
HPcc as High Performance Commodity Computing on

top of integrated Java, CORBA, COM and Web

standards

G.C. Fox, W. Furmanski, T. Haupt, E. Akarsu and H. Ozdemir

Northeast Parallel Architectures Center, Syracuse University, Syracuse NY, USA
gcf@npac.syr.edu, furm@npac.syr.edu

http://www.npac.syr.edu

Abstract

We review the growing power and capability of commod-

ity computing and communication technologies largely

driven by commercial distributed information systems.

These systems are built from CORBA, Microsoft's

COM, JavaBeans, and rapidly advancing Web ap-

proaches. One can abstract these to a three-tier model

with largely independent clients connected to a dis-

tributed network of servers. The latter host various

services including object and relational databases and

of course parallel and sequential computing. High per-

formance can be obtained by combining concurrency at

the middle server tier with optimized parallel back end

services. The resultant system combines the needed per-

formance for large-scale HPCC applications with the

rich functionality of commodity systems. Further the

architecture with distinct interface, server and special-

ized service implementation layers, naturally allows ad-

vances in each area to be easily incorporated. We illus-

trate how performance can be obtained within a com-

modity architecture and we propose a middleware inte-

gration approach based on JWORB (Java Web Object

Broker) multi-protocol server technology. Examples are

given from collaborative systems, support of multidis-

ciplinary interactions, proposed visual HPCC Compo-

nentWare, quantum Monte Carlo and distributed inter-

active simulations.

1 Introduction

We believe that industry and the loosely organized

worldwide collection of (freeware) programmers is

developing a remarkable new software environment

of unprecedented quality and functionality. We call

this DcciS - Distributed commodity computing and

information System. We believe that this can ben-

e�t HPCC in several ways and allow the develop-

ment of both more powerful parallel programming

environments and new distributed metacomputing

systems. In the second section, we de�ne what we

mean by commodity technologies and explain the

di�erent ways that they can be used in HPCC. In

the third and critical section, we de�ne an emerg-

ing architecture of DcciS in terms of a conventional

3 tier commercial computing model, augmented by

distributed object and component technologies of

Java, CORBA, COM and the Web. This is fol-

lowed in sections four and �ve by more detailed

discussion of the HPcc core technologies and high-

level services.

In this and related papers [5], we discuss several

examples to address the following critical research

issue: can high performance systems - called HPcc

or High Performance Commodity Computing - be

built on top of DcciS. Examples include integration

of collaboration into HPcc; the natural synergy of

distribution simulation and the HLA standard with

our architecture; and the step from object to vi-

sual component based programming in high per-

formance distributed computing. Our claim, based

on early experiments and prototypes is that HPcc

is feasible but we need to exploit fully the syn-

ergies between several currently competing com-

modity technologies. We refer to our approach

towards HPcc, based on integrating several pop-

ular distributed object frameworks as Pragmatic

Object Web and we describe a speci�c integra-

tion metodology based on multi-protocol middle-

ware server, JWORB (Java Web Object Request

Broker).



2 Commodity Technologies

and their use in HPCC

The last three years have seen an unprecedented

level of innovation and progress in commodity tech-

nologies driven largely by the new capabilities and

business opportunities of the evolving worldwide

network. The web is not just a document access

system supported by the somewhat limited HTTP

protocol. Rather it is the distributed object tech-

nology which can build general multi-tiered enter-

prise intranet and internet applications. CORBA

is turning from a sleepy heavyweight standards ini-

tiative to a major competitive development activity

that battles with COM, JavaBeans and new W3C

object initiatives to be the core distributed object

technology.

There are many driving forces and many aspects

to DcciS but we suggest that the three critical

technology areas are the web, distributed objects

and databases. These are being linked and we see

them subsumed in the next generation of "object-

web" [1] technologies, which is illustrated by the

recent Netscape and Microsoft version 4 browsers.

Databases are older technologies but their linkage

to the web and distributed objects, is transforming

their use and making them more widely applicable.

In each commodity technology area, we have im-

pressive and rapidly improving software artifacts.

As examples, we have at the lower level the collec-

tion of standards and tools such as HTML, HTTP,

MIME, IIOP, CGI, Java, JavaScript, Javabeans,

CORBA, COM, ActiveX, VRML, new powerful ob-

ject brokers (ORB's), dynamic Java clients and

servers including applets and servlets, and new

W3C technologies towards the Web Object Model

(WOM) such as XML, DOM and RDF.

At a higher level collaboration, security, com-

merce, multimedia and other applications/services

are rapidly developing using standard interfaces or

frameworks and facilities. This emphasizes that

equally and perhaps more importantly than raw

technologies, we have a set of open interfaces en-

abling distributed modular software development.

