
Contents

1 Metacomputing: Harnessing Informal Supercomputers 1

1.1 General Introduction 1

1.1.1 Why Do We Need Metacomputing ? 2

1.1.2 What is a Metacomputer? 3

1.1.3 The Parts of a Metacomputer 3

1.2 The Evolution of Metacomputing 4

1.2.1 Introduction 4

1.2.2 Some Early Examples 5

1.3 Metacomputer Design Objectives and Issues 8

1.3.1 General Principles 9

1.3.2 Underlying Hardware and Software Infrastructure 9

1.3.3 Middleware { The Metacomputing Environment 10

1.4 Metacomputing Projects 13

1.4.1 Introduction 13

1.4.2 Globus 13

1.4.3 Legion 17

1.4.4 WebFlow 22

1.5 Emerging Metacomputing Environments 28

1.5.1 Introduction 28

1.5.2 Summary 28

1.6 Summary and Conclusions 28

1.6.1 Introduction 28

1.6.2 Summary of the Reviewed Metacomputing Environments 29

1.6.3 Some Observations 30

1.6.4 Metacomputing Trends 30

1.6.5 The Impact of Metacomputing 31

i



ii

1.7 Bibliography 31



Chapter 1

Metacomputing: Harnessing

Informal Supercomputers

Mark Baker
y
and Geoffrey Fox

z

yDivision of Computer Science

University of Portsmouth

Southsea, Hants, PO4 8JF

zNPAC at Syracuse University

Syracuse, NY, 13244

Email: Mark.Baker@port.ac.uk, gcf@npac.syr.edu

1.1 General Introduction

The term metacomputing, when �rst encountered, seems a rather strange and

typically \geek" word. Its origin is believed to have been the CASA project, one of

several U.S. Gigabit testbeds around in 1989. Larry Smarr, the NCSA Director,

is generally accredited with popularizing the term thereafter.

A search through an ordinary dictionary to try and decipher the term would,

at the time of writing, be fruitless. So, what does metacomputing mean? There

seems to be many, sometimes con
icting, interpretations. Perhaps one should re-

fer back to the Greek word \meta" to help understand the full word. Among the

many meanings of \meta", one will often �nd references to \sharing" and \action

in common." These words are the key to understanding the concept of metacom-

puting. Using these terms one can interpret metacomputing and understand it to

be computers sharing and acting together to solve some common problem.

At this point, to reduce potential confusion, it is worth distinguishing between

a parallel computer and a metacomputer. The key di�erence is the behavior of

individual computational nodes. A metacomputer is a dynamic environment that

has some informal pool of nodes that can join or leave the environment whenever

they desire. The nodes can be viewed as independent machines. So, in a slightly

1



2 Metacomputing: Harnessing Informal Supercomputers Chapter 1

confusing sense, a parallel computer, such as an IBM SP2, can be viewed as a

\metacomputer in a box." Whereas, an SMP parallel computer, such as Tera MTA

or Sun Enterprise 10000, cannot. The di�erence is that individual computational

nodes in an SMP are not independent.

More recently Catlett and Smarr [1] have related the term metacomputing to

\the use of powerful computing resources transparently available to the user via a

networked environment." Their view is that a metacomputer is a networked virtual

supercomputer. To an extent our usage of the term metacomputing still holds true

to this de�nition apart from the need to explicitly refer to \powerful computing

resources." Today's typical desktop computing resources can be viewed as powerful

resources of yesterday.

The steps necessary to realize a metacomputer include:

� The integration of individual software and hardware resources into a combined

networked resource.

� The implementation of middleware to provide a transparent view of the re-

sources available.

� The development and optimization of distributed applications to take advan-

tage of the resources.

1.1.1 Why Do We Need Metacomputing ?

The short answer to this question is that our computational needs are in�nite,

whereas our �nancial resources are �nite. As we are all well aware, the sophisti-

cated applications that we run on our desktops today seem to require more and more

computing resources with every new revision. This trend is likely to continue as

users and developers demand, for example, additional functionality or more realistic

simulations. The net result is that from desktops to parallel supercompters, users

will always want more and more powerful computers. This is where metacomputing

comes into its own. Why not try and utilize the potentially hundreds of thousands

of computers that are interconnected in some uni�ed way? The realization of this

concept is the essence of metacomputing. It should be mentioned here that seamless

access to remote resources is an uncontroversial topic. Whereas linking remote re-

sources together to, say, execute a parallel application is more contentious as there

are overheads involved. There are some situations where there is a strong case,

for example, when linked resources must be geographically distributed, such as in

�ltering and visualization of scienti�c data. In general, it is fair to say that meta-

computing comes with an e�ciency penalty and it is usually better to run separate

jobs on components of the metacomputer. However, linking of self contained ap-

plications is of growing importance in science (multidisciplinary applications) and

industry (linking di�erent components of an organization together).

It is not too bizarre to envision that at some stage in the not so distant future

individuals { be they engineers, scientists, students, health-care workers, or business



Section 1.1 General Introduction 3

persons { will be able to access the computing resources that they need to run their

particular application with the same ease that we switch on a light or turn on a

kitchen appliance. Their application may be the simulation of the 
uid 
ow around

the after end of a ship, image processing of NMR scans, a Monte-Carlo �nancial

simulation for a stockbroker, or a �nal year project for a student dissertation. It

should be noted that these metacomputing resources can be accessed via a remote

laptop or desktop [2].

1.1.2 What is a Metacomputer?

The simplest analogy to help describe a metacomputer is the electricity grid. When

you turned on the power to your computer or switched on your television, you

probably did not think about the original source of the electricity to drive these

appliances. It was not necessary for you to select a generator with adequate capacity

or consider the gauge of wire used to connect the outlet or whether the power

lines are underground or on pylons. Basically, you were using a national power

grid sophisticated enough to route the electrons across hundreds of miles, yet easy

enough for a child to use. In the same manner a metacomputer is a similarly easy-

to-use assembly of networked computers that can work together to tackle a single

task or set of problems.

It is not surprising, therefore, that the terms \The Grid" and \Computational

Grids" are being used to describe a universal source of computing power [3]. A Grid

can be viewed as the means to provide pervasive access to advanced computational

resources, databases, sensors, and people. It is believed that it will allow a new

class of applications to emerge and will have a major impact on our approach to

computing in the twenty �rst century. For our purposes, Computational Grids are

equivalent to metacomputing environments.

Metacomputing encompasses the following broad catorgories:

� Seamless access to high performance resources.

� \Parameter" studies (embarassingly parallel application, see FAFNER, Sec-

tion 1.2.2).

� The linkage of scienti�c instruments, analysis system, archival storage, and

visualisation (so called four-way metacomputing, see I-WAY, Section 1.2.2).

� The general complex linkage of N distributed components.

1.1.3 The Parts of a Metacomputer

A metacomputer is a virtual computer architecture. Its constituent components

are individually not important. The key concept is how these components work

together as a uni�ed resource. On an abstract level the metacomputer consists of

the following components:



4 Metacomputing: Harnessing Informal Supercomputers Chapter 1

� Processors and Memory

The most obvious component of any computer system is the microprocessor

that provides its computational power. The metacomputer will consist of an

array of processors. Associated with each processor will be some dynamic

memory.

� Networks and Communications Software

The physical connections between computers turn then from a collection of in-

dividual machines into an interconnected network. The link between machines

could, for example, be via modems, ISDN, standard Ethernet, FDDI, ATM,

or a myriad of other networking technologies. Networks with high bandwidth

and low latency that provide rapid and reliable connections between the ma-

chines are the most favored. To actually communicate over these physical

connections it is necessary to have some communications software running.

This software bridges all of the gaps, between di�erent computers, between

computers and people, even between di�erent people.

� Virtual Environment

Given that we have an interconnected, communicating network of computers,

processors with memory, and there needs to be something like an operating

system that can be used to con�gure, manage, and maintain the metacom-

puting environment. This virtual environment needs to span the extent of

the metacomputer and make it usable by both administrators and individual

users. Such an environment will enable machines and/or instruments that

may be located in the same building, or separated by thousands of miles, to

appear as one system.

