MPP system

with a high degree of SSI, and at another they can function as a distributed system

with multiple system images.

The SSI and system availability services play a major role in the success of

clusters. In the following section, we briey discuss the layers supporting this

infrastructure. A detailed discussion on cluster infrastructure can be found in the

rest of the chapter with suitable pointers for further information.

Hardware Layer

Systems such as DEC memory channel and hardware DSM o�er SSI at hardware

level and allow the user to view cluster as a shared memory system. Digital's

memory channel, a dedicated cluster interconnect, provides virtual shared memory

among nodes by means of internodal address space mapping. (Refer to Chapter ??

for further discussion on DEC memory channel.)

Operating System Kernel or Gluing Layer

Cluster operating systems support an e�cient execution of parallel applications in

an environment shared with sequential applications. A goal is to pool resources in a

cluster to provide better performance for both sequential and parallel applications.

To realize this goal, the operating system must support gang-scheduling of parallel

programs, identify idle resources in the system (such as processors, memory, and

Section 1.9 Cluster Middleware 23

networks), and o�er globalized access to them. It has to support process migration

for dynamic load balancing and fast interprocess communication for both the system

and user-level applications. The OS must make sure these features are available to

the user without the need of new system calls or commands and having the same

syntax. OS kernels supporting SSI include SCO UnixWare and Sun Solaris-MC.

Most of the operating systems that support a SSI are built as a layer on top

of the existing operating systems and perform global resource allocation. This

strategy makes the system easily portable, tracks vendor software upgrades, and

reduces development time. Berkeley GLUnix follows this philosophy and proves that

new systems can be built quickly by mapping new services onto the functionality

provided by the layer underneath.

Applications and Subsystems Layer

SSI can also be supported by applications and subsystems. The application level

SSI is the highest and in a sense most important, because this is what the end user

sees. For instance, a cluster administration tool o�ers a single point of management

and control SSI services. These can be built as GUI-based tools o�ering a single

window for the monitoring and control of cluster as a whole, individual nodes, or

speci�c system components.

The subsystems o�er a software means for creating an easy-to-use and e�cient

cluster system. Run time systems, such as cluster �le systems, make disks attached

to cluster nodes appear as a single large storage system. Global job scheduling

systems manage resources, and enables the scheduling of system activities and ex-

ecution of applications while o�ering high availability services transparently.

1.9.2 SSI Boundaries

A key that provides structure to the SSI lies in noting the following points [1]:

� Every single system image has a boundary; and

� Single system image support can exist at di�erent levels within a system{one

able to be built on another.

For instance, a subsystem (resource management systems like LSF and CO-

DINE) can make a collection of interconnected machines appear as one big machine.

When any operation is performed within the SSI boundary of the subsystem, it pro-

vides an illusion of a classical supercomputer. But if anything is performed outside

its SSI boundary, the cluster appears to be just a bunch of connected comput-

ers. Another subsystem/application can make the same set of machines appear

as a large database/storage system. For instance, a cluster �le system built using

local disks associated with nodes can appear as a large storage system (software

RAID)/parallel �le system and o�er faster access to the data.

24 Cluster Computing at a Glance Chapter 1

1.9.3 Middleware Design Goals

The design goals of cluster-based systems are mainly focused on complete trans-

parency in resource management, scalable performance, and system availability in

supporting user applications.

Complete Transparency

The SSI layer must allow the user to use a cluster easily and e�ectively without

the knowledge of the underlying system architecture. The operating environment

appears familiar (by providing the same look and feel of the existing system) and

is convenient to use. The user is provided with the view of a globalized �le system,

processes, and network. For example, in a cluster with a single entry point, the

user can login at any node and the system administrator can install/load software

at anyone's node and have to be visible across the entire cluster. Note that on

distributed systems, one needs to install the same software for each node. The

details of resource management and control activities such as resource allocation,

de-allocation, and replication are invisible to user processes. This allows the user to

access system resources such as memory, processors, and the network transparently,

irrespective of whether they are available locally or remotely.

Scalable Performance

As clusters can easily be expanded, their performance should scale as well. This

scalability should happen without the need for new protocols and APIs. To extract

the maximum performance, the SSI service must support load balancing and par-

allelism by distributing workload evenly among nodes. For instance, single point

entry should distribute ftp/remote exec/login requests to lightly loaded nodes. The

cluster must o�er these services with small overhead and also ensure that the time

required to execute the same operation on a cluster should not be larger than on a

single workstation (assuming cluster nodes and workstations have similar con�gu-

ration).

Enhanced Availability

The middleware services must be highly available at all times. At any time, a point

of failure should be recoverable without a�ecting a user's application. This can be

achieved by employing checkpointing and fault tolerant technologies (hot standby,

mirroring, failover, and failback services) to enable rollback recovery.

When SSI services are o�ered using the resources available on multiple nodes,

failure of any node should not a�ect the system's operation and a particular service

should support one or more of the design goals. For instance, when a �le system is

distributed among many nodes with a certain degree of redundancy, when a node

fails, that portion of �le system could be migrated to another node transparently.

Section 1.9 Cluster Middleware 25

1.9.4 Key Services of SSI and Availability Infrastructure

Ideally, a cluster should o�er a wide range of SSI and availability services. These

services o�ered by one or more layers, stretch along di�erent dimensions of an

application domain. The following sections discuss SSI and availability services

o�ered by middleware infrastructures.

SSI Support Services

Single Point of Entry: A user can connect to the cluster as a single system (like

telnet beowulf.myinstitute.edu), instead of connecting to individual nodes as

in the case of distributed systems (like telnet node1.beowulf.myinstitute.edu).

Single File Hierarchy (SFH): On entering into the system, the user sees a �le

system as a single hierarchy of �les and directories under the same root direc-

tory. Examples: xFS and Solaris MC Proxy.

Single Point of Management and Control: The entire cluster can be moni-

tored or controlled from a single window using a single GUI tool, much like

an NT workstation managed by the Task Manager tool or PARMON moni-

toring the cluster resources (discussed later).

Single Virtual Networking: This means that any node can access any network

connection throughout the cluster domain even if the network is not physically

connected to all nodes in the cluster.

Single Memory Space: This illusion of shared memory over memories associated

with nodes of the cluster (discussed later).