These interfaces are at both low and high levels and

the latter generate a very powerful software envi-

ronment in which large preexisting components can

be quickly integrated into new applications. We

believe that there are signi�cant incentives to build

HPCC environments in a way that naturally inher-

its all the commodity capabilities so that HPCC

applications can also bene�t from the impressive

productivity of commodity systems. NPAC's HPcc

activity is designed to demonstrate that this is pos-

sible and useful so that one can achieve simultane-

ously both high performance and the functionality

of commodity systems.

Note that commodity technologies can be used in

several ways. This article concentrates on exploit-

ing the natural architecture of commodity systems

but more simply, one could just use a few of them

as "point solutions". This we can term a "tactical

implication" of the set of the emerging commodity

technologies and illustrate below with some exam-

ples:

� Perhaps VRML,Java3D or DirectX are impor-

tant for scienti�c visualization;

� Web (including Java applets and ActiveX con-

trols) front-ends provide convenient customiz-

able interoperable user interfaces to HPCC fa-

cilities;

� Perhaps the public key security and digital sig-

nature infrastructure being developed for elec-

tronic commerce, could enable more powerful

approaches to secure HPCC systems;

� Perhaps Java will become a common scienti�c

programming language and so e�ort now de-

voted to Fortran and C++ tools needs to be

extended or shifted to Java;

� The universal adoption of JDBC (Java

Database Connectivity), rapid advances in the

Microsoft's OLEDB/ADO transparent persis-

tence standards and the growing convenience

of web-linked databases could imply a grow-

ing importance of systems that link large scale

commercial databases with HPCC computing

resources;

� JavaBeans, COM, CORBA and WOM form

the basis of the emerging "object web" which

analogously to the previous bullet could en-

courage a growing use of modern object tech-

nology;

� Emerging collaboration and other distributed

information systems could allow new dis-

tributed work paradigms which could change

the traditional teaming models in favor of

those for instance implied by the new NSF

Partnerships in Advanced Computation.

However probably more important is the strate-

gic implication of DcciS which implies certain crit-

ical characteristics of the overall architecture for

a high performance parallel or distributed com-

puting system. First we note that we have seen



over the last 30 years many other major broad-

based hardware and software developments { such

as IBM business systems, UNIX, Macintosh/PC

desktops, video games { but these have not had

profound impact on HPCC software. However we

suggest the DcciS is di�erent for it gives us a world-

wide/enterprise-wide distributing computing envi-

ronment. Previous software revolutions could help

individual components of a HPCC software system

but DcciS can in principle be the backbone of a

complete HPCC software system { whether it be

for some global distributed application, an enter-

prise cluster or a tightly coupled large scale parallel

computer.

In a nutshell, we suggest that "all we need to

do" is to add "high performance" (as measured by

bandwidth and latency) to the emerging commer-

cial concurrent DcciS systems. This "all we need to

do" may be very hard but by using DcciS as a ba-

sis we inherit a multi-billion dollar investment and

what in many respects is the most powerful pro-

ductive software environment ever built. Thus we

should look carefully into the design of any HPCC

system to see how it can leverage this commercial

environment.

3 Three Tier High Perfor-

mance Commodity Com-

puting

Figure 1: Industry 3-tier view of enterprise Com-

puting

We start with a common modern industry view of

commodity computing with the three tiers shown

in �g 1. Here we have customizable client and mid-

dle tier systems accessing "traditional" back end

services such as relational and object databases. A

set of standard interfaces allows a rich set of cus-

tom applications to be built with appropriate client

and middleware software. As indicated on �gure,

both these two layers can use web technology such

as Java and Javabeans, distributed objects with

CORBA and standard interfaces such as JDBC

(Java Database Connectivity). There are of course

no rigid solutions and one can get "traditional"

client server solutions by collapsing two of the lay-

ers together. For instance with database access,

one gets a two tier solution by either incorporat-

ing custom code into the "thick" client or in anal-

ogy to Oracle's PL/SQL, compile the customized

database access code for better performance and

incorporate the compiled code with the back end

server. The latter like the general 3-tier solution,

supports "thin" clients such as the currently popu-

lar network computer.

The commercial architecture is evolving rapidly

and is exploring several approaches which co-exist

in today's (and any realistic future) distributed in-

formation system. The most powerful solutions in-

volve distributed objects. Currently, we are ob-

serving three important commercial object systems

- CORBA, COM and JavaBeans, as well as the

ongoing e�orts by the W3C, referred by some as

WOM (Web Object Model), to de�ne pure Web

object/component standards. These have similar

approaches and it is not clear if the future holds a

single such approach or a set of interoperable stan-

dards.

