Chapter 1

Introduction

Jack Dongarra & Ken Kennedy & Andy White (Geoffrey
Fox, editor)

Target Length: 20 pages

1.1 Parallel Computing
“Nothing you can’t spell will ever work.” Will Rogers

Parallel computing is more than just a strategy for achieving high performance—
it is a compelling vision for how computation can seamlessly scale from a single
processor to virtually limitless computing power. This vision is decades old, but
it was not until the late 1980s that it seemed within grasp. However, the road
has been a rocky one and, as of the writing of this book, parallel computing
cannot be viewed as an unqualified success.

True, parallel computing has made it possible for the peak speeds of high-end
supercomputers to grow at a rate that exceeded Moore’s law. Unfortunately, the
scaling of application performance has not matched the scaling of peak speed,
and the programming burden for these machines continues to be heavy. This
is particularly problematic because the vision of seamless scalability cannot be
achieved without having the applications scale automatically as the number of
processors increases. However, for this to happen, the applications have to be
programmed to be able to exploit parallelism in the most efficient possible way.
Thus the responsibility for achieving the vision of scalable parallelism falls on
the application developer.

The Center for Research on Parallel Computation was founded in 1989 with
the goal of making parallel programming easy enough so that it would be acces-
sible to ordinary scientists. To do this, the conducted research on software and
algorithms that could form the underpinnings of an infrastructure for parallel
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programming. The result of much of this research was captured in software sys-
tems and published algorithms, so that it could be widely used in the scientific
community. However, the published work has never been collected into a single
resource and, even if it had been, it would not incorporate the broader work of
the parallel computing research community.

This book is an attempt to fill that gap. It represents the collected knowledge
of and experience with parallel computing from a broad collection of leading
parallel computing researchers, both within and outside of CRPC. It attempts
to provide both tutorial material and more detailed documentation of advanced
strategies produced by research over the last two decades.

In the remainder of this chapter we will delve more deeply into three key
aspects of parallel computation—hardware, applications, and software—to pro-
vide a foundation and motivation for the material that will be elaborated later
in the book. We begin with a discussion of the progress in parallel computing
hardware. This is followed by a discussion of what we have learned from the
many application efforts that were focused on exploitation of parallelism. Fi-
nally, we will briefly discuss the state of parallel computing software and the
prospects for such software in the future. We conclude with a roadmap that tells
how the book can be effectively used by a variety of different kinds of readers.

1.2 Parallel Computing Hardware

In last 50 years, the field of scientific computing has seen a rapid change of
vendors, architectures, technologies and the usage of systems. Despite all these
changes the evolution of performance on a large scale however seems to be a
very steady and continuous process. Moore’s Law is often cited in this context.
If we plot the peak performance of various computers of the last 5 decades in
Figure 1.1 which could have been called the ‘supercomputers’ of the time we
indeed see how well this law holds for almost the complete lifespan of modern
computing. On average we see an increase in performance of two magnitudes of
order every decade.

In the second half of the seventies the introduction of vector computer sys-
tems marked the beginning of modern supercomputing. These systems offered
a performance advantage of at least one order of magnitude over conventional
systems of that time. Raw performance was the main if not the only selling
argument. In the first half of the eighties the integration of vector system in
conventional computing environments became more important. Only the man-
ufacturers that provided standard programming environments, operating sys-
tems and key applications were successful in getting industrial customers and
survived. Performance was mainly increased by improved chip technologies and
by producing shared memory multi processor systems.

Fostered by several Government programs massive parallel computing with
scalable systems using distributed memory got in the focus of interest end of
the eighties. Overcoming the hardware scalability limitations of shared memory
systems was the main goal. The increase of performance of standard micro pro-
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Figure 1.1: Moores Law and Peak Performance of Various Computers
Over Time

cessors after the RISC revolution together with the cost advantage of large scale
productions formed the basis for the “Attack of the Killer Micro”. The transi-
tion from ECL to CMOS chip technology and the usage of “off the shelf” micro
processor instead of custom designed processors for MPPs was the consequence.

Beginning of the nineties while the MP vector systems reached their widest
distribution, a new generation of MPP systems came on the market with the
claim to be able to substitute of even surpass the vector MPs. To provide a
better basis for statistics on high-performance computers, The Top500 [?] list
was begun. This report lists the sites that have the 500 most powerful computer
systems installed. The best Linpack benchmark performance [?] achieved is used
as a performance measure in ranking the computers. The TOP500 list has been
updated twice a year since June 1993. In the first Top500 list in June 1993
there were already 156 MPP and SIMD systems present (31% of the total 500
systems).

The year 1995 saw some remarkable changes in the distribution of the sys-
tems in the Top500 for the different types of customer (academic sites, research
labs, industrial/commercial users, vendor installations, and confidential sites)
Until June 1995, the major trend seen in the Top500 data was a steady decrease
of industrial customers, matched by an increase in the number of government-
funded research sites. This trend reflects the influence of the different gov-
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Figure 1.2: Processor Design Used as Seen in the Top500

ernmental HPC programs that enabled research sites to buy parallel systems,
especially systems with distributed memory. Industry was understandably re-
luctant to follow this step, since systems with distributed memory have often
been far from mature or stable. Hence, industrial customers stayed with their
older vector systems, which gradually dropped off the Top500 list because of
low performance.