Single Job Management System: A user can submit a job from any node using

a transparent job submission mechanism. Jobs can be scheduled to run in

either batch, interactive, or parallel modes (discussed later). Example systems

include LSF and CODINE.

Single User Interface: The user should be able to use the cluster through a single

GUI. The interface must have the same look and feel of an interface that is

available for workstations (e.g., Solaris OpenWin or Windows NT GUI).

Availability Support Functions

Single I/O Space (SIOS): This allows any node to perform I/O operation on

local or remotely located peripheral or disk devices. In this SIOS design,

disks associated with cluster nodes, RAIDs, and peripheral devices form a

single address space.

Single Process Space: Processes have a unique cluster-wide process id. A pro-

cess on any node can create child processes on the same or di�erent node

26 Cluster Computing at a Glance Chapter 1

(through a Unix fork) or communicate with any other process (through sig-

nals and pipes) on a remote node. This cluster should support globalized

process management and allow the management and control of processes as

if they are running on local machines.

Checkpointing and Process Migration: Checkpointing mechanisms allow a pro-

cess state and intermediate computing results to be saved periodically. When

a node fails, processes on the failed node can be restarted on another working

node without the loss of computation. Process migration allows for dynamic

load balancing among the cluster nodes.

1.10 Resource Management and Scheduling (RMS)

Resource Management and Scheduling (RMS) is the act of distributing applications

among computers to maximize their throughput. It also enables the e�ective and

e�cient utilization of the resources available. The software that performs the RMS

consists of two components: a resource manager and a resource scheduler. The

resource manager component is concerned with problems, such as locating and

allocating computational resources, authentication, as well as tasks such as process

creation and migration. The resource scheduler component is concerned with tasks

such as queuing applications, as well as resource location and assignment.

RMS has come about for a number of reasons, including: load balancing, utiliz-

ing spare CPU cycles, providing fault tolerant systems, managed access to powerful

systems, and so on. But the main reason for their existence is their ability to pro-

vide an increased, and reliable, throughput of user applications on the systems they

manage.

The basic RMS architecture is a client-server system. In its simplest form, each

computer sharing computational resources runs a server daemon. These daemons

maintain up-to-date tables, which store information about the RMS environment in

which it resides. A user interacts with the RMS environment via a client program,

which could be a Web browser or a customized X-windows interface. Application

can be run either in interactive or batch mode, the latter being the more commonly

used. In batch mode, an application run becomes a job that is submitted to the

RMS system to be processed. To submit a batch job, a user will need to provide job

details to the system via the RMS client. These details may include information

such as location of the executable and input data sets, where standard output is to

be placed, system type, maximum length of run, whether the job needs sequential or

parallel resources, and so on. Once a job has been submitted to the RMS environ-

ment, it uses the job details to place, schedule, and run the job in the appropriate

way.

RMS environments provide middleware services to users that should enable het-

erogeneous environments of workstations, SMPs, and dedicated parallel platforms

to be easily and e�cient utilized. The services provided by a RMS environment can

include:

Section 1.10 Resource Management and Scheduling (RMS) 27

Process Migration - This is where a process can be suspended, moved, and

restarted on another computer within the RMS environment. Generally, pro-

cess migration occurs due to one of two reasons: a computational resource has

become too heavily loaded and there are other free resources, which can be

utilized, or in conjunction with the process of minimizing the impact of users,

mentioned below.

Check Pointing - This is where a snapshot of an executing program's state is

saved and can be used to restart the program from the same point at a later

time if necessary. Checkpointing is generally regarded as a means of provid-

ing reliability. When some part of an RMS environment fails, the programs

executing on it can be restarted from some intermediate point in their run,

rather than restarting them from scratch.

Scavenging Idle Cycles - It is generally recognized that between 70 percent and

90 percent of the time most workstations are idle. RMS systems can be set up

to utilize idle CPU cycles. For example, jobs can be submitted to workstations

during the night or at weekends. This way, interactive users are not impacted

by external jobs and idle CPU cycles can be taken advantage of.

Fault Tolerance - By monitoring its jobs and resources, an RMS system can pro-

vide various levels of fault tolerance. In its simplest form, fault tolerant sup-

port can mean that a failed job can be restarted or rerun, thus guaranteeing

that the job will be completed.

Minimization of Impact on Users - Running a job on public workstations can

have a great impact on the usability of the workstations by interactive users.

Some RMS systems attempt to minimize the impact of a running job on inter-

active users by either reducing a job's local scheduling priority or suspending

the job. Suspended jobs can be restarted later or migrated to other resources

in the systems.

Load Balancing - Jobs can be distributed among all the computational platforms

available in a particular organization. This will allow for the e�cient and

e�ective usage of all the resources, rather than a few which may be the only

ones that the users are aware of. Process migration can also be part of the

load balancing strategy, where it may be bene�cial to move processes from

overloaded system to lightly loaded ones.

Multiple Application Queues - Job queues can be set up to help manage the

resources at a particular organization. Each queue can be con�gured with

certain attributes. For example, certain users have priority of short jobs run

before long jobs. Job queues can also be set up to manage the usage of special-

ized resources, such as a parallel computing platform or a high-performance

graphics workstation. The queues in an RMS system can be transparent to

users; jobs are allocated to them via keywords speci�ed when the job is sub-

mitted.

28 Cluster Computing at a Glance Chapter 1

There are many commercial and research packages available for RMS; a few

popular ones are listed in Table 1.2. There are several in-depth reviews of the

available RMS systems [5], [21].

Table 1.2 Some Popular Resource Management Systems

Project Commercial Systems - URL

LSF http://www.platform.com/

CODINE http://www.genias.de/products/codine/tech desc.html

Easy-LL http://www.tc.cornell.edu/UserDoc/SP/LL12/Easy/

NQE http://www.cray.com/products/software/nqe/

Public Domain Systems - URL

CONDOR http://www.cs.wisc.edu/condor/

GNQS http://www.gnqs.org/

DQS http//www.scri.fsu.edu/~pasko/dqs.html

PRM http://gost.isi.edu/gost-group/products/prm/

PBS http://pbs.mrj.com/

1.11 Programming Environments and Tools

The availability of standard programming tools and utilities have made clusters a

practical alternative as a parallel-processing platform. In this section we discuss a

few of the most popular tools.