CORBA is a distributed object standard man-

aged by the OMG (Object Management Group)

comprised of 700 companies. COM is Microsoft's

distributed object technology initially aimed at

Window machines. JavaBeans (augmented with

RMI and other Java 1.1 features) is the "pure Java"

solution - cross platform but unlike CORBA, not

cross-language! Finally, WOM is an emergent Web

model that uses new standards such as XML, RDF

and DOM to specify respectively the dynamic Web

object instances, classes and methods.

Legion is an example of a major HPCC focused

distributed object approach; currently it is not built

on top of one of the three major commercial stan-

dards. The HLA/RTI [2] standard for distributed

simulations in the forces modeling community is

another important domain speci�c distributed ob-

ject system. It appears to be moving to integration

with CORBA standards.

Although a distributed object approach is at-

tractive, most network services today are pro-

vided in a more ad-hoc fashion. In particular to-



day's web uses a "distributed service" architecture

with HTTP middle tier servers invoking via the

CGI mechanism, C and Perl programs linking to

databases, simulations or other custom services.

There is a trend toward the use of Java servers

with the servlet mechanism for the services. This is

certainly object based but does not necessarily im-

plement the standards implied by CORBA, COM

or Javabeans. However, this illustrates an impor-

tant evolution as the web absorbs object technology

with the evolution from low- to high-level network

standards:

� from HTTP to Java Sockets to IIOP or RMI

� from Perl CGI Script to Java Program to Jav-

aBean distributed object

As an example consider the evolution of net-

worked databases. Originally these were client-

server with a proprietary network access protocol.

In the next step, Web linked databases produced a

three tier distributed service model with an HTTP

server using a CGI program (running Perl for in-

stance) to access the database at the backend. To-

day we can build databases as distributed objects

with a middle tier JavaBean using JDBC to ac-

cess the backend database. Thus a conventional

database is naturally evolving to the concept of

managed persistent objects.

Today as shown in �g. 2, we see a mixture of

distributed service and distributed object architec-

tures. CORBA, COM, Javabean, HTTP Server

+ CGI, Java Server and servlets, databases with

specialized network accesses, and other services co-

exist in the heterogeneous environment with com-

mon themes but disparate implementations. We

believe that there will be signi�cant convergence as

a more uniform architecture is in everyone's best

interest.

We also believe that the resultant architecture

will be integrated with the web so that the latter

will exhibit distributed object architecture shown

in �g. 3.

More generally the emergence of IIOP (Internet

Inter-ORB Protocol), CORBA2, rapid advances

with the Microsoft's COM, DCOM, and COM+,

and the realization that both CORBA and COM

are naturally synergistic with Java is starting a new

wave of "Object Web" developments that could

have profound importance. Java is not only a good

language to build brokers but also Java objects are

the natural inhabitants of object databases. The

resultant architecture in �g. 3 shows a small object

broker (a so-called ORBlet) in each browser as in

Figure 2: Today's Heterogeneous Interoperating

Hybrid Server Architecture. HPcc involves adding

to this system, high performance in the third tier.

Netscape's current plans. Most of our remarks are

valid for all these approaches to a distributed set

of services. Our ideas are however easiest to un-

derstand if one assumes an underlying architecture

which is a CORBA or Javabean distributed object

model integrated with the web.

Figure 3: Integration of Object Technologies

(CORBA) and the Web

We wish to use this service/object evolving 3-tier

commodity architecture as the basis of our HPcc

environment. We need to naturally incorporate (es-

sentially) all services of the commodity web and to

use its protocols and standards wherever possible.

We insist on adopting the architecture of commod-

ity distribution systems as complex HPCC prob-

lems require the rich range of services o�ered by

the broader community systems. Perhaps we could



"port" commodity services to a custom HPCC sys-

tem but this would require continued upkeep with

each new upgrade of the commodity service.

By adopting the architecture of the commod-

ity systems, we make it easier to track their rapid

evolution and expect it will give high functional-

ity HPCC systems, which will naturally track the

evolving Web/distributed object worlds. This re-

quires us to enhance certain services to get higher

performance and to incorporate new capabilities

such as high-end visualization (e.g. CAVE's) or

massively parallel systems where needed. This is

the essential research challenge for HPcc for we

must not only enhance performance where needed

but do it in a way that is preserved as we evolve

the basic commodity systems.

We certainly have not demonstrated clearly that

this is possible but we have a simple strategy that

we will elaborate in ref. [5] and sec. 5. Thus we

exploit the three-tier structure and keep HPCC en-

hancements in the third tier, which is inevitably

the home of specialized services in the object-web

architecture. This strategy isolates HPCC issues

from the control or interface issues in the middle

layer. If successful we will build an HPcc environ-

ment that o�ers the evolving functionality of com-

modity systems without signi�cant re-engineering

as advances in hardware and software lead to new

and better commodity products.