� Remote Data Access and Retrieval

In a metacomputing environment there is the potential that multiple su-

percomputers performing at G
op/s are interacting with each other across

national or international networks streaming GBytes of data in and out of

secondary storage. This is a major challenge for any metacomputing environ-

ment. The challenge will become ever greater as new data-intensive applica-

tions are designed and deployed.

1.2 The Evolution of Metacomputing

1.2.1 Introduction

In this section we describe two early metacomputing projects that were in the

vanguard of this type of technology. The projects di�er in many ways, but both



Section 1.2 The Evolution of Metacomputing 5

had to overcome a number of similar hurdles, including communications, resource

management, and the manipulation of remote data, to be able to work e�ciently and

e�ectively. The two projects also attempted to provide metacomputing resources

from opposite ends of the computing spectrum. Whereas FAFNER [4] was capable

of running on any workstation with more than 4 MBytes of memory, I-WAY [5],

on the other hand, was a means of unifying the resources of large supercomputing

centres.

1.2.2 Some Early Examples

FAFNER

Public key cryptographic systems use two keys: a public and private key. A user

must keep their private key a secret, but the public key is publicly known. Public

and private keys are mathematically related, so that a message encrypted with

a recipient's public key can only be decrypted by their private key. The RSA

algorithm [6] is an example of a public key algorithm. It is named after its developers

Rivest, Shamir, and Adleman, who invented the algorithm at MIT in 1978.

The RSA keys are generated mathematically in part by combining prime num-

bers. The security of RSA is based on the premise that it is very di�cult to factor

extremely large numbers, in particular those with hundreds of digits. RSA keys use

either 154 or 512-digit keys. The usage of this type of cryptographic technology has

led to integer factorization becoming an active research area. To keep abreast of the

state of the art in factoring, RSA Data Security Inc. initiated the RSA Factoring

Challenge in March 1991. The Factoring Challenge provides a testbed for factoring

implementations and provides one of the largest collections of factoring results from

many di�erent experts worldwide.

Factoring is computationally very expensive. For this reason parallel factoring

algorithms have been developed so that factoring can be distributed over a network

of computational resources. The algorithms used are trivially parallel and require

no communications after the initial setup. With this setup, it is possible that many

contributors can provide a small part of a larger factoring e�ort. Early e�orts relied

on Email to distribute and receive factoring code and information. More recently,

in 1995, a consortium led by Bellcore Labs., Syracuse University and Co-Operating

Systems started a project of factoring via the Web, know as FAFNER.

FAFNER was set up to factor RSA130 using a new numerical technique called

the Number Field Sieve (NFS) factoring method using computational Web servers.

The consortium produced a Web interface to NFS. A contributor then uses a Web-

form to invoke server-side CGI scripts written in Perl. Contributors could, from one

set of Web pages, access a wide range of support services for the sieving step of the

factorization: NFS software distribution, project documentation, anonymous user

registration, dissemination of sieving tasks, collection of relations, relation archival

services, and real-time sieving status reports. The CGI scripts produced supported

cluster management, directing individual sieving workstations through appropriate

day/night sleep cycles to minimize the impact on their owners. Contributors down-



6 Metacomputing: Harnessing Informal Supercomputers Chapter 1

loaded and built a sieving software daemon. This then became their Web client

that used HTTP protocol to GET values from and POST the resulting relations

back to a CGI script on the Web server.

Three factors combined to make this approach succeed.

1. The NFS implementation allowed even single workstations with 4 Mbytes to

perform useful work using small bounds and a small sieve.

2. FAFNER supported anonymous registration { users could contribute their

hardware resources to the sieving e�ort without revealing their identity to

anyone other than the local server administrator.

3. A consortium of sites was recruited to run the CGI script package locally,

forming a hierarchical network of RSA130 Web servers which reduced the

potential administration bottleneck and allowed sieving to proceed around

the clock with minimal human intervention.

The FAFNER project won an award in TeraFlop challenge at SC95 in San Diego.

It paved the way for a wave of Web-based metacomputing projects, some of which

are described in Sections 1.4 and 1.5.

I-WAY

The Information Wide Area Year (I-WAY) was an experimental high performance

network linking many high performance computers and advanced visualization en-

vironments. The I-WAY project was conceived in early 1995 with the idea not to

build a network but to integrate existing high-bandwidth networks with telephone

systems. The virtual environments, datasets, and computers used resided at 17

di�erent U.S. sites and were connected by ten networks of varying bandwidths and

protocols, using di�erent routing and switching technologies.

The network was based on ATM technology, which at the time was an emerging

standard. This network provided the wide-area backbone for various experimental

networking activities at SC95, supporting both TCP/IP over ATM and direct ATM-

oriented protocols.

To help standardize the I-WAY software interface and management, the key sites

installed point-of-presence (I-POP) computers to serve as their gateways to the

I-WAY. The I-POP machines were UNIX workstations con�gured uniformly and

possessed a standard software environment called I-Soft. I-Soft helped overcome

issues such as heterogeneity, scalability, performance, and security. The I-POP

machines were the gateways into each site participating in the I-WAY project.

The I-POP machine provided uniform authentication, resource reservation, pro-

cess creation, and communication functions across I-WAY resources. Each I-POP

machine was accessible via the Internet and operated within its site's �rewall. It

also had an ATM interface that allowed monitoring and potential management of

the site's ATM switch.



Section 1.2 The Evolution of Metacomputing 7

For the purpose of managing its resources e�ciently and e�ectively, the I-

WAY project developed a resource scheduler known as the Computational Resource

Broker (CRB). The CRB basically consisted of user-to-CRB and CRB-to-local-

scheduler protocols. The actual CRB implementation was structured in terms of

a single central scheduler and multiple local scheduler daemons { one per I-POP

machine. The central scheduler maintained queues of jobs and tables represent-

ing the state of local machines, allocating jobs to machine and maintaining state

information on the AFS �le system.

Security was a major feature of the I-WAY project. An emphasis was made

on providing a uniform authentication environment. Authentication to I-POPs

was handled by using a telnet client modi�ed to use Kerberos authentication and

encryption. In addition, the CRB acted as an authentication proxy, performing

subsequent authentication to I-WAY resources on a user's behalf.

I-WAY used AFS to provide a shared �le repository for software and scheduler

information. An AFS cell was set up and made accessible from only I-POPs. To

move data between machines where AFS was unavailable, a version of remote copy

(ircp) was adapted for I-WAY.

To support user-level tools, a low-level communications library, Nexus , was

adapted to execute in the I-WAY environment. Nexus supported automatic con-

�guration mechanisms that enabled it to choose the appropriate con�guration de-

pending on the technology being used, for example, communications via TCP/IP

or AAL5 when using the Internet or ATM. The MPICH and CAVEcomm libraries

were also extended to use Nexus.

The I-WAY project was application driven and de�ned �ve types of applications:

� Supercomputer - Supercomputing

� Remote Resource - Virtual Reality

� Virtual Reality - Virtual Reality

� Multisupercomputer - Multivirtual Reality

� Video, Web, GII-Windows

The I-WAY project was successfully demonstrated at SC'95 in San Diego. The

I-POP machine was shown to simplify the con�guration, usage, and management

of this type of wide-area computational testbed. I-Soft was a success in terms that

most applications ran, most of the time. More importantly, the experiences and

software developed as part of the I-WAY project have been fed into the Globus

project described in Section 1.4.2.

A Summary of Early Experiences

The projects described in this section both attempted to produce metacomputing

environments by integrating hardware from opposite ends of the computing spec-

trum. FAFNER was a ubiquitous system that would work on any platform where a



8 Metacomputing: Harnessing Informal Supercomputers Chapter 1

Web server could be run. Typically, its clients were at the low-end of the computing

performance spectrum. Whereas I-WAY uni�ed the resources at supercomputing

sites. The two projects also di�ered in the types of applications that could utilize

their environments. FAFNER was tailored to a particular factoring application that

was in itself trivially parallel and was not dependent on a fast interconnect. I-WAY,

on the other hand, was designed to cope with a range of diverse high performance

applications that typically needed a fast interconnect. Both projects, in their way,

lacked scalability. For example, FAFNER was dependent on quite a lot of human

intervention to distribute and collect sieving results, and I-WAY was limited by the

design of components that made up I-POP and I-Soft.

FAFNER lacked a number of features that would now be considered obvious.