1.11.1 Threads

Threads are a popular paradigm for concurrent programming on uniprocessor as

well as multiprocessors machines. On multiprocessor systems, threads are primarily

used to simultaneously utilize all the available processors. In uniprocessor systems,

threads are used to utilize the system resources e�ectively. This is achieved by

exploiting the asynchronous behavior of an application for overlapping computation

and communication. Multithreaded applications o�er quicker response to user input

and run faster. Unlike forked process, thread creation is cheaper and easier to

manage. Threads communicate using shared variables as they are created within

their parent process address space.

Threads are potentially portable, as there exists an IEEE standard for POSIX

threads interface, popularly called pthreads. The POSIX standard multithreading

interface is available on PCs, workstations, SMPs, and clusters [22]. A program-

ming language such as Java has built-in multithreading support enabling easy de-

velopment of multithreaded applications. Threads have been extensively used in

developing both application and system software (including an environment used

to create this chapter and the book as a whole!).

Section 1.11 Programming Environments and Tools 29

1.11.2 Message Passing Systems (MPI and PVM)

Message passing libraries allow e�cient parallel programs to be written for dis-

tributed memory systems. These libraries provide routines to initiate and con�g-

ure the messaging environment as well as sending and receiving packets of data.

Currently, the two most popular high-level message-passing systems for scienti�c

and engineering application are the PVM (Parallel Virtual Machine) [23] from Oak

Ridge National Laboratory, and MPI (Message Passing Interface) de�ned by MPI

Forum [8].

PVM is both an environment and a message passing library, which can be used to

run parallel applications on systems ranging from high-end supercomputers through

to clusters of workstations. Whereas MPI is a message passing speci�cation, de-

signed to be standard for distributed memory parallel computing using explicit

message passing. This interface attempts to establish a practical, portable, e�-

cient, and exible standard for message passing. MPI is available on most of the

HPC systems, including SMP machines.

The MPI standard is the amalgamation of what were considered the best aspects

of the most popular message passing systems at the time of its conception. It is

the result of the work undertaken by the MPI Forum, a committee composed of

vendors and users formed at the SC'92 with the aim of de�ning a message passing

standard. The goals of the MPI design were portability, e�ciency and functionality.

The standard only de�nes a message passing library and leaves, among other things,

the initialization and control of processes to individual developers to de�ne. Like

PVM, MPI is available on a wide range of platforms from tightly coupled systems

to metacomputers. The choice of whether to use PVM or MPI to develop a parallel

application is beyond the scope of this chapter, but, generally, application developers

choose MPI, as it is fast becoming the de facto standard for message passing. MPI

and PVM libraries are available for Fortran 77, Fortran 90, ANSI C and C++.

There also exist interfaces to other languages { one such example is mpiJava [24].

1.11.3 Distributed Shared Memory (DSM) Systems

The most e�cient, and widely used, programming paradigm on distributed memory

systems is message passing. A problem with this paradigm is that it is complex and

di�cult to program compared to shared memory programming systems. Shared

memory systems o�er a simple and general programming model, but they su�er

from scalability. An alternate cost-e�ective solution is to build a DSM system on

distributed memory system, which exhibits simple and general programming model

and scalability of a distributed memory systems.

DSM enables shared-variable programming and it can be implemented by using

software or hardware solutions. The characteristics of software DSM systems are:

they are usually built as a separate layer on top of the communications interface;

they take full advantage of the application characteristics; virtual pages, objects,

and language types are units of sharing. Software DSM can be implemented either

solely by run-time, compile time, or combined approaches. Two representative

30 Cluster Computing at a Glance Chapter 1

software DSM systems are TreadMarks [25] and Linda [26]. The characteristics of

hardware DSM systems are: better performance (much faster than software DSM),

no burden on user and software layers, �ne granularity of sharing, extensions of

the cache coherence schemes, and increased hardware complexity. Two examples of

hardware DSM systems are DASH [27] and Merlin [28].

1.11.4 Parallel Debuggers and Pro�lers

To develop correct and e�cient high performance applications it is highly desirable

to have some form of easy-to-use parallel debugger and performance pro�ling tools.

Most vendors of HPC systems provide some form of debugger and performance

analyzer for their platforms. Ideally, these tools should be able to work in a hetero-

geneous environment, thus making it possible to develop and implement a parallel

application on, say a NOW, and then actually do production runs on a dedicated

HPC platform, such as the Cray T3E.

Debuggers

The number of parallel debuggers that are capable of being used in a cross-platform,

heterogeneous, development environment is very limited. Therefore, in 1996 an

e�ort was begun to de�ne a cross-platform parallel debugging standard that de�ned

the features and interface users wanted. The High Performance Debugging Forum

(HPDF) was formed as a Parallel Tools Consortium project [29]. The forum has

developed a HPD Version speci�cation which de�nes the functionality, semantics,

and syntax for a command-line parallel debugger. Ideally, a parallel debugger should

be capable of:

� Managing multiple processes and multiple threads within a process.

� Displaying each process in its own window.

� Displaying source code, stack trace, and stack frame for one or more processes.

� Diving into objects, subroutines, and functions.

� Setting both source-level and machine-level breakpoints.

� Sharing breakpoints between groups of processes.

� De�ning watch and evaluation points.

� Displaying arrays and its slices.

� Manipulating code variables and constants.

Section 1.11 Programming Environments and Tools 31

TotalView

TotalView is a commercial product from Dolphin Interconnect Solutions [30]. It

is currently the only widely available GUI-based parallel debugger that supports

multiple HPC platforms. TotalView supports most commonly used scienti�c lan-

guages (C, C++, F77/F90 and HPF), message passing libraries (MPI and PVM)

and operating systems (SunOS/Solaris, IBM AIX, Digital UNIX and SGI IRIX).

Even though TotalView can run on multiple platforms, it can only be used in homo-

geneous environments, namely, where each process of the parallel application being

debugged must be running under the same version of the OS.

1.11.5 Performance Analysis Tools

The basic purpose of performance analysis tools is to help a programmer to un-

derstand the performance characteristics of an application. In particular, it should

analyze and locate parts of an application that exhibit poor performance and create

program bottlenecks. Such tools are useful for understanding the behavior of nor-

mal sequential applications and can be enormously helpful when trying to analyze

the performance characteristics of parallel applications.