Returning to �g. 2, we see that it elaborates

�g. 1 in two natural ways. Firstly the middle

tier is promoted to a distributed network of servers;

in the "purest" model these are CORBA/ COM/

Javabean object-web servers as in �g. 5, but ob-

viously any protocol compatible server is possible.

This middle tier layer includes not only networked

servers with many di�erent capabilities (increasing

functionality) but also multiple servers to increase

performance on an given service.

The use of high functionality but modest per-

formance communication protocols and interfaces

at the middle tier limits the performance levels

that can be reached in this fashion. However this

�rst step gives a modest performance scaling, par-

allel (implemented if necessary, in terms of multiple

servers) HPcc system which includes all commodity

services such as databases, object services, transac-

tion processing and collaboratories. The next step

is only applied to those services with insu�cient

performance. Naively we "just" replace an existing

back end (third tier) implementation of a commod-

ity service by its natural HPCC high performance

version. Sequential or socket based messaging dis-

tributed simulations are replaced by MPI (or equiv-

alent) implementations on low latency high band-

width dedicated parallel machines. These could be

specialized architectures or "just" clusters of work-

stations.

Note that with the right high performance soft-

ware and network connectivity, workstations can be

used at tier three just as the popular "LAN" con-

solidation" use of parallel machines like the IBM

SP-2, corresponds to using parallel computers in

the middle tier. Further a "middle tier" compute

or database server could of course deliver its ser-

vices using the same or di�erent machine from the

server. These caveats illustrate that as with many

concepts, there will be times when the relatively

clean architecture of �g 2 will become confused. In

particular the physical realization does not neces-

sarily reect the logical architecture shown in �g

2.

4 Core Technologies for High

Performance Commodity

Systems

4.1 Multidisciplinary Application

We can illustrate the commodity technology strat-

egy with a simple multidisciplinary application in-

volving the linkage of two modules A and B { say

CFD and structures applications respectively. Let

us assume both are individually parallel but we

need to link them. One could view the linkage se-

quentially as in �g. 4, but often one needs higher

performance and one would "escape" totally into

a layer which linked decomposed components of A

and B with high performance MPI (or PVMPI).

Here we view MPI as the "machine language" of

the higher-level commodity communication model

given by approaches such as WebFlow from NPAC.

There is the "pure" HPCC approach of �g. 5,

which replaces all commodity web communication

with HPCC technology. However there is a middle

ground between the implementations of �gs. 4 and

5 where one keeps control (initialization etc.) at

the server level and "only" invokes the high perfor-

mance back end for the actual data transmission.

This is shown in �g. 6 and appears to obtain the ad-

vantages of both commodity and HPCC approaches

for we have the functionality of the Web and where

necessary the performance of HPCC software. As

we wish to preserve the commodity architecture as

the baseline, this strategy implies that one can con-

�ne HPCC software development to providing high

performance data transmission with all of the com-



Figure 4: Simple sequential server approach to

Linking Two Modules

Figure 5: Full HPCC approach to Linking Two

Modules

Figure 6: Hybrid approach to Linking Two Modules

plex control and service provision capability inher-

ited naturally from the Web.

4.2 JavaBean Communication

Model

We note that JavaBeans (which are one natural ba-

sis of implementing program modules in the HPcc

approach) provide a rich communication mecha-

nism, which supports the separation of control

(handshake) and implementation. As shown below

in �g. 7, Javabeans use the JDK 1.1 AWT event

model with listener objects and a registration/call-

back mechanism.

Figure 7: JDK 1.1 Event Model used by (inter alia)

Javabeans

JavaBeans communicate indirectly with one or

more "listener objects" acting as a bridge between

the source and sink of data. In the model described

above, this allows a neat implementation of sepa-

rated control and explicit communication with lis-

teners (a.k.a. sink control) and source control ob-

jects residing in middle tier. These control objects

decide if high performance is necessary or possible

and invoke the specialized HPCC layer. This ap-

proach can be used to advantage in "run-time com-

pilation" and resource management with execution

schedules and control logic in the middle tier and

libraries such as MPI, PCRC and CHAOS imple-

menting the determined data movement in the high

performance (third) tier. Parallel I/O and "high-

performance" CORBA can also use this architec-

ture. In general, this listener model of communi-

cation provides a virtualization of communication

that allows a separation of control and data trans-



fer that is largely hidden from the user and the rest

of the system. Note that current Internet security

systems (such as SSL and SET) use high function-

ality public keys in the control level but the higher

performance secret key cryptography in bulk data

transfer. This is another illustration of the pro-

posed hybrid multi-tier communication mechanism.