For example, every client had to compile, link, and run a FAFNER daemon in

order to contribute to the factoring exercise. Today, one would probably download

an already set up and con�gured Java applet. FAFNER was really a means of

task-farming a large number of �ne-grain computations. Individual computational

tasks were unable to communicate with one another, or with their parent Web-

server. Today perhaps, using technology such as Java RMI, tasks would register

themselves, ask for work, coordinate their computation, deliver results, and so on,

with even less human intervention or interaction.

Likewise, with I-WAY, a number of features would today seem inappropriate.

The installation of an I-POP platform made it easier to set up I-WAY services in

a uniform manner, but it meant that each site needed to be specially set up to

participate in I-WAY. In addition, the I-POP platform created one, of many, single-

points-of-failure in the design of the I-WAY. Even though this was not reported to

be a problem, the failure of an I-POP would mean that a site would drop out of

the I-WAY environment. Today, many of the services provided by the I-POP and

I-Soft would be available on all the participating machines at a particular site.

Regardless of the aforementioned features of both FAFNER and I-WAY, both

projects were highly successful. Each project was in the vanguard of metacomputing

and has helped pave the way for many of the succeeding projects. In particular,

FAFNER was the forerunner of projects such as WebFlow (described in Section

1.4.4), and the I-WAY software, I-Soft, was very in
uential on the approach used to

design the components employed in the Globus Metacomputing Toolkit (described

in Section 1.4.2).

1.3 Metacomputer Design Objectives and Issues

In this section we lay out and discuss the basic criteria required by all wide area

distributed environments or a metacomputer. In the �rst part of this section we

outline the underlying hardware and software technologies potentially being used.

We then move on to discuss the necessary attributes of the middleware that creates

the virtual environment we call a metacomputer.



Section 1.3 Metacomputer Design Objectives and Issues 9

1.3.1 General Principles

In attempting to facilitate the collaboration of multiple organizations running di-

verse autonomous heterogeneous resources, a number of basic principles should be

followed so that the metacomputing environment:

� does not interfere with the existing site administration or autonomy

� does not compromise existing security of users or remote sites

� does not need to replace existing operating systems, network protocols or

services

� allows remote sites to join or leave the environment whenever they choose

� does not mandate the programming paradigms, languages, tools, or libraries

that a user wants

� provides a reliable and fault tolerance infrastructure with no single point of

failure

� provides support for heterogeneous components

� uses standards, and existing existing technologies, and is able to interact with

legacy applications

� provides appropriate synchronization and component program linkage

1.3.2 Underlying Hardware and Software Infrastructure

As one would expect, a metacomputing environment must be able to operate on top

of the whole spectrum of current and emerging hardware and software technologies.

An obvious analogy is the Web. Users of the Web do not care if the server they are

accessing is on a UNIX or NT platform. They are probably unaware that they are

using HTTP on top of TCP/IP, and they certainly do not want to know that they

are accessing a database supported by a parallel computer, such as an IBM SP2, or

an SMP, such as the SGI Origin 2000. From the client browser's point-of-view, they

\just" want their requests to Web services handled quickly and e�ciently. In the

same way, a user of a metacomputer does not want to be bothered with details of its

underlying hardware and software infrastructure. A user is really only interested in

submitting their application to the appropriate resources and getting correct results

back in a timely fashion.

An ideal metacomputing environment will therefore provide access to the avail-

able resources in a seamless manner such that physical discontinuities such as

di�erences between platforms, network protocols, and administrative boundaries

become completely transparent. In essence, the metacomputing middleware turns

a radically heterogeneous environment into a virtual homogeneous one.



10 Metacomputing: Harnessing Informal Supercomputers Chapter 1

1.3.3 Middleware { The Metacomputing Environment

In this section we outline and describe the idealized design features that are re-

quired by a metacomputing system to provide users with a seamless computing

environment.

Administrative Hierarchy

An administrative hierarchy is the way that each metacomputing environment di-

vides itself up to cope with a potentially global extent. For example, DCE uses cells

and DNS has a hierarchical namespace. The reasons why this category is important

stems from the administrative need to provide resources on autonomous systems on

a global basis. The administrative hierarchy determines how administrative in-

formation 
ows through the metacomputer. For example, how does the resource

manager �nd its resources ? Does it interrogate one global database of resources or

a hierarchy of servers, or perhaps servers con�gured in some peer-related manner?

Communication Services

The communication needs of applications using a metacomputing environment are

diverse { ranging from reliable point-to-point to unreliable multicast communica-

tions. The communications infrastructure needs to support protocols that are used

for bulk-data transport, streaming data, group communications, and those used by

distributed objects.

These communication services provide the basic mechanisms needed by the

metacomputing environment to transport administrative and user data. The net-

work services used also provide the metacomputer with important Quality of Service

parameters such as latency, bandwidth, reliability, fault-tolerance, and jitter control.

Typically, the network services will be built from a relatively low-level communi-

cation API that can be used to support a wide range of high-level communication

libraries and protocols. These mechanisms provide the means to implement a wide

range of communications methodologies, including RPC, DSM, stream-based, and

multicast.

Directory/Registration Services

A metacomputer is a dynamic environment where the location and type of services

available are constantly changing. A major goal is to make all resources accessi-

ble to any process in the system, without regard to the relative location of the

resource user. It is necessary to provide mechanisms to enable a rich environment

in which information about metacomputing is reliably and easily obtained by those

services requesting the information. The registration and directory services compo-

nents provide the mechanisms for registering and obtaining information about the

metacomputer structure, resources, services, and status.



Section 1.3 Metacomputer Design Objectives and Issues 11

Processes, Threads and Concurrency Control

The term process originates in the literature on the design of operating systems and

is generally considered as a unit of resource allocation both for CPU and memory.

The advent of shared memory multiprocessors brought about the provision of Light

Weight Processes or Threads. The name thread comes from the expression \thread

of control." Modern OSs, like NT, permit an OS process to have multiple threads of

control. With regards to metacomputers, this category is related to the granularity

of control provided by the environment to its applications. Of particular interest

is the methodology used to share data and maintain its consistency when multiple

processes or threads have concurrent access to it.

Time and Clocks

Time is an important concept in all systems. First, time is an entity that we

wish to measure accurately, as it may be a record of when a particular transaction

occurred. Or, if two or more computer clocks are synchronized it can be used to

measure the interval when two or more events occurred. Second, algorithms have

been developed that depend on clock synchronization. These algorithms may, for

example, be used for maintaining the consistency of distributed data or as part of

the Kerberos authentication protocol.

Naming Services

In any distributed system, names are used to refer to a wide variety of resources such

as computers, services, or data objects. The naming service provides a uniform name

space across the complete metacomputing environment. Typical naming services are

provided by the international X.500 naming scheme or DNS, the Internet's scheme.

Distributed Filesystems and Caching

Distributed applications, more often than not, require access to �les distributed

among many servers. A distributed �lesystem is therefore a key component in

a distributed system. From an applications point of view it is important that a

distributed �lesystem can provide a uniform global namespace, support a range of

�le I/O protocols, require little or no program modi�cation, and provide means that

enable performance optimizations to be implemented, such as the usage of caches.

Security and Authorization

Any distributed system involves all four aspects of security: con�dentiality { pre-

vents disclosure of data; integrity { prevents tampering with data; authentication

{ veri�es identity, and accountability { knowing whom to blame. Security within

a metacomputing environment is a complex issue requiring diverse resources au-

tonomously administered to interact in a manner that does not impact on the

usability of the resources or introduce security holes in individual systems or the



12 Metacomputing: Harnessing Informal Supercomputers Chapter 1

environments as a whole. A security infrastructure is key to the success or failure

of a metacomputing environment.

System Status and Fault Tolerance

There is a very high likelihood that some component in a metacomputing envi-

ronment will fail. To provide a reliable and robust environment it is important

that a means of monitoring resources and applications is provided. For example,

if a particular platform goes out-of-service, it is important that no further jobs are

scheduled on it until it becomes in-service again. In addition, jobs that were run-

ning on the system when it crashed should be rerun when it is available again or

rescheduled onto an alternative system. To accomplish this task, tools that monitor

resources and application need to be deployed. So, when a platform is unavailable,

information is passed to the directory services, or perhaps, when a job crashes, some

part of the system reschedules that job to run again.