Most performance monitoring tools consist of some or all of the following com-

ponents:

� A means of inserting instrumentation calls to the performance monitoring

routines into the user's application.

� A run-time performance library that consists of a set of monitoring routines

that measure and record various aspects of a program performance.

� A set of tools those processes and displays the performance data.

A particular issue with performance monitoring tools is the intrusiveness of the

tracing calls and their impact on the applications performance. It is very important

to note that instrumentation a�ects the performance characteristics of the parallel

application and thus provides a false view of its performance behavior. Table 1.3

shows the most commonly used tools for performance analysis of message passing

programs.

1.11.6 Cluster Administration Tools

Monitoring clusters is a challenging task that can be eased by tools that allow entire

clusters to be observed at di�erent levels using a GUI. Good management software

is crucial for exploiting a cluster as a high performance computing platform.

There are many projects investigating system administration of clusters that

support parallel computing, including Berkeley NOW [4], SMILE [31] (Scalable

Multicomputer Implementation using Low-cost Equipment), and PARMON [32].

The Berkeley NOW system administration tool gathers and stores data in a rela-

tional database. It uses a Java applet to allow users to monitor a system from their

32 Cluster Computing at a Glance Chapter 1

Table 1.3 Performance Analysis and Visualisation Tools

Tool Supports URL

AIMS instrumentation, http://science.nas.nasa.gov/Software/AIMS

monitoring library,

analysis

MPE logging library http://www.mcs.anl.gov/mpi/mpich

and snapshot

performance

visualization

Pablo monitoring library http://www-pablo.cs.uiuc.edu/Projects/Pablo/

and analysis

Paradyn dynamic http://www.cs.wisc.edu/paradyn

instrumentation

runtime analysis

SvPablo integrated http://www-pablo.cs.uiuc.edu/Projects/Pablo/

instrumentor,

monitoring library

and analysis

Vampir monitoring library http://www.pallas.de/pages/vampir.htm

performance

visualization

Dimemas performance http://www.pallas.com/pages/dimemas.htm

prediction for

message passing

programs

Paraver program http://www.cepba.upc.es/paraver

visualization

and analysis

browser. The SMILE administration tool is called K-CAP. Its environment consists

of compute nodes (these execute the compute-intensive tasks), a management node

(a �le server and cluster manager as well as a management console), and a client

that can control and monitor the cluster. K-CAP uses a Java applet to connect

to the management node through a prede�ned URL address in the cluster. The

Node Status Reporter (NSR) provides a standard mechanism for measurement and

access to status information of clusters [33]. Parallel applications/tools can access

NSR through the NSR Interface. PARMON is a comprehensive environment for

monitoring large clusters. It uses client-server techniques to provide transparent ac-

cess to all nodes to be monitored. The two major components of PARMON are the

parmon-server (system resource activities and utilization information provider) and

the parmon-client (a Java applet or application capable of gathering and visualizing

realtime cluster information).

Section 1.12 Cluster Applications 33

1.12 Cluster Applications

Earlier in this chapter we have discussed the reasons why we would want to put

together a high-performance cluster, that of providing a computational platform

for all types of parallel and distributed applications. The class of applications that

a cluster can typically cope with would be considered grand challenge or super-

computing applications. GCAs (Grand Challenge Applications) are fundamental

problems in science and engineering with broad economic and scienti�c impact [34].

They are generally considered intractable without the use of state-of-the-art paral-

lel computers. The scale of their resource requirements, such as processing time,

memory and communication needs distinguishes GCAs.

A typical example of a grand challenge problem is the simulation of some phe-

nomena that cannot be measured through experiments. GCAs include massive

crystallographic and microtomographic structural problems, protein dynamics and

biocatalysis, relativistic quantum chemistry of actinides, virtual materials design

and processing, global climate modeling, and discrete event simulation.

The design and implementation of various GCAs on clusters has been discussed

in Volume 2 of this book [35].

1.13 Representative Cluster Systems

There are many projects [36] investigating the development of supercomputing class

machines using commodity o�-the-shelf components. We briey describe the fol-

lowing popular e�orts:

� Network of Workstations (NOW) project at University of California, Berkeley.

� High Performance Virtual Machine (HPVM) project at University of Illinois

at Urbana-Champaign.

� Beowulf Project at the Goddard Space Flight Center, NASA.

� Solaris-MC project at Sun Labs, Sun Microsystems, Inc., Palo Alto, CA.

1.13.1 The Berkeley Network Of Workstations (NOW) Project

The Berkeley NOW project [4] demonstrates building of a large-scale parallel com-

puting system using mass produced commercial workstations and the latest com-

modity switch-based network components. To attain the goal of combining dis-

tributed workstations into a single system, the NOW project included research and

development into network interface hardware, fast communication protocols, dis-

tributed �le systems, distributed scheduling, and job control. The architecture of

NOW system is shown in Figure 1.4.

34 Cluster Computing at a Glance Chapter 1

Figure 1.4 Architecture of NOW system.

Interprocess Communication

Active Messages (AM) is the basic communications primitives in Berkeley NOW.

It generalizes previous AM interfaces to support a broader spectrum of applica-

tions such as client/server programs, �le systems, operating systems, and provide

continuous support for parallel programs. The AM communication is essentially

a simpli�ed remote procedure call that can be implemented e�ciently on a wide

range of hardware. NOW includes a collection of low-latency, parallel communi-

cation primitives: Berkeley Sockets, Fast Sockets, shared address space parallel C

(Split-C), and MPI.

Global Layer Unix

(GLUnix) GLUnix is an OS layer designed to provide transparent remote execution,

support for interactive parallel and sequential jobs, load balancing, and backward

compatibility for existing application binaries. GLUnix is a multiuser system im-

plemented at the userlevel so that it can be easily ported to a number of di�erent

platforms. GLUnix aims to provide a cluster-wide namespace and uses Network

PIDs (NPIDs) and Virtual Node Numbers (VNNs). NPIDs are globally unique

process identi�ers for both sequential and parallel programs throughout the sys-

tem. VNNs are used to facilitate communications among processes of a parallel

program. A suite of user tools for interacting and manipulating NPIDs and VNNs,

equivalent to UNIX run, kill, etc. are supported. A GLUnix API allows interaction

with NPIDs and VNNs.