4.3 JWORB based Middleware

Enterprise JavaBeans that control, mediate and

optimize HPcc communication as described above

need to be maintained and managed in a suit-

able middleware container. Within our integra-

tive approach of Pragmatic Object Web, a CORBA

based environonment for the middleware manage-

ment with IIOP based control protocol provides us

with the best encapsulation model for EJB compo-

nents. Such middleware ORBs need to be further

integrated with the Web server based middleware

to assure smooth Web browser interfaces and back-

ward compatibility with CGI and servlet models.

This leads us to the concept of JWORB (Java Web

Object Request Broker) [6] - a multi-protocol Java

network server that integrates several core services

(so far dispersed over various middleware nodes as

in Fig. 2) within a single uniform middleware man-

agement framework.

An early JWORB prototype has been recently

developed at NPAC. The base server has HTTP

and IIOP protocol support as illustrated in �g. 8.

It can serve documents as an HTTP Server and it

handles the IIOP connections as an Object Request

Broker. As an HTTP server, JWORB supports

base Web page services, Servlet (Java Servlet API)

and CGI 1.1 mechanisms. In its CORBA capac-

ity, JWORB is currently o�ering the base remote

method invocation services via CDR based IIOP

and we are now implementing higher level support

such as the Interface Repository, Portable Object

Adapter and selected Common Object Services.

During the startup/bootstrap phase, the core

JWORB server checks its con�guration �les to de-

tect which protocols are supported and it loads the

necessary protocol classes (De�nition, Tester, Me-

diator, Con�guration) for each protocol. De�nition

Interface provides the necessary Tester, Con�gura-

tion and Mediator objects. Tester object inpects

the current network package and it decides how to

interpret this particular message format. Con�g-

uration object is responsible for the con�guration

parameters of a particular protocol. Mediator ob-

ject serves the connection. New protocols can be

added simply by implementing the four classes de-

Figure 8: Overall architecture of the JWORB based

Pragmatic Object Web middleware

scribed above and by registering a new protocol

with the JWORB server.

After JWORB accepts a connection, it asks each

protocol handler object whether it can recognize

this protocol or not. If JWORB �nds a handler

which can serve the connection, is delegates fur-

ther processing of the connection stream to this

protocol handler. Current algorithm looks at each

protocol according to their order in the con�gura-

tion �le. This process can be optimized with ran-

domized or prediction based algorithm. At present,

only HTTP and IIOP messaging is supported and

the current protocol is simply detected based on

the magic anchor string value (GIOP for IIOP and

POST, GET, HEAD etc. for HTTP). We are cur-

rently working on further extending JWORB by

DCE RPC protocol and XML co-processor so that

it can also act as DCOM and WOM/WebBroker

server.

5 Commodity Services in

HPcc

We have already stressed that a key feature of HPcc

is its support of the natural inclusion into the envi-

ronment of commodity services such as databases,

web servers and object brokers. Here we give some

further examples of commodity services that illus-

trate the power of the HPcc approach.



5.1 Distributed Collaboration

Mechanisms

The current Java Server model for the middle tier

naturally allows one to integrate collaboration into

the computing model and our approach allow one

to "re-use" collaboration systems built for the gen-

eral Web market. Thus one can without any spe-

cial HPCC development, address areas such as com-

putational steering and collaborative design, which

require people to be integrated with the computa-

tional infrastructure. In �g. 9, we de�ne collab-

orative systems as integrating client side capabil-

ities together. In steering, these are people with

analysis and visualization software. In engineering

design, one would also link design (such as CATIA

or AutoCAD) and planning tools. In both cases,

one would need the base collaboration tools such

as white-boards, chat rooms and audio-video con-

ferencing.

Figure 9: Collaboration in today's Java Web Server

implementation of the 3 tier computing model. Typ-

ical clients (on top right) are independent but Java

collaboration systems link multiple clients through

object (service) sharing

If we are correct in viewing collaboration (see

Tango [10,11] and Habanero [12]) as sharing of ser-

vices between clients, the 3 tier model naturally

separates HPCC and collaboration and allows us

to integrate into the HPCC environment, the very

best commodity technology which is likely to come

from larger �elds such as business or (distance) ed-

ucation. Currently commodity collaboration sys-

tems are built on top of the Web and although

emerging facilities such as Work Flow imply ap-

proaches to collaboration, are not yet de�ned from

a general CORBA point of view. We assume that

collaboration is su�ciently important that it will

emerge as a CORBA capability to manage the

sharing and replication of objects. Note CORBA

is a server-server model and "clients" are viewed

as servers (i.e. run Orb's) by outside systems.