Resource Management and Scheduling

The management of processor time, memory, network, storage, and other com-

ponents in a distributed system is clearly very important. The overall aim is to

e�ciently and e�ectively schedule the applications that need to utilize the available

resources in the metacomputing environment. From a user's point of view, resource

management and scheduling should be almost transparent; their interaction with

it being con�ned to a manipulating mechanism for submitting their application.

It is important in a metacomputing environment that a resource management and

scheduling service can interact with those that may be installed locally. For exam-

ple, it may be necessary to operate in conjunction with LSF, Codine, or Condor at

di�erent remote sites.

Programming Tools and Paradigms

Ideally, every user will want to use a diverse range of programming paradigms and

tools with which to develop, debug, test, pro�le, run, and monitor their distributed

application. A metacomputing environment should include interfaces, APIs and

conversion tools so as to provide a rich development environment. Common scien-

ti�c languages such as C, C++, and Fortran should be available, as should message

passing interfaces like MPI and PVM. A range of programming paradigms should

be supported, such as message passing and distributed shared memory. In addition,

a suite of numerical and other commonly used libraries should be available.

User and Administrative GUI

The interfaces to the services and resources available should be intuitive and easy to

use. In addition, they should work on a range of di�erent platforms and operating

systems.



Section 1.4 Metacomputing Projects 13

Availability

Earlier in this section we mentioned the need to provide middleware that provided

heterogeneous support. In particular, we are concerned about issues, such as if a

particular resource management system works on a particular operating system, or

will the communication services run on top of particular network architecture such

as Novell or SNA. The issues that relate to this category are those that relate to the

portability of the software services provided by the metacomputing environment.

The metacomputing software should either be easily \ported" on to a range of

commonly used platforms, or should use technologies that enable it to be platform

neutral, in a manner similar to Java Byte-code.

1.4 Metacomputing Projects

1.4.1 Introduction

In this section we map the techniques and technologies that three representative

current metacomputing environments use with the aid of the design objectives and

issues laid out in the previous section. The main purpose of this template is to

help the reader review the methodologies used by each project. The three projects

reviewed in this section are: Globus from Argonne National Laboratory, Legion from

the University of Virginia, and WebFlow from Syracuse University The reasons why

these three particular projects were chosen are:

� Globus - provides a toolkit based on a set of existing components with which

to build a metacomputing environment.

� Legion - provides a high-level uni�ed object model out of new and existing

components to build a metasystem.

� WebFlow - provides a Web-based metacomputing environment.

1.4.2 Globus

Introduction

Globus [8], [9], provides a software infrastructure that enables applications to handle

distributed, heterogeneous computing resources as a single virtual machine. The

Globus project is a U.S. multiinstitutional research e�ort that seeks to enable the

construction of computational grids. A computational grid, in this context, is a

hardware and software infrastructure that provides dependable, consistent, and

pervasive access to high-end computational capabilities, despite the geographical

distribution of both resources and users. A central element of the Globus system

is the Globus Metacomputing Toolkit (GMT), which de�nes the basic services and

capabilities required to construct a computational grid. The toolkit consists of a

set of components that implement basic services, such as security, resource location,

resource management, and communications.



14 Metacomputing: Harnessing Informal Supercomputers Chapter 1

It is necessary for computational grids to support a wide variety of applica-

tions and programming paradigms. Consequently, rather than providing a uniform

programming model, such as the object-oriented model, the GMT provides a bag

of services from which developers of speci�c tools or applications can use to meet

their own particular needs. This methodology is only possible when the services

are distinct and have well-de�ned interfaces (API) that can be incorporated into

applications or tools in an incremental fashion.

Globus is constructed as a layered architecture in which high-level global services

are built upon essential low-level core local services. The Globus toolkit is modular,

and an application can exploit Globus features, such as resource management or

information infrastructure, without using the Globus communication libraries.

The GMT currently consists of the following:

� Resource allocation and process management (GRAM)

� Unicast and multicast communications services (Nexus)

� Authentication and related security services (GSI)

� Distributed access to structure and state information (MDS)

� Monitoring of health and status of system components (HBM)

� Remote access to data via sequential and parallel interfaces (GASS)

� Construction, caching, and location of executables (GEM)

Administrative Hierarchy

Globus has no obvious administrative hierarchy. Every Globus-enabled resource is

a peer of every other enabled resource.

Communication Services

Communication services within Globus are provided by Nexus, a communication

library that is designed speci�cally to operate in a grid environment. Nexus is dis-

tinguished by its support for multimethod communication, providing an application

a single API to a wide range of communication protocols and characteristics. Nexus

de�nes a relatively low-level communication API that can be used to support a wide

range of high-level communication libraries and languages. Nexus communication

services are used extensively in other parts of the Globus toolkit.

Directory/Registration Services

The Globus Metacomputing Directory Service (MDS) provides information about

the status of Globus system components. MDS is part of the information infrastruc-

ture of the GMT and is capable of storing static and dynamic information about

the status of a metacomputing environment. MDS uses a Lightweight Directory



Section 1.4 Metacomputing Projects 15

Access Protocol [10] (LDAP) server that can store metacomputing-speci�c objects.

LDAP is a streamlined version of the X.500 directory service. The MDS houses

information pertaining to the potential computing resources, their speci�cations,

and their current availability.

Processes, Threads and Concurrency Control

Globus works at the process level. The Nexus API can be used to construct com-

munication primitives between threads. There is no concurrency control in Globus.

Time and Clocks

Globus does not mandate the usage of a particular time service, it relies on those

already used at each site.

Naming Services

Globus makes extensive usage of LDAP as well as DNS and X.500.

Distributed Filesystems and Caching

The Globus system currently provides three interfaces for remote access of user

data:

� Global Access to Secondary Storage (GASS) { provides basic access to remote

�les. Operations supported include remote read, remote write, and append.

� Remote I/O { The RIO library implements a distributed implementation of

the MPI-IO, parallel I/O API.

� Globus Executable Management (GEM) { enables loading and executing a

remote �le through GRAM using GASS caching calls.

The Remote I/O for Metasystems (RIO) library provides basic mechanisms for

tools and applications that require high performance access to data located in re-

mote, potentially parallel �le systems. RIO implements the Abstract I/O (ADIO)

device interface speci�cation, which de�nes basic I/O functionality that can be

used to implement a variety of higher-level I/O libraries. ROMIO has adopted

the parallel I/O interface de�ned by the MPI forum in MPI-IO and hence allows

any program already using MPI-IO to work without unchanged in a wide-area

environment. The RIO library has been developed as part of the GMT, although it

can also be used independently. ROMIO can be used with Nexus communications,

GSI security, and MDS to provide con�ugration information.

The GMT data movement and access service, GASS, de�nes a global name space

via URLs, allows access to remote �les via standard I/O interfaces, and provides

specialized support for data-movement in a wide-area environment. GASS addresses

bandwidth management issues associated with repeated access to remote �les by



16 Metacomputing: Harnessing Informal Supercomputers Chapter 1

providing a �le cache: where a \local" copy of a remote �le can be stored. Files are

moved in to and out of the cache when a �le is opened or closed by an application.

GASS uses a simple locking protocol for local concurrency control, but does not

implement a wide-area cache coherency mechanism.

Security and Authorization

Globus employs an authentication system known as the Generic Security Service

API (GSI) using an implementation of the Secure Sockets Layer. This system uses

the RSA encryption algorithm and the associated public and private keys. The GSI

authentication relies on an X509 certi�cate, provided by the user in their directory,

that identi�es them to the system. This certi�cate includes information about the

duration of the permissions, the RSA public key, and the signature of the Certi�cate

Authority (CA). With the certi�cate is the user's private key. The certi�cates can

be created only by the CA, who reviews the X509 certi�cate request submitted by

the user, and accepts or denies it according to an established policy.

System Status and Fault Tolerance

Globus provides a range of basic services designed to enable the construction of

application speci�c fault recovery mechanisms. In Globus it is currently assumed

detection of a fault is a necessary prerequisite to fault recovery or fault tolerance.

The main fault detection service in Globus is the Heartbeat Monitor (GHM) that

enables a process to be monitored and periodic heartbeats to be sent to one or

more monitors. The Nexus communication library also provides support for fault

detection.