Network RAM

Network RAM allows us to utilize free resources on idle machines as a paging

device for busy machines. The designed system is serverless, and any machine can

Section 1.13 Representative Cluster Systems 35

be a server when it is idle, or a client when it needs more memory than physically

available. Two prototype systems have been developed. One of these uses custom

Solaris segment drivers to implement an external user-level pager, which exchanges

pages with remote page daemons. The other provides similar operations on similarly

mapped regions using signals.

xFs File System

xFS is a serverless, distributed �le system, which attempts to have low latency,

high bandwidth access to �le system data by distributing the functionality of the

server among the clients. The typical duties of a server include maintaining cache

coherence, locating data, and servicing disk requests. The function of locating data

in xFS is distributed by having each client responsible for servicing requests on

a subset of the �les. File data is striped across multiple clients to provide high

bandwidth.

1.13.2 The High Performance Virtual Machine (HPVM) Project

The goal of the HPVM project [37] is to deliver supercomputer performance on

a low cost COTS (commodity-o�-the-shelf) system. HPVM also aims to hide the

complexities of a distributed system behind a clean interface. The HPVM project

provides software that enables high-performance computing on clusters of PCs and

workstations. The HPVM architecture (Figure 1.5) consists of a number of software

components with high-level APIs, such as MPI, SHMEM, and Global Arrays, that

allows HPVM clusters to be competitive with dedicated MPP systems.

Figure 1.5 HPVM layered architecture.

The HPVM project aims to address the following challenges:

� Delivering high-performance communication to standard, high-level APIs.

36 Cluster Computing at a Glance Chapter 1

� Coordinating scheduling and resource management.

� Managing heterogeneity.

A critical part of HPVM is a high-bandwidth and low-latency communications

protocol known as Fast Messages (FM), which is based on Berkeley AM. Unlike

other messaging layers, FM is not the surface API, but the underlying semantics.

FM contains functions for sending long and short messages and for extracting mes-

sages from the network. The services provided by FM guarantees and controls the

memory hierarchy that FM provides to software built with FM. FM also guaran-

tees reliable and ordered packet delivery as well as control over the scheduling of

communication work.

The FM interface was originally developed on a Cray T3D and a cluster of

SPARCstations connected by Myrinet hardware. Myricom's Myrinet hardware is a

programmable network interface card capable of providing 160 MBytes/s links with

switch latencies of under a �s. FM has a low-level software interface that delivers

hardware communication performance; however, higher-level layers interface o�er

greater functionality, application portability, and ease of use.

1.13.3 The Beowulf Project

The Beowulf project's [6] aim was to investigate the potential of PC clusters for

performing computational tasks. Beowulf refers to a Pile-of-PCs (PoPC) to de-

scribe a loose ensemble or cluster of PCs, which is similar to COW/NOW. PoPC

emphasizes the use of mass-market commodity components, dedicated processors

(rather than stealing cycles from idle workstations), and the use of a private com-

munications network. An overall goal of Beowulf is to achieve the `best' overall

system cost/performance ratio for the cluster.

System Software

The collection of software tools being developed and evolving within the Beowulf

project is known as Grendel. These tools are for resource management and to sup-

port distributed applications. The Beowulf distribution includes several program-

ming environments and development libraries as separate packages. These include

PVM, MPI, and BSP, as well as, SYS V-style IPC, and pthreads.

The communication between processors in Beowulf is through TCP/IP over the

Ethernet internal to cluster. The performance of interprocessor communications

is, therefore, limited by the performance characteristics of the Ethernet and the

system software managing message passing. Beowulf has been used to explore the

feasibility of employing multiple Ethernet networks in parallel to satisfy the internal

data transfer bandwidths required. Each Beowulf workstation has user-transparent

access to multiple parallel Ethernet networks. This architecture was achieved by

`channel bonding' techniques implemented as a number of enhancements to the

Linux kernel. The Beowulf project has shown that up to three networks can be

Section 1.13 Representative Cluster Systems 37

ganged together to obtain signi�cant throughput, thus validating their use of the

channel bonding technique. New network technologies, such as Fast Ethernet, will

ensure even better interprocessor communications performance.

In the interests of presenting a uniform system image to both users and appli-

cations, Beowulf has extended the Linux kernel to allow a loose ensemble of nodes

to participate in a number of global namespaces. In a distributed scheme it is often

convenient for processes to have a PID that is unique across an entire cluster, span-

ning several kernels. Beowulf implements two Global Process ID (GPID) schemes.

The �rst is independent of external libraries. The second, GPID-PVM, is designed

to be compatible with PVM Task ID format and uses PVM as its signal trans-

port. While the GPID extension is su�cient for cluster-wide control and signaling

of processes, it is of little use without a global view of the processes. To this end,

the Beowulf project is developing a mechanism that allows unmodi�ed versions of

standard UNIX utilities (e.g., ps) to work across a cluster.

1.13.4 Solaris MC: A High Performance Operating System for
Clusters

Solaris MC (Multicomputer) [38] is a distributed operating system for a multicom-

puter, a cluster of computing nodes connected by a high-speed interconnect. It

provides a single system image, making the cluster appear like a single machine to

the user, to applications, and to the network. The Solaris MC is built as a global-

ization layer on top of the existing Solaris kernel, as shown in Figure 1.6. It extends

operating system abstractions across the cluster and preserves the existing Solaris

ABI/API, and hence runs existing Solaris 2.x applications and device drivers with-

out modi�cations. The Solaris MC consists of several modules: C++ and object

framework; and globalized process, �le system, and networking.

The interesting features of Solaris MC include the following:

� Extends existing Solaris operating system

� Preserves the existing Solaris ABI/API compliance

� Provides support for high availability

� Uses C++, IDL, CORBA in the kernel

� Leverages Spring technology

The Solaris MC uses an object-oriented framework for communication between

nodes. The object-oriented framework is based on CORBA and provides remote

object method invocations. It looks like a standard C++ method invocation to the

programmers. The framework also provides object reference counting: noti�cation

to object server when there are no more references (local/remote) to the object.

Another feature of the Solaris MC object framework is that it supports multiple

object handlers.

38 Cluster Computing at a Glance Chapter 1

Figure 1.6 Solaris MC architecture.