This makes the object-sharing view of collaboration

natural whether application runs on "client" (e.g.

shared Microsoft Word document) or on back-end

tier as in case of a shared parallel computer simu-

lation.

5.2 Object Web and Distributed

Simulation

The integration of HPCC with distributed objects

provides an opportunity to link the classic HPCC

ideas with those of DoD's distributed simulation

DIS or Forces Modeling FMS community. The lat-

ter do not make extensive use of the Web these days

but they have a commitment to CORBA with their

HLA (High Level Architecture) and RTI (Runtime

Infrastructure) initiatives. Distributed simulation

is traditionally built with distributed event driven

simulators managing C++ or equivalent objects.

We suggest that the Object Web (and parallel

and distributed ComponentWare described in sec.

5.3) is a natural convergence point for HPCC and

DIS/FMS. This would provide a common frame-

work for time stepped, real time and event driven

simulations. Further it will allow one to more eas-

ily build systems that integrate these concepts as

is needed in many major DoD projects { as exem-

pli�ed by the FMS and IMT DoD computational

activities which are part of the HPCC Moderniza-

tion program.

HLA is a distributed object technology with the

object model de�ned by the Object Model Tem-

plate (OMT) speci�cation and including the Feder-

ation Object Model (FOM) and the Simulation Ob-

ject Model (SOM) components. HLA FOM objects

interact by exchanging HLA interaction objects via

the common Run-Time Infrastructure (RTI) act-

ing as a software bus similar to CORBA. Cur-

rent HLA/RTI follows a custom object speci�cation

but DMSO's longer term plans include transferring

HLA to industry via OMG CORBA Facility for In-

teractive Modeling and Simulation.

At NPAC, we are anticipating these develop-

ments are we are building a prototype RTI imple-

mentation in terms of Java/CORBA objects us-

ing the JWORB middleware [7]. RTI is given

by some 150 communication and/or utility calls,



Figure 10: Overall architecture of the Object Web

RTI - a JWORB based RTI prototype recently de-

veloped at NPAC

packaged as 6 main managment services: Federa-

tion Management, Object Management, Declara-

tion Managmeent, Ownership Management, Time

Management, Data Distribution Management, and

one general purpose utility service. Our design

shown in �g. 12 is based on 9 CORBA interfaces,

including 6 Managers, 2 Ambassadors and RTIKer-

nel. Since each Manager is mapped to an indepen-

dent CORBA object, we can easily provide support

for distributed management by simply placing in-

dividual managers on di�erent hosts.

The communication between simulation objects

and the RTI bus is done through the RTIambas-

sador interface. The communication between RTI

bus and the simulation objects is done by their

FederateAmbassador interfaces. Simulation devel-

oper writes/extends FederateAmbassador objects

and uses RTIambassador object obtained from the

RTI bus.

RTIKernel object knows handles of all manager

objects and it creates RTIambassador object upon

the federate request. Simulation obtains the RTI-

ambassador object from the RTIKernel and from

now on all interactions with the RTI bus are han-

dled through the RTIambassador object. RTI bus

calls back (asynchronously) the FederateAmbas-

sador object provided by the simulation and the

federate receives this way the interactions/attribute

updates coming from the RTI bus.

Although coming from the DoD computing do-

main, RTI follows generic design patterns and is ap-

plicable to a much broader range of distributed ap-

plications, including modeling and simulation but

also collaboration, on-line gaming or visual author-

ing. From the HPCC perspective, RTI can be

viewed as a high level object based extension of the

low level messaging libraries such as PVM or MPI.

Since it supports shared objects management and

publish/subscribe based multicast channels, RTI

can also be viewed as an advanced collaboratory

framework, capable of handling both the multi-user

and the multi-agent/multi-module distributed sys-

tems.

5.3 Visual HPCC ComponentWare

HPCC does not have a good reputation for the

quality and productivity of its programming envi-

ronments. Indeed one of the di�culties with adop-

tion of parallel systems, is the rapid improvement in

performance of workstations and recently PC's with

much better development environments. Parallel

machines do have a clear performance advantage

but this for many users, this is more than counter-

balanced by the greater programming di�culties.