Resource Management and Scheduling

The Globus Resource Allocation Manager (GRAM) is the lowest level of Globus

architecture. GRAM allows jobs to run remotely and provides an API for submit-

ting, monitoring, and terminating jobs. GRAM provides the local component for

resource management and is responsible for the set of resources operating under the

same site-speci�c allocation policy. Such a policy will often be implemented by a

local resource management package, such as LSF, Codine, or Condor.

GRAM is responsible for:

� Parsing and processing the Resource Speci�cation Language (RSL) speci�ca-

tions that outline job requests. The request speci�es resource selection, job

process creation, and job control. This is accomplished by either denying the

request or creating one or more processes (jobs) to satisfy the request. The

RSL is a structured language that can be used to de�ne resource requirements

and parameters by a user.

� Enabling remote monitoring and managing of jobs already created.



Section 1.4 Metacomputing Projects 17

� Updating MDS with information regarding the availability of the resources it

manages.

Programming Tools and Paradigms

Globus currently supports MPI, Java, Compositional C++, Simple RPC, and Perl.

There are ongoing e�orts to add a Sockets API, an IDL, Legion, and Netsolve.

User and Administrative GUI

Globus makes extensive usage of the Web and command line interfaces for adminis-

tration. For example, LDAP can be browsed via the Web. There are also a growing

number of Java components that can be used with Globus.

Availability

Globus is available on most versions of UNIX and is currently being developed for

NT.

1.4.3 Legion

Introduction

Legion [11], [12] is an object-based metasystem developed at the University of Vir-

ginia. Legion provides the software infrastructure so that a system of heterogeneous,

geographically distributed, high performance machines can interact seamlessly. Le-

gion attempts to provide users, at their workstations, with a a single, coherent, vir-

tual machine. The Legion system is organized by classes and metaclasses (classes

of classes).

In Legion:

� Everything is an object - Objects represent all hardware and software compo-

nents. Each object is an active process that responds to method invocations

from other objects within the system. Legion de�nes an API for object inter-

action, but not the programming language or communication protocol.

� Classes manage their instances - Every Legion object is de�ned and managed

by its own active class object. Class objects are given system-level capabili-

ties; they can create new instances, schedule them for execution, activate or

deactivate an object, as well as provide state information to client objects.

� Users can de�ne their own classes - As in other object-oriented systems users

can override or rede�ne the functionality of a class. This feature allows func-

tionality to be added or removed to meet a user's needs.

� Core objects - Legion de�nes the API to a set of core objects that support

the basic services needed by the metasystem.

Legions has the following set of core object types:



18 Metacomputing: Harnessing Informal Supercomputers Chapter 1

� Classes and Metaclasses - Classes can be considered managers and policy

makers. Metaclasses are classes of classes.

� Host objects - Host objects are abstractions of processing resources, they may

represent a single processor or multiple hosts and processors.

� Vault objects - Vault objects represents persistent storage, but only for the

purpose of maintaining the state of Object Persistent Representation (OPR).

� Implementation Objects and Caches - Implementation objects hide the stor-

age details of object implementations and can be thought of as equivalent to

executable �les in UNIX. Implementation cache objects provide objects with

a cache of fequently used data.

� Binding Agents - A binding agent maps object IDs to physical address. Bind-

ing agents can cache bindings and organize themselves in hierarchies and soft-

ware combining trees.

� Context objects and Context spaces - Context objects map context names to

Legion object IDs, allowing users to name objects with arbitrary-length string

names. Context spaces consist of directed graphs of context objects that name

and organize information.

A Legion object is an instance of its class. Objects are independent, active, and

capable of communicating with each other via unordered nonblocking calls. Like

other object-oriented systems, the set of methods of an object describes its interface.

The Legion interfaces are described in an Interface De�nition Language (IDL) .

A Legion object can be in one of two di�erent states, active or inert. An active

object runs as a process that is ready to accept function invocations. An inert

object is represented by an OPR . An OPR is an image of the object which resides

on some stable storage; this is analogous to a process that has been swapped-out

to disk. In a similar, manner an OPR contains state information that enables the

object to be reactivated. Legion implements a three-tiered naming system.

1. Users refer to objects using human-readable strings, called context names.

2. Context objects map context names to LOIDs (Legion object identi�ers),

which are location-independent identi�ers that include an RSA public key.

3. A LOID is mapped to an LOA (Legion object address) for communication. A

LOA is a physical address (or set of addresses in the case of a replicated object)

that contains su�cient information to allow other objects to communicate

with the object (e.g., an IP address and port number pair).

Administrative Hierarchy

Legion has no obvious administrative hierarchy. Objects distributed about the

Legion environment are peers to one another.



Section 1.4 Metacomputing Projects 19

Communication Services

Legion uses standard TCP/IP to support communications between objects. Every

Legion object is linked with a UNIX sockets-based delivery layer, called the Modular

Message Passing System (MMPS) .

Directory/Registration Services

A Binding agent in Legion maps LOIDs to LOAs. A LOID/LOA pair is called a

binding. Binding agents can cache bindings and organise themselves in hierarchies

and software combining trees.

Processes, Threads and Concurrency Control

Currently Legion has one process per active object and objects communicate via

MMPS. There is no concurrency control included in Legion.

Time and Clocks

Legion does not mandate the usage of a particular time service and relies on those

already used at each site.

Naming Services

Legion Context objects map context names to LOIDs, allowing users to name ob-

jects with arbitrary-length string names. A LOID is mapped to an LOA for com-

munication purposes. A LOA consists of an IP address and port number. It is

assumed that Legion uses DNS to translate names to IP addresses.

The Context Manager is a Java GUI that can be used to manage context space.

Context space is organized into a series of subcontexts (also called contexts) and

each context contains context names of various Legion objects. In the Context

Manager all context-related objects such as contexts, �le objects, and objects are

represented by icons that can be manipulated. Basic context manager commands

are Move, Alias, Get Interface, Get Attributes, Destroy, Activate, and Deactivate.

Distributed Filesystems and Caching

Legion provides a virtual �lesystem that spans all the machines in a Legion system.

I/O support is provided via a set of library functions with UNIX-like �le and stream

operations to read, write, and seek. These functions provide location independent

and secure access to context space and to \�les" in the system. Di�erent users

can also employs the virtual �lesystem to collaborate, sharing data �les and even

accessing the same running computations.

Legion has a special core object called a vault object. This represents persistent

storage, but only for the purpose of maintaining the state of OPRs. The vault

object may manage a portion of a UNIX �lesystem, or a set of databases.



20 Metacomputing: Harnessing Informal Supercomputers Chapter 1

Security and Authorization

Legion does not require any special privileges from the host systems that run it.

The Legion security model is oriented towards protecting objects and object com-

munication. Objects are accessed and manipulated via method calls; an object's

rights are centered in its capabilities to make those calls. The user determines the

security policy for an object by de�ning the object's rights and the method calls

they allow. Once this is done, Legion provides the basic mechanism for enforcing

that policy.

Every object in Legion supports a special member function called MayI. An

object with no security will have a null MayI. All method invocations to an object

must �rst pass through MayI before the target member function is invoked. If the

caller has the appropriate rights for the target method, MayI allows that method

invocation to proceed.

To make rights available to a potential caller, the owner of an object gives

it a certi�cate listing the rights granted. When the caller invokes a method on

the object, it presents the appropriate certi�cate to MayI, which then checks the

scope and authenticity of the certi�cate. Alternatively, the owner of an object can

permanently assign a set of rights to a particular caller or group. MayI is responsible

for con�rming the identity of a caller and its membership of an authorized group,

followed by comparing the rights authorized with the rights required for the method

call.

To provide secure communication, every Legion object has a public key pair;

the public key is part of the object's name. Objects can use the public key of a

target object to encrypt their communications to it. Likewise, an object's private

key can be used to sign messages. This ensures authentication and integrity. This

integration of public keys into object names eliminates the need for a certi�cation

authority. If an intruder tries to tamper with the public key of a known object, the

intruder will create a new and unknown name.

System Status and Fault Tolerance

Legion does not mandate any fault-tolerance policies; applications are responsible

for selecting the level they need. Fault tolerance will be built into generic base classes

and applications will be able to invoke methods that provide the functionality that

they require. Legion will support object re
ection, replication, and check pointing

for the purposes of fault tolerance.