A key component in proving a single system image in Solaris MC is the global �le

system. It provides consistent access from multiple nodes to �les and �le attributes

and uses caching for high performance. It uses a new distributed �le system called

ProXy File System (PXFS), which provides a globalized �le system without the

need for modifying the existing �le system.

The second important component of Solaris MC supporting a single system

image is its globalized process management. It globalizes process operations such

as signals. It also globalizes the /proc �le system providing access to process state

for commands such as 'ps' and for the debuggers. It supports remote execution,

which allows to start up new processes on any node in the system.

Solaris MC also globalizes its support for networking and I/O. It allows more

than one network connection and provides support to multiplex between arbitary

the network links.

1.13.5 A Comparison of the Four Cluster Environments

The cluster projects described in this chapter share a common goal of attempting

to provide a uni�ed resource out of interconnected PCs or workstations. Each

system claims that it is capable of providing supercomputing resources from COTS

components. Each project provides these resources in di�erent ways, both in terms

of how the hardware is connected together and the way the system software and

tools provide the services for parallel applications.

Table 1.4 shows the key hardware and software components that each system

Section 1.14 Cluster of SMPs (CLUMPS) 39

uses. Beowulf and HPVM are capable of using any PC, whereas Berkeley NOW and

Solaris MC function on platforms where Solaris is available { currently PCs, Sun

workstations, and various clone systems. Berkeley NOW and HPVM use Myrinet

with a fast, low-level communications protocol (Active and Fast Messages). Beowulf

uses multiple standard Ethernet, and Solaris MC uses NICs, which are supported

by Solaris and ranges from Ethernet to ATM and SCI.

Table 1.4 Cluster Systems Comparison Matrix

Project Platform Communications OS Other

Beowulf PCs Multiple Ethernet Linux and MPI/PVM,

with TCP/IP Grendel Sockets

with TCP/IP and HPF

Bereley NOW Solaris-based Myrinet and Solaris + AM, PVM,

PCs and Active Messages GLUunix MPI, HPF,

workstations + XFs Split-C

HPVM PCs Myrinet with NT or Linux Java-frontend,

Fast Messages connection and FM, Sockets,

global resource Global Arrays,

manager SHMEM and

+ LSF MPI

Solaris MC Solaris-based Solaris-supported Solaris + C++ and

PCs and Globalization CORBA

workstations layer

Each system consists of some middleware interfaced into the OS kernel, which

is used to provide a globalization layer, or uni�ed view, of the distributed cluster

resources. Berkeley NOW uses the Solaris OS, whereas Beowulf uses Linux with a

modi�ed kernel and HPVM is available for both Linux and Windows NT. All four

systems provide a wide variety of tools and utilities commonly used to develop, test,

and run parallel applications. These include various high-level APIs for message

passing and shared-memory programming.

1.14 Cluster of SMPs (CLUMPS)

The advances in hardware technologies in the area of processors, memory, and

network interfaces, is enabling the availability a low cost and small con�guration (2-

8 multiprocessors) shared memory SMP machines. It is also observed that clusters

of multiprocessors (Clumps) promise to be the supercomputers of the future. In

Clumps, multiple SMPs with several network interfaces can be connected using

high-performance networks.

This has two advantages: It is possible to bene�t from the high-performance,

easy-to-use-and-program SMP systems with a small number of CPUs. In addition,

clusters can be set up with moderate e�ort (for example, a 32-CPU cluster can be

40 Cluster Computing at a Glance Chapter 1

constructed by using either commonly available eight 4-CPU SMPs or four 8-CPU

SMPs instead of 32 single CPU machines) resulting in easier administration and

better support for data locality inside a node.

This trend puts a new demand on cluster interconnects. For example, a single

NIC will not be su�cient for an 8-CPU system and will necessitate the need for

multiple network devices. In addition, software layers need to implement multiple

mechanisms for data transfer (via shared memory inside an SMP node and the

network to other nodes).

1.15 Summary and Conclusions

In this chapter we have discussed the di�erent hardware and software components

that are commonly used in the current generation of cluster-based systems. We

have also described four state-of-the-art projects that are using subtly di�erent

approaches ranging from an all-COTS approach to a mixture of technologies. In

this section we summarize our �ndings, and make a few comments about possible

future trends.

1.15.1 Hardware and Software Trends

In the last �ve years several important advances have taken place and prominent

among these are:

� A network performance increase of tenfold using 100BaseT Ethernet with full

duplex support.

� The availability of switched network circuits, including full crossbar switches

for proprietary network technologies such as Myrinet.

� Workstation performance has improved signi�cantly.

� Improvement of microprocessor performance has led to the availability of desk-

top PCs with performance of low-end workstations, but at signi�cantly lower

cost.

� The availability of fast, functional, and stable OSs (Linux) for PCs, with

source code access.

� The performance gap between supercomputer and commodity-based clusters

is closing rapidly.

� Parallel supercomputers are now equipped with COTS components, especially

microprocessors (SGI-Cray T3E - DEC Alpha), whereas earlier systems had

custom components.

� Increasing usage of SMP nodes with two to four processors.

Section 1.15 Summary and Conclusions 41

A number of hardware trends have been quanti�ed in [39]. Foremost of these

is the design and manufacture of microprocessors. A basic advance is the decrease

in feature size which enables circuits to work faster or consume low power. In

conjunction with this is the growing die size that can be manufactured. These

factors mean that:

� The average number of transistors on a chip is growing by about 40 percent

per annum.

� The clock frequency growth rate is about 30 percent per annum.

It is anticipated that by the year 2000 there will be 700 MHz processors with

about 100 million transistors.

There is a similar story for storage, but the divergence between memory capacity

and speed is more pronounced. Memory capacity increased by three orders of

magnitude between 1980 and 1995, yet its speed has only doubled. It is anticipated

that Gigabit DRAM will be available in early 2000, but the gap to processor speed

is getting greater all the time.

The problem is that memories are getting larger while processors are getting

faster. So getting access to data in memory is becoming a bottleneck. One method

of overcoming this bottleneck is to con�gure the DRAM in banks and then transfer

data from these banks in parallel. In addition, multilevel memory hierarchies orga-

nized as caches make memory access more e�ective, but their design is complicated.

The access bottleneck also applies to disk access, which can also take advance to

parallel disks and caches.