We can give two reasons for the lower quality of

HPCC software. Firstly parallelism is intrinsically

hard to �nd and express. Secondly the PC and

workstation markets are substantially larger than

HPCC and so can support a greater investment in

attractive software tools such as the well-known PC

visual programming environments. The DcciS rev-

olution o�ers an opportunity for HPCC to produce

programming environments that are both more at-

tractive than current systems and further could

be much more competitive than previous HPCC

programming environments with those being devel-

oped by the PC and workstation world. Here we

can also give two reasons. Firstly the commodity

community must face some di�cult issues as they

move to a distributed environment, which has chal-

lenges where in some cases the HPCC community

has substantial expertise. Secondly as already de-

scribed, we claim that HPCC can leverage the huge

software investment of these larger markets.

In �g. 11, we sketch the state of object tech-

nologies for three levels of system complexity { se-

quential, distributed and parallel and three levels

of user (programming) interface { language, compo-

nents and visual. Industry starts at the top left and

moves down and across the �rst two rows. Much

of the current commercial activity is in visual pro-

gramming for sequential machines (top right box)

and distributed components (middle box). Cross-

ware (from Netscape) represents an initial talking

point for distributed visual programming. Note



Figure 11: System Complexity (vertical axis) versus

User Interface (horizontal axis) tracking of some

technologies

that HPCC already has experience in parallel and

distributed visual interfaces (CODE and HenCE as

well as AVS and Khoros). We suggest that one can

merge this experience with Industry's Object Web

deployment and develop attractive visual HPCC

programming environments as shown in �g. 12.

Currently NPAC's WebFlow system [9][12] uses

a Java graph editor to compose systems built out

of modules. This could become a prototype HPCC

ComponentWare system if it is extended with the

modules becoming JavaBeans and the integration

with CORBA. Note the linkage of modules would

incorporate the generalized communication model

of �g. 7, using a mesh of JWORB servers to man-

age a recourse pool of distributedHPcc components.

An early version of such JWORB based WebFlow

environment, illustrated in Fig. 13 is in fact oper-

ational at NPAC and we are currently building the

Object Web management layer including the Ent-

perprise JavaBeans based encapsulation and com-

munication support discussed in the previous sec-

tion.

Returning to �g. 1, we note that as indus-

try moves to distributed systems, they are implic-

itly taking the sequential client-side PC environ-

ments and using them in the much richer server

(middle-tier) environment which traditionally had

more closed proprietary systems.

We will then generate an environment such as

�g. 12 including object broker services, and a set

of horizontal (generic) and vertical (specialized ap-

plication) frameworks. We do not have yet much

Figure 12: Visual Authoring with Software Bus

Components

experience with an environment such as �g. 12, but

suggest that HPCC could bene�t from its early de-

ployment without the usual multi-year lag behind

the larger industry e�orts for PC's. Further the

diagram implies a set of standardization activities

(establish frameworks) and new models for services

and libraries that could be explored in prototype

activities.

Figure 13: Top level view of the WebFlow environ-

ment with JWORB middleware over Globus meta-

computing or NT cluster backend

5.4 Early User Communities

In parallel with re�ning the individual layers

towards production quality HPcc environment,



we start testing our existing prototypes such as

WebFlow, JWORB and WebHLA for the selected

application domains.

Within the NPAC participation in the NCSA

Alliance, we are working with Lubos Mitas in the

Condensed Matter Physics Laboratory at NCSA on

adapting WebFlow for Quantum Monte Carlo sim-

ulations [13]. This application is illustrated in �gs.

14 and 15 and it can be characterized as follows. A

chain of high performance applications (both com-

mercial packages such as GAUSSIAN or GAMESS

or custom developed) is run repeatedly for di�er-

ent data sets. Each application can be run on sev-

eral di�erent (multiprocessor) platforms, and con-

sequently, input and output �les must be moved be-

tween machines. Output �les are visually inspected

by the researcher; if necessary applications are re-

run with modi�ed input parameters. The output

�le of one application in the chain is the input of

the next one, after a suitable format conversion.

Figure 14: Screendump of an example WebFlow

session: running Quantum Simulations on a virtual

metacomputer. Module GAUSSIAN is executed on

Convex Exemplar at NCSA, module GAMESS is

executed on SGI Origin2000, data format conver-

sion module is executed on Sun SuperSparc work-

station at NPAC, Syracuse, and �le manipulation

modules (FileBrowser, EditFile, GetFile) are run

on the researcher's desktop

The high performance part of the backend tier

in implemented using the GLOBUS toolkit [14].

In particular, we use MDS (metacomputing direc-

tory services) to identify resources, GRAM (globus

resource allocation manager) to allocate resources

including mutual, SSL based authentication, and

GASS (global access to secondary storage) for a

high performance data transfer. The high per-

formance part of the backend is augmented with

a commodity DBMS (servicing Permanent Object

Manager) and LDAP-based custom directory ser-

vice to maintain geographically distributed data

�les generated by the Quantum Simulation project.