Resource Management and Scheduling

Host objects represent processors, and more than one may run on each comput-

ing resource. Host objects create and manage processes for active Legion objects.

Classes invoke the member functions on host objects in order to activate instances

on the computing resources that the hosts represent. Legion provides resource own-

ers with the ability to initiate, manage and control, and kill their resources.

The Legion-scheduling module consists of three components:



Section 1.4 Metacomputing Projects 21

� A resource state information database (Collection). The Collection interacts

with resource objects to collect state information describing the system.

� A module which maps requests to resources (Scheduler). The Scheduler

queries the Collection to determine a set of available resources that match

the Scheduler's requirements. After computing a schedule, or set of desired

schedules, the Scheduler passes a list of schedules to the Enactor for imple-

mentation.

� An agent responsible for implementing the schedules (Enactor). The Enactor

then makes reservations with the individual resources and reports the results

to the Scheduler. Upon approval by the Scheduler, the Enactor place objects

on the hosts, and monitors their status.

Host objects can be adapted to di�erent environments to suit user needs. For

example, a host object may provide an interface to the underlying resource man-

agement system, such as LSF, Codine, or Condor.

Programming Tools and Paradigms

Legion supports MPL (Mentat Programming Language) and BFS (Basic Fortran

Support). MPL is a parallel C++ language. Legion is written in MPL. BFS is

a set of pseudo-comments for Fortran and a preprocessor that gives the Fortran

programmer access to Legion objects.

Object Wrapping is used in Legion for encapsulating existing legacy codes into

objects. It is possible to encapsulate a PVM, HPF, or shared memory threaded

application in a Legion object. Legion also provides a complete emulation of both

PVM and MPI with user libraries for C, C++, and Fortran. Legion also supports

Java.

User and Administrative GUI

Legion has a command-line and graphical user interface. The Legion GUI, known

as the Context Manager, is a Java application that runs context-related commands.

The Context Manager uses icons to represent di�erent parts of context space (�le

objects, subcontexts, etc.) and runs most context-related commands. The Context

Manager can be run from the command-line of any platform compatible with the

Java Development Kit (JDK) 1.1.3. In addition, there is a Windows 95 client

application, called the Legion Server, that allows users to run the Context Manager

from Windows 95.

Availability

Legion is available on: x86/Alpha (Linux), Solaris (SPARC), AIX (RS/6000), IRIX

(SGI), DEC UNIX (Alpha) and Cray T90.



22 Metacomputing: Harnessing Informal Supercomputers Chapter 1

1.4.4 WebFlow

Introduction

WebFlow [13], [14] is a computational extension of the Web model that can act as a

framework for the wide-area distributed computing and metacomputing. The main

goal of the WebFlow design was to build a seamless framework for publishing and

reusing computational modules on the Web so that endusers, via a Web browser,

can engage in composing distributed applications using WebFlow modules as visual

components and editors as visual authoring tools. Web
ow has a three-tier Java-

based architecture that can be considered a visual data
ow system. The frontend

uses applets for authoring, visualization, and control of the environment. WebFlow

uses servlet-based middleware layer to manage and interact with backend modules

such as legacy codes for databases or high performance simulations.

Web
ow is analogous to the Web. Web pages can be compared to WebFlow

modules and hyperlinks that connect Web pages to intermodular data
ow chan-

nels. WebFlow content developers build and publish modules by attaching them to

Web servers. Application integrators use visual tools to link outputs of the source

modules with inputs of the destination modules, thereby forming distributed com-

putational graphs (or compute-webs) and publishing them as composite WebFlow

modules. A user activates these compute-webs by clicking suitable hyperlinks, or

customizing the computation either in terms of available parameters or by employ-

ing some high-level commodity tools for visual graph authoring.

The high performance backend tier is implemented using the Globus toolkit:

� The Metacomputing Directory Services (MDS) is used to map and identify

resources.

� The Globus Resource Allocation Manager (GRAM) is used to allocate re-

sources.

� The Global Access to Secondary Storage (GASS) is used for a high perfor-

mance data transfer.

WebFlow can be regarded as a high level, visual user interface and job broker

for Globus.

With WebFlow, new applications can be composed dynamically from reusable

components just by clicking on visual module icons, dragging them into the active

WebFlow editor area, and linking them by drawing the required connection lines.

The modules are executed using Globus components combined with the pervasive

commodity services where native high performance versions are not available.

The prototype WebFlow system is based on a mesh of Java enhanced Web

Servers (Apache), running servlets that manage and coordinate distributed com-

putation. This management infrastructure is implemented by three servlets: Session

Manager, Module Manager, and Connection Manager. These servlets use URL ad-

dresses and can o�er dynamic information about their services and current state.



Section 1.4 Metacomputing Projects 23

Each management servlet can communicate with others via sockets. The servlets

are persistent and application independent.

Future implementations of WebFlow will use emerging standards for distributed

objects and take advantage of commercial technologies, such as the CORBA as the

base distributed object model.

Administrative Hierarchy

WebFlow has no obvious administrative hierarchy. A WebFlow node is a Web server

with a unique URL address, and it is a peer to other nodes.

Communication Services

WebFlow communication services are built on multiple protocols. Applet-Web

Server communication uses HTTP; Server-to-Server communication is currently

implemented using TCP/IP, soon to be replaced by IIOP. The module developer

chooses communications between a backend module and its frontend control panel

(Java applet) { typically it is either TCP/IP or IIOP. The modules exchange data

(serialized Java objects) via input and output ports. Originally, the port-to-port

connection was implemented using TCP/IP. This model is now being changed. The

module is a Java Bean, and it interacts with other modules via Java events over

IIOP. The data 
ow paradigm with port-to-port communication is the default that

enables users to visually compose an application from independent modules. How-

ever, the user is not restricted to this model. A module can be a high performance

application to be run on a multiprocessor machine with intramodule communica-

tions using any communication service (for example MPI) available on the target

system. Also, the modules can interact with each other via remote methods invo-

cation (Java events over IIOP).

Also, WebFlow supports multiple protocols for �le transfer, ranging from HTTP

to FTP to IIOP to Globus GASS. The user chooses the protocol to be used depend-

ing on the �le, performance, and security requirements.

Directory/Registration Services

WebFlow does not de�ne its own directory services. The usage of the CORBA nam-

ing services and interface repository is planned. It should be noted that WebFlow

typically is used in conjunction with Globus and will coordinate with its directory

services (MDS).

Processes, Threads, and Concurrency Control

Each module runs as separate Java threads, and all modules run concurrently. It

is the user's responsibility to synchronize modules (for example, the user may want

the module to block on receiving the input data).



24 Metacomputing: Harnessing Informal Supercomputers Chapter 1

Time and Clocks

WebFlow does not mandate the usage of a particular time service and relies on

those already used at each site.

Naming Services

Currently, no specialized naming service other than DNS is used. CORBA services

are planned.

Distributed Filesystems and Caching

WebFlow does not o�er \a native" distributed �lesystem or support caching. This

is left to the user. As a part of WebFlow distribution there is a �le browser module

that allows the user to browse and select �les accessible by the host Web server.

The selected �les can then be sent to a desired destination using HTTP, IIOP, FTP,

or GASS. For example, a WebFlow module that serves as the Globus GRAM proxy

takes the name of the input �le and URL of the GRAM contact as input. This

information is su�cient to stage the input �le on the target machine and retrieve

the output �le using GASS over FTP.

Security and Authorization

WebFlow requires two security levels: secure Web transactions between client and

the middle tier, and secure access to the backend resources. Secure Web transactions

in WebFlow are based on TLS 1.0 and modeled after the AKENTI system; secure

access to the backend resources is delegated to the backend service providers, such

as Globus. The secure access to resources directly controlled by WebFlow has not

yet been addressed.

System Status and Fault Tolerance

The original implementation of WebFlow did not address these issues. The new

WebFlow middle-tier will use CORBA mechanisms to provide fault tolerance, in-

cluding a heartbeat monitor. In the backend, WebFlow relies on services provided

by the backend service provider.

Resource Management and Scheduling

WebFlow delegates the resource management and scheduling to the metacomput-

ing toolkit (Globus) and/or a local resource management package such as PBS or

CONDOR.