The ratio between the cost and performance of network interconnects is falling

rapidly. The use of network technologies such as ATM, SCI, and Myrinet in clus-

tering for parallel processing appears to be promising. This has been demonstrated

by many commercial and academic projects such as Berkeley NOW and Beowulf.

But no single network interconnect has emerged as a clear winner. Myrinet is not a

commodity product and costs a lot more than Ethernet, but it has real advantages

over it: very low-latency, high bandwidth, and a programmable on-board proces-

sor allowing for greater exibility. SCI network has been used to build distributed

shared memory system, but lacks scalability. ATM is used in clusters that are

mainly used for multimedia processing.

Two of the most popular operating systems of the 90's are Linux and NT. Linux

has become a popular alternative to a commercial operating system due to its free

availability and superior performance compared to other desktop operating systems

such as NT. Linux currently has more than 7 million users worldwide and it has

become the researcher's choice of operating system. Linux is also available for two

to eight processor SMP machines.

NT has a large installed base and it has almost become a ubiquitous operating

system. NT 5 will have a thinner and faster TCP/IP stack, which supports faster

communication of messages, yet it will use standard communication technology. NT

systems for parallel computing is in a situation similar to the UNIX workstation

42 Cluster Computing at a Glance Chapter 1

�ve to seven years ago and it is only a matter of time before NT catches up{NT

developers need not invest time or money on research as they are borrowing most

of the technology developed by the UNIX community!

1.15.2 Cluster Technology Trends

We have discussed a number of cluster projects within this chapter. These range

from those which are commodity but proprietary components based (Berkeley NOW)

to a totally commodity system (Beowulf). HPVM can be considered as a hybrid-

system using commodity computers and specialized network interfaces. It should

be noted that the projects detailed in this chapter are a few of the most popular

and well known, rather than an exhaustive list of all those available.

All the projects discussed claim to consist of commodity components. Although

this is true; one could argue, however, that true commodity technologies would

be those that are pervasive at most academic or industrial sites. If this were the

case, then true commodity would mean PCs running Windows 95 with standard 10

Mbps Ethernet. However, when considering parallel applications with demanding

computational and network needs, this type of low-end cluster would be incapable

of providing the resources needed.

Each of the projects discussed tries to overcome the bottlenecks that arise while

using cluster-based systems for running demanding parallel applications in a slightly

di�erent way. Without fail, however, the main bottleneck is not the computational

resource (be it a PC or UNIX workstation), rather it is the provision of a low-latency,

high-bandwidth interconnect and an e�cient low-level communications protocol to

provide high-level APIs.

The Beowulf project explores the use of multiple standard Ethernet cards to

overcome the communications bottleneck, whereas Berkeley NOW and HPVM use

programmable Myrinet cards and AM/FM communications protocols. Solaris MC

uses Myrinet NICs and TCP/IP. The choice of what is the best solution cannot

just be based on performance; the cost per node to provide the NIC should also be

considered. For example, a standard Ethernet card costs less than $100, whereas

Myrinet cards cost in excess of $1000 each. Another factor that must also be consid-

ered in this equation is the availability of Fast Ethernet and the advent of GigaBit

Ethernet. It seems that Ethernet technologies are likely to be more mainstream,

mass produced, and consequently cheaper than specialised network interfaces. As

an aside, all the projects that have been discussed are in the vanguard of the clus-

ter computing revolution and their research is helping the following army determine

which are the best techniques and technologies to adopt.

1.15.3 Future Cluster Technologies

Emerging hardware technologies along with maturing software resources mean that

cluster-based systems are rapidly closing the performance gap with dedicated par-

allel computing platforms. Cluster systems that scavenge idle cycles from PCs and

workstations will continue to use whatever hardware and software components are

Section 1.15 Summary and Conclusions 43

available on public workstations. Clusters dedicated to high performance appli-

cations will continue to evolve as new and more powerful computers and network

interfaces become available in the market place.

It is likely that individual cluster nodes will be SMPs. Currently two and four

processor PCs and UNIX workstations are becoming common. Software that allows

SMP nodes to be e�ciently and e�ectively used by parallel applications will be

developed and added to the OS kernel in the near future. It is likely that there will

be widespread usage of Gigabit Ethernet and, as such, it will become the de facto

standard for clusters. To reduce message passing latencies cluster software systems

will bypass the OS kernel, thus avoiding the need for expensive system calls, and

exploit the usage of intelligent network cards. This can obviously be achieved using

intelligent NICs, or alternatively using on-chip network interfaces such as those used

by the new DEC Alpha 21364.

The ability to provide a rich set of development tools and utilities as well as

the provision of robust and reliable services will determine the choice of the OS

used on future clusters. UNIX-based OSs are likely to be most popular, but the

steady improvement and acceptance of Windows NT will mean that it will be not

far behind.

1.15.4 Final Thoughts

Our need for computational resources in all �elds of science, engineering and com-

merce far weigh our ability to ful�ll these needs. The usage of clusters of computers

is, perhaps, one of most promising means by which we can bridge the gap between

our needs and the available resources. The usage of COTS-based cluster systems

has a number of advantages including:

� Price/performance when compared to a dedicated parallel supercomputer.

� Incremental growth that often matches yearly funding patterns.

� The provision of a multipurpose system: one that could, for example, be

used for secretarial purposes during the day and as a commodity parallel

supercomputing at night.

These and other advantages will fuel the evolution of cluster computing and its

acceptance as a means of providing commodity supercomputing facilities.

Acknowledgments

We thank Dan Hyde, Toni Cortes, Lars Rzymianowicz, Marian Bubak, Krzysztof

Sowa, Lori Pollock, Jay Fenwick, Eduardo Pinheiro, and Smrithi Rajkumar for their

comments and suggestions on this chapter.

44 Cluster Computing at a Glance Chapter 1

1.16 Bibliography

[1] G. P�ster. In Search of Clusters. Prentice Hall PTR, NJ, 2nd Edition, 1998.

[2] K. Hwang and Z. Xu. Scalable Parallel Computing: Technology, Architecture,

Programming. WCB/McGraw-Hill, New York, 1998.

[3] C. Koelbel et al. The High Performance Fortran Handbook. The MIT Press,

Massachusetts, 1994.