The diagram illustrating the WebFlow implemen-

tation of the Quantum Simulation is shown in Fig.

15.

Figure 15: WebFlow implementation of the Quan-

tum Simulations problem

Another large application domain we are cur-

rently adressing is DoD Modeling Simulation, ap-

proached from the perspective of FMS and IMT

thrusts within the DoD Modernization Program.

We already described the core e�ort on building

Object Web RTI on top of JWORB. This is associ-

ated with a set of more application- or component-

speci�c e�orts such as: a) building distance training

space for some mature FMS technologies such as

SPEEDES; b) parallelizing and CORBA-wrapping

some selected computationally intense simulation

modules such as CMS (Comprehensive Mine Sim-

ulator at Ft. Belvoir, VA); c) adapting WebFlow

to support visual HLA simulation authoring. We

refer to such Pragmatic Object Web based interac-

tive simulation environment as WebHLA [8] and we

believe that it will soon o�er a powerful modeling

and simulation framework, capable to address the

new challenges of DoD computing in the areas of

Simulation Based Design, Testing, Evaluation and

Acquisition.



References

[1] Client/Server Programming with Java and

CORBA by Robert Orfali and Dan Harkey,

Wiley, Feb '97, ISBN: 0-471-16351-1

[2] High Level Architecture and Run-Time Infras-

tructure by DoD Modeling and Simulation Of-

�ce (DMSO), http://www.dmso.mil/hla"

[3] Geo�rey Fox and Wojtek Furmanski, "Petaops

and Exaops: Supercomputing on the Web",

IEEE Internet Computing, 1(2), 38-46 (1997);

http://www.npac.syr.edu/ users/gcf

petastu�/petaweb

[4] Geo�rey Fox and Wojtek Furmanski, "Java

for Parallel Computing and as a General Lan-

guage for Scienti�c and Engineering Simula-

tion and Modeling", Concurrency: Practice

and Experience 9(6), 4135-426(1997).

[5] Geo�rey Fox and Wojtek Furmanski, "Use of

Commodity Technologies in a Computational

Grid", chapter in book to be published by

Morgan-Kaufmann and edited by Carl Kessel-

man and Ian Foster.

[6] Geofrey C. Fox, Wojtek Furmanski and Hasan

T. Ozdemir, "JWORB - Java Web Object Re-

quest Broker for Commodity Software based

Visual Dataow Metacomputing Program-

ming Environment", NPAC Technical Report,

Feb 98,

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[7] G.C.Fox, W. Furmanski and H. T. Ozdemir,

"Java/CORBA based Real-Time Infrastruc-

ture to In-

tegrate Event-Driven Simulations, Collabora-

tion and Distributed Object/Componentware

Computing", In Proceedings of Parallel and

Distributed Processing Technologies and Ap-

plications PDPTA '98, Las Vegas, Nevada,

July 13-16, 1998,

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[8] David Bernholdt, Geo�rey Fox and Wojtek

Furmanski, B. Natarajan, H. T. Ozdemir, Z.

Odcikin Ozdemir and T. Pulikal, "WebHLA -

An Interactive Programming and Training En-

vironment for High Performance Modeling and

Simulation", In Proceedings of the DoD HPC

98 Users Group Conference, Rice University,

Houston, TX, June 1-5 1998,

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[9] D. Bhatia, V.Burzevski, M.Camuseva, G.Fox,

W.Furmanski, and G. Premchandran,

"WebFlow { A Visual Programming Paradigm

for Web/Java based coarse grain distributed

computing", Concurrency Practice and Expe-

rience 9,555-578 (1997),

http://tapetus.npac.syr.edu/

iwt98/pm/documents/

[10] L. Beca, G. Cheng, G. Fox, T. Jurga, K. Ol-

szewski, M. Podgorny, P. Sokolowski and K.

Walczak, "Java enabling collaborative educa-

tion, health care and computing", Concur-

rency Practice and Experience 9,521-534(97).

http://trurl.npac.syr.edu/tango

[11] Tango Collaboration System,

http://trurl.npac.syr.edu/tango

[12] Habanero Collaboration System,

http://www.ncsa.uiuc.edu/

SDG/Software/Habanero

[13] Erol Akarsu, Geo�rey Fox, Wojtek Furmanski,

Tomasz Haupt, "WebFlow - High-Level Pro-

gramming Environment and Visual Author-

ing Toolkit for High Performance Distributed

Computing", paper submitted for Supercom-

puting 98,

http://www.npac.syr.edu/

users/haupt/ALLIANCE/sc98.html

[14] Ian Foster and Carl Kessleman, Globus Meta-

computing Toolkit, http://www.globus.org