Programming Tools and Paradigms

WebFlow modules are Java objects. Object wrapping is used in WebFlow for en-

capsulating existing codes into objects. WebFlow test applications include modules



Section 1.4 Metacomputing Projects 25

Table 1.1 Metacomputing Functionality Matrix

Design Objective Globus Legion Web
ow

Admin. Hierarchy Peer Peer Peer

Comms Service Nexus - Low-Level MMPS - Sockets-based Hierarical - Sockets+MPI

Dir/Reg Services MDS - LDAP Via Binding agent MDS - LDAP

Processes Process-based Object/process-based Process-based

Clock Not specified Not specified Not specified

Naming Services LDAP + DNS/X.500 Context Manger + DNS LDAP + DNS

Filesystems & caching GASS + ROMIO Custom Legion filesystem GASS

Security GSI (RSA + X.509 certs) Object-based with RSA SSL

Fault Tolerance Heart-beat monitor Not available yet None

Resource Management GRAM + RSL + Local Host object + Local GRAM-based

Prog. Paradigms Many and varied MPL, BFS + wrappers MPI

User Interfaces GUI + command-line GUI + command-line Applet-based GUI

Availability Most UNIX Most UNIX Most UNIX and NT

with encapsulated Fortran, Fortran with MPI, HPF, C with MPI, Pascal, as well

as Java.

User and Administrative GUI

WebFlow o�ers a visual-authoring tool, implemented as a Java applet that allows

the user to compose a (meta-) application from preexisting modules. In addition,

a developer can use a simple API to build a custom graphical user interface.

Availability

Since WebFlow is implemented in Java, it runs on all platforms that support JVM.

So far it has been tested on Solaris, IRIX, and Windows NT.

Summary and Conclusions

In this section we have attempted to lay out the functionality and features of three

representative metacomputer architectures with the design criteria we outlined in

Section 1.3. This task in itself has been rather di�cult as it has been necessary to

map the developer's terminology for components within their environments to those

used more commonly in distributed computing. In the �nal part of this section we

summarize the functionality of each environment and conclude by making some

observations about the approaches each environment uses.

Functionality Matrix

In the functionality matrix, shown in Table 1, we outline the components within

each metacomputing environment that deals with our design criteria.

� Administrative Hierarchy - All three environments use a peer-based adminis-

trative hierarchy, which makes the services they provide globally scalable and

reduces potential administrative bottlenecks and single-points of failure.



26 Metacomputing: Harnessing Informal Supercomputers Chapter 1

� Communications Service { Globus uses Nexus to provide its underlying com-

munications services, whereas Legion and WebFlow use sockets-based proto-

col.

� Directory/Registration Services { Both Globus and Web
ow use the commod-

ity LDAP service, whereas Legion uses a custom binding agent.

� Processes { All three environments are process based - but each has the ability

to encompass threads and enable consistency control.

� Clock { The three environments do not require special timing services.

� Naming services { Globus and WebFlow use LDAP in conjuction with DNS;

Legion uses a custom context manager in conjunction with DNS.

� Filesystems and caching { Globus makes extensive use of the remote access

tool GASS and the parallel I/O interface ROMIO. Legion has a custom global

�lesystem and the ability to interface with other I/O systems. WebFlow

utilizes GASS to provide �lesystem services.

� Security { All three environments use RSA in some form. Globus uses GSI to

provide its security services. Legion uses an Object based system where every

object has a security method MayI. WebFlow uses SSL for security purposes.

� Fault Tolerance { Of the three environments, only Globus provides tools, such

as the heartbeat monitor.

� Resource Management { Globus implements an extensive resource manage-

ment and scheduling system, GRAM. Legion has the concept of host object for

local resource management. Both Globus and Legion have interfaces to other

resource management system, such as Codine and LSF. WebFlow utilizes the

services of GRAM.

� Programming Paradigms { All three environments provide a raft of tools and

utilities to support various programming paradigms.

� User Interfaces { Globus and Legion provide both command-line and GUI

interfaces. WebFlow uses just a GUI.

� Availability { All three environments are available on most UNIX platforms.

Some Observations

Globus is constructed as a layered architecture in which high-level global services

are built upon essential low-level core local services. The Globus toolkit is modular.

This means that an application can exploit an array of features without needing

to implement all of them. Globus can be viewed as a metacomputing framework

based on a set of APIs to the underlying services. Even though Globus provides the



Section 1.4 Metacomputing Projects 27

services needed to build a metacomputer, the Globus framework allows alternative

local services to be used if desired. For example, the GRAM API allows alternative

resource management systems to be utilized, such as Condor or NQE.

Abstracting the services into a set of standard APIs has a number of advantages.

These include:

� the underlying services can be changed without a�ecting applications that use

them

� this type of layered approach simpli�es the design of a rather complicated

system

� it encourages developers of tools and services, they need to support only one

API, making their development and testing cycle shorter and cheaper.

Globus provides application developers with a pragmatic means of implementing

a range of services to provide a wide-area application execution environment.

Legion takes a very di�erent approach to provide a metacomputing environ-

ment, it encapsulates all its components as objects. The methodology used has all

the normal advantages of an object-oriented approach, such as, data abstraction,

encapsulation, inheritance, and polymorphism.

It can be argued that many aspects of this object-oriented approach potentially

makes it ideal for designing and implementing a complex environment such as a

metacomputer. For example, Legion's security mechanism, where each object uses

RSA keys and a MayImethod, seems straightforward and more natural than security

mechanisms used in many other environments. In addition, the set of methods

associated with each object naturally becomes its external interface and hence its

API.

Using an object-oriented methodology in Legion does not come without a raft

of problems. It is not obvious how best to encapsulate nonobject-oriented pro-

gramming paradigms, such as message passing or distributed shared memory. In

addition, the majority of real-world computing services have procedural interfaces

and it is necessary to produce object-oriented wrappers to interface these services

to Legion. For example, the APIs to DNS or resource management systems such as

Condor or Codine are procedural.

WebFlow takes a di�erent approach to both Globus and Legion. It is imple-

mented in a hybrid manner using a three-tier architecture that encompasses both

the Web and third party backend services. This approach has a number of ad-

vantages, including the ability to \plug-in" a diverse set of backend services. For

example, currently many of these services are supplied by the Globus Matacomput-

ing Toolkit, but they could be replaced with components from CORBA or Legion.

WebFlow also has the advantage that it is more portable and can be installed any-

where a Web server supporting servlets is capable of running.



28 Metacomputing: Harnessing Informal Supercomputers Chapter 1

1.5 Emerging Metacomputing Environments

1.5.1 Introduction

There are a large number and diverse range of emerging distributed systems cur-

rently being developed. These systems range from metacomputing frameworks

to application testbeds, and from collaborative environments to batch submission

mechanisms.

In this section we brie
y described and referenced a few of the better know

systems (due to space considerations the full text for this section can be found

elsewhere [15]). The aim of this section is to bring to the reader's attention not

only some of the large number of diverse projects that exist, but also to detail the

di�erent approaches used to solve the inherent problems encountered.

1.5.2 Summary

The projects described in this section are a crosssection of those currently under-

taken. It is interesting to note that all are using Java and the Web as the commu-

nications infrastructure. It is also evident that Java has revolutionized the shape

and characteristic of the software environments for heterogeneous distributed sys-

tems. It seems that the developers of distributed systems no longer have to focus

on aspects such as portability and heterogeneity, by using Java they seem able to

concentrate on designing and implementing functional distributed environments. It

is not clear, among the raft of projects listed in this section, which environments will

succeed. However, each project, in its own way, is contributing to our knowledge

of how to design, build, and implement e�cient and e�ective distributed virtual

environments.

1.6 Summary and Conclusions

1.6.1 Introduction

In this chapter we have attempted to describe and discuss many aspects of meta-

computers. We started o� by discussing why there is a need for such environments.

We then moved on to describe two early metacomputing projects. Here we also

outlined some of the bene�ts and experiences learned. Having set the scene, we

then laid out a design template to map out the critical services that a metacomput-

ing environment needs to encompass. Then, using this template, we mapped the

services of three di�ering environments onto it. This mapping made comparing and

contrasting the services that each metacomputing environment provided clearer to

understand. Having described three fairly mature environments, we then brie
y

described some 30-odd emerging distributed environments and tools. Finally, here,

we summarize what we have discovered while researching this chapter and conclude

by making a few predictions about metacomputing environments of the future.