[4] T. Anderson, D. Culler, and D. Patterson. A Case for Network of Workstations.

IEEE Micro, 15(1):54-64, Feb. 95. http://now.cs.berkeley.edu/

[5] M.A. Baker, G.C. Fox and H.W. Yau. Review of Cluster Management Software.

NHSE Review, May 1996 - http://www.nhse.org/NHSEreview/CMS/

[6] The Beowulf Project. http://www.beowulf.org

[7] QUT Gardens Project. http://www.fit.qut.edu.au/CompSci/PLAS/

[8] MPI Forum. http://www.mpi-forum.org/docs/docs.html

[9] The Berkeley Intelligent RAM Project. http://iram.cs.berkeley.edu/

[10] The Standard Performance Evaluation Corporation (SPEC).

http://open.specbench.org

[11] Russian Academy of Sciences. VLSI Microprocessors: A Guide to High Per-

formance Microprocessors. http://www.microprocessor.sscc.ru/

[12] C. Ruemmler and J. Wilkes, J. Modelling Disks. Tech. Rep. HPL9368, Hewlett

Packard Labs., July 1993

[13] ATM Forum. ATM User-Network Interface Speci�cation. Prentice Hall,

September 1993.

[14] SCI Association http://www.SCIzzL.com/

[15] MPI-FM: MPI for Fast Messages.

http://www-csag.cs.uiuc.edu/projects/comm/mpi-fm.html

[16] N. Boden, et. al. Myrinet - A Gigabit-per-Second Local-Area Network. IEEE

Micro, Vol. 15, No.1, February 1995. ttp://www.myri.com/

[17] The Linux Documentation Project. http://sunsite.unc.edu/mdw/linux.html

[18] Parallel Processing using Linux. http://yara.ecn.purdue.edu/ pplinux/

[19] H. Custer. Inside Windows NT. Microsoft Press, 1993.

Section 1.16 Bibliography 45

[20] Kai Hwang, et. al. Fault Tolerant Clusters of Workstations with Single System

Image. IEEE Concurrency, Spring Issue, 1999.

[21] J. Jones and C. Bricknell. Second Evaluation of Job Scheduling Software.

http://science.nas.nasa.gov/Pubs/TechReports/NASreports/NAS-97-013/

[22] F. Mueller. On the Design and Implementation of DSM-Threads. Proceedings

of the PDPTA'97 Conference, Las Vegas, USA, 1997.

[23] The PVM project. http://www.epm.ornl.gov/pvm/

[24] mpiJava Wrapper. http://www.npac.syr.edu/projects/prpc/mpiJava/,

Aug. 1998.

[25] TreadMarks. http://www.cs.rice.edu/~willy/TreadMarks/overview.html

[26] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,

32(4): 444-458, April 1989.

[27] Lenoski, D. Laudon J, et al., The Stanford DASH Multiprocessor. IEEE Com-

puter, Vol. 25, No. 3, March 1992.

[28] C. Mapples, Li Wittie, Merlin: A Superglue for Multiprocessor Systems. CAM-

PCON'90, March 1990.

[29] Parallel Tools Consortium project. http://www.ptools.org/

[30] Dolphin Interconnect Solutions. http://www.dolphinics.no/

[31] P. Uthayopas, et. al. Building a Resources Monitoring System for SMILE

Beowulf Cluster. Proc. of HPC Asia98 Conference, Singapore, 1998.

[32] R. Buyya, et. al., PARMON: A Comprehensive Cluster Monitoring System.

Proc. of the AUUG'98 - Open Systems Conference, Sydney, Australia, 1998.

[33] C. Roder, T. Ludwig, and A. Bode. Flexible Status Measurement in Heteroge-

neous Environment. Proc. of the PDPTA'98 Conference, LV, USA, 1998.

[34] Grand Challenging Applications.

http://www.mcs.anl.gov/Projects/grand-challenges/

[35] R. Buyya (editor). High Performance Cluster Computing: Programming and

Applications. Volume 2, Prentice Hall PTR, NJ, 1999.

[36] Computer Architecture Links. http://www.cs.wisc.edu/~arch/www/

[37] HPVM. http://www-csag.cs.uiuc.edu/projects/clusters.html

[38] Solaris MC. http://www.sunlabs.com/research/solaris-mc/

[39] D. E. Culler, J. P. Singh, and A Gupta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers, 1998.

Index

Adaptive parallel computing, 10

ATM, 15

Beowulf, 36

Berkeley NOW, 33

Cache, 13

Cache-Coherent NUMA, 3

Check Pointing, 27

Cluster Administration, 31

Cluster Architecture, 8

Cluster Interconnects, 14

Cluster Middleware, 9, 20

Cluster Monitoring, 32

Cluster of SMPs, 39

Clusters Classi�cations, 9

Clusters of clusters, 12

Commodity Components, 12

Computing Eras, 2

Dedicated Clusters, 10

Disk, 13

Distributed Systems, 4

Ethernet, 14

Fast Ethernet, 14

Faster hardware, 1

Gigabit Ethernet, 14

Global Layer Unix(GLUnix), 34

Grand Challenge Applications, 33

Hardware Trends, 40

High Performance Virtual Machine, 35

Idle Cycles, 27

LINUX, 17

Load Balancing, 27

Massively Parallel Processors, 3

Memory, 13

Myrinet, 16

Network Services, 19

Nondedicated Clusters, 10

Object-oriented framework, 37

Operating System, 16

Parallel Computing Era, 2

Parallel Debuggers, 30

Performance Analysis Tools, 31

POSIX threads, 28

Process Migration, 26{27

Process Space, 25

Processors, 12

Programming Environments, 28

Resource Management and Scheduling, 26

Scalable Coherent Interface, 15

Scalable Performance, 24

Sequential Computing Era, 2

Single File Hierarchy, 25

Single Job Management System, 25

Single Memory Space, 25

Single Point of Management and Control, 25

Single System Image, 21

Single User Interface, 25

Single Virtual Networking, 25

Software Trends, 40

Solaris, 18

Solaris MC, 37

SSI Boundaries, 23

Subsystems, 23

Symmetric Multi Processors, 3

System Availability, 21

System Bus, 14

System Software, 36

Threads, 28

Transparency, 24

Windows NT, 19

XFs File System, 35

47