Section 1.6 Summary and Conclusions 29

1.6.2 Summary of the Reviewed Metacomputing Environments

Globus is constructed as a layered architecture in which high-level global services are

built upon essential low-level core local services. The Globus toolkit is modular,

and as such, an application can exploit an array of features without needing to

implement all of them. Globus can be viewed as a metacomputing framework based

on a set of APIs to the underlying services. Globus provides application developers

with a pragmatic means of implementing a range of services to provide a wide-area

application execution environment.

Legion takes a very di�erent approach to provide a metacomputing environ-

ment; it encapsulates all its components as objects. The methodology used has all

the normal advantages of an object-oriented approach, such as data abstraction,

encapsulation, inheritance, and polymorphism. It can be argued that many aspects

of this object-oriented approach potentially makes it ideal for designing and im-

plementing a complex environment such as a metacomputer. However, using an

object-oriented methodology does not come without a raft of problems, many of

these are tied-up with the need for Legion to interact with legacy applications and

services. In addition, as Legion is written in MPL, it is necessary to \port" MPL

onto each platform before Legion can be installed.

WebFlow takes a di�erent approach to both Globus and Legion. It is imple-

mented in a hybrid manner using a three-tier architecture that encompasses both

the Web and third party backend services. This approach has a number of advan-

tages, including the ability to \plug-in" to a diverse set of backend services. For

example, many of these services are currently supplied by the Globus toolkit, but

they could be replaced with components from CORBA or Legion. WebFlow also

has the advantage that it is more portable and can be installed anywhere a Web

server supporting servlets is capable of running.

So, in summary, we believe that all three environments have their merits. Fun-

damentally, the Globus Metacomputing Toolkit is currently the most comprehensive

attempt at providing a metacomputing environment. The Globus team has taken

a very pragmatic approach to providing the services that are needed in a metacom-

puter. The design methodology they have used { abstracting the services of some

underlying entity into a well thought out API { will give the project longevity, as

the entities that provide the service can be updated without changing the funda-

mental service API. In addition, Globus uses existing standard commodity software

components to provide many of its services, for example, LDAP, X.509, and RSA.

This has a number of bene�cial implications, including code reuse and avoiding the

necessity to create all the services from scratch.

Alternatively, Legion is a very ambitious and impressive project. We believe the

object-oriented approach they have taken has a lot of merit. A fundamental 
aw

with Legion currently is the reliance on MPL. If Legion were written in Java, which

no doubt the University of Virginia is seriously contemplating, then we would have

much more faith in Legion's longevity. Also, perhaps, we would question the use of

this system as opposed to one based on the well-known standard CORBA.



30 Metacomputing: Harnessing Informal Supercomputers Chapter 1

WebFlow is still basically an experimental prototype system that is being used

to explore a range of new and emerging technologies. It has much merit, particu-

larly in its comprehensive GUI frontend and its ability to utilize standard backend

components designed by other organizations.

1.6.3 Some Observations

The Java programming language successfully addresses several key issues that plague

the development of distributed environments, such as heterogeneity and security.

It also removes the need to install programs remotely; the minimum execution en-

vironment is a Java-enabled Web browser. Java has become a prime candidate for

building distributed environments.

In a metacomputing environment it is not possible to mandate the types of

services or programming paradigms that particular users or organizations must use.

A metacomputer needs to provide extensible interfaces to any service desired.

Providing adequate security in a metacomputer is a complex issue. A careful

balance needs to be maintained between the usability of an environment and se-

curity mechanisms utilized. The security methods must not inhibit the usage of

an environment, but it must ensure that the resources are secure from malicious

intruders.

1.6.4 Metacomputing Trends

It is very di�cult to predict the future. In a �eld such as computing, the technolog-

ical advances are moving very fast. Windows of opportunity for ideas and products

seem to open and close in the seeming \blink of the eye." However, some trends are

evident.

Java, with its related technologies and growing repository of tools and utili-

ties, is having a huge impact on the growth and development of metacomputing

environments. From a relatively slow start, the development of metacomputers is

accelerating fast with the advent of these new and emerging technologies. It is very

hard to ignore the presence of the sleepy giant CORBA in the background. We

believe that frameworks incorporating CORBA services will be very in
uential on

the design of metacomputing environments in the future.

Whatever technology or computing paradigm becomes in
uential or most pop-

ular, it can be guaranteed that at some stage in the future its star will wane.

Historically, in the computing �eld, this fact can be repeatedly observed. The les-

son from this observation must therefore be drawn that, in the long term, backing

only one technology can be an expensive mistake. The framework that provides

a metacomputing environment must be adaptable, malleable, and extensible. As

technology and fashions change it is crucial that a metacomputing environment

evolves with them.



Section 1.7 Bibliography 31

1.6.5 The Impact of Metacomputing

Metacomputing is not only a computing paradigm for just providing computational

resources for supercomputing-sized parallel applications. It is an infrastructure

that can bond and unify globally remote and diverse resources ranging from mete-

orological sensors to data-vaults, from parallel supercomputers to personal digital

organisers. As such, it will provide pervasive services to all users that need them.

Larry Smarr observes in \The GRID: Blueprint for a New Computing Infras-

tructure" [3] that metacomputing has serious social consequences and is going to

have as revolutionary an e�ect as railroads did in the American mid-West in the

early nineteenth century. Instead of a 30 to 40 year lead-time to see its e�ects,

however its impact is going to be much faster. He concludes that the e�ects of

computational grids are going to change the world so quickly that mankind will

struggle to react and change in the face of the challenges and issues they present.

So, at some stage in the future, our computing needs will be satis�ed in the

same pervasive and ubiquitous manner that we use the electricity power grid. The

analogies with the generation and delivery of electricity are hard to ignore, and the

implications are enormous.

Acknowledgements

The authors wish to thank Ian Foster (ANL) and Tom Haupt (Syracuse) for infor-

mation and useful suggestions about their projects. We would also like to thank

Wolfgang Gentzsch (Genias) for early access to a FGCS Special Issue on Meta-

computing [16]. The authors would like to thank Kate Dingley, Tony Kalus, John

Rosbottom, and Rose Rayner for proofreading the copy of this chapter.

1.7 Bibliography

[1] C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, vol.

35(6), pages 44-52, 1992.

[2] Desktop Access to Remote Resources -

http://www-fp.mcs.anl.gov/~gregor/datorr/

[3] I. Foster and C. Kesselman, eds. The GRID: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann Publishers, Inc., San Francisco, California,

1998. ISBN 1-55860-475-8.

[4] FAFNER - http://www.npac.syr.edu/factoring.html

[5] I-WAY - http://146.137.96.14/

[6] RSA - http://www.rsa.com/



32 Metacomputing: Harnessing Informal Supercomputers Chapter 1

[7] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software Infras-

tructure for the I-WAY Metacomputing Experiment. Concurrency: Practice

and Experience, vol. 10(7), pages 567-581, 1998.

[8] Globus - http://www.globus.org/

[9] I. Foster and C. Kesselman, The Globus Project: A Status Report. Proceeding

IPPS/SPDP '98 Heterogeneous Computing Workshop, pages 4-18, 1998.

[10] W. Yeong, T. Howes and S. Kille. Lightweight Directory Access Protocol. RFC

1777, 28/03/95. Draft Standard.

[11] Legion - http://legion.virginia.edu/

[12] A. Grimshaw, W. Wulf, et al. The Legion Vision of a Worldwide Virtual

Computer. Communications of the ACM, vol. 40(1), January 1997.

[13] WebFlow - http://osprey7.npac.syr.edu:1998/iwt98/products/webflow/

[14] T. Haupt, E. Akarsu, G. Fox and W. Furmanski. Web based metacomputing.

Special Issue on Metacomputing Future Generation Computer Systems, North

Holland, to appear in early 1999.

[15] M. Baker and G. Fox Metacomputing: Harnessing Informal Su-

percomputers. Portsmouth University preprint, December 1998.

http://www.dcs.port.ac.uk/~mab/Papers/Cluster-Book/

[16] Metacomputing, Editor, Wolfgang Gentzsch, Future Generation Computer Sys-

tems, North Holland, due for publication in early 1999.