Beginning in 1994, however, companies such as SGI, Digital, and Sun started
to sell symmetrical multiprocessor (SMP) models of their major workstation
families. From the very beginning, these systems were popular with industrial
customers because of the maturity of these architectures and their superior
price/performance ratio. At the same time, IBM SP2 systems started to appear
at a reasonable number of industrial sites. While the SP initially was sold for
numerically intensive applications, the system began selling successfully to a
larger market, including database applications, in the second half of 1995.

It is instructive to compare the growth rates of the performance of machines
at fixed positions in the Top 500 list with those predicted by Moore’s Law. To
make this comparison, we separate the influence from the increasing processor
performance and from the increasing number of processor per system on the
total accumulated performance. (To get meaningful numbers we exclude the
SIMD systems for this analysis, as they tend to have extreme high processor
numbers and extreme low processor performance.) In Figure 1.3 we plot the
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Figure 1.3: Performance Growth at Fixed Top500 Rankings.

relative growth of the total processor number and of the average processor per-
formance defined as the quotient of total accumulated performance by the total
processor number. We find that these two factors contribute almost equally
to the annual total performance growth factor of 1.82. The processor number
grows per year on the average by a factor of 1.30 and the processor performance
by 1.40 compared 1.58 of Moore’s Law.

Based on the current Top500 data which cover the last 6 years and the
assumption that the current performance development continue for some time
to come we can now extrapolate the observed performance and compare these
values with the goals of the mentioned government programs. In figure 1.4
we extrapolate the observed performance values using linear regression on the
logarithmic scale. This means that we fit exponential growth to all levels of
performance in the Top500. These simple fitting of the data shows surprisingly
consistent results. Based on the extrapolation from these fits we can expect to
have the first 100 TFlop/s system by 2005 which is about 1-2 years later than
the ASCI path forward plans. By 2005 also no system smaller then 1 TFlop/s
should be able to make the Top500 any more.

There are two general conclusions we can draw from these figures. First, par-
allel computing is here to stay. It is the primary mechanism by which computer
performance can keep up with the predictions of Moore’s law in the face of the
increasing influence of performance bottlenecks in conventional processors. Sec-
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Figure 1.4: Extrapolation of Top500 Results.

ond, the architecture of high performance computing will continue to evolve at a
rapid rate. Thus, it will be increasingly important to find ways to support scal-
able parallel programming without sacrificing portability. This challenge must
be met by the development of software systems and algorithms that promote
portability while easing the burden of program design and implementation.

Looking even further in the future we could speculate that based on the
current doubling of performance every year the first Petaflop system should be
available around 2009. Due to the rapid changes in the technologies used in
HPC systems there is however at this point in time no reasonable projection
possible for the architecture of such a system at the end of the next decade.
Even as the HPC market has changed it’s face quite substantially since the
introduction of the Cray 1 three decades ago, there is no end in sight for these
rapid cycles of re-definition.

1.3 What Have We Learned from Applications?

Remarkable strides have been taken over the last decade in utilization of high-
end, that is parallel, computers. Federal agencies, most notably NSF, DOE,
NASA, and DoD have provided increasingly powerful, scalable resources to sci-
entists and engineers across the country. We will discuss a handful of lessons
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learned that punctuate the lifetime of the CRPC and provide important context
for the next millennium.

Transformation of science and engineering. Scalable, parallel comput-
ing has transformed a number of science and engineering disciplines, including
cosmology, environmental modeling, condensed matter physics, protein folding,
quantum chromodynamics, device and semiconductor simulation, seismology,
and turbulence [?]. Of these, one of the most striking paradigm shifts has oc-
curred in cosmology — the study of the universe, its evolution and structure [?].
A number of new, tremendously detailed observations deep into the universe are
available from such instruments as the Hubble Space Telescope and the Digital
Sky Survey. However, until recently, it has been difficult, except in relatively
simple circumstances, to tease from mathematical theories of the early universe
enough information to allow comparison with observations.

However, scalable parallel computers with large memories have changed all
of that. Now, cosmologists can simulate the principal physical processes at work
in the early universe over space-time volumes sufficiently large to determine the
large-scale structures predicted by the models. With such tools, some theories
can be discarded as being incompatible with the observations. High perfor-
mance computing has allowed comparison of theory with observation and, thus,
has transformed cosmology into a hard science: “The theories currently being
discussed are true scientific theories, capable of verification or falsification.” [?].

To port or not to port. That is not the question. “Porting” a code
to parallel architectures is an opportunity to reformulate the basic code and
data structures and, more importantly, to reassess the basic representation of
the processes or dynamics involved. In the case of modeling the ocean, stan-
dard Bryan-Cox-Semtner (BCS) ocean model was retargeted from Cray vector
architecture to the CM-2 and CM-5 [?]. The BCS model was inefficient in
parallel for two reasons: the primary loop structure needed to be reorganized
and global communications were required by the stream-function formulation
of the BCS representation. The later feature of the BCS model required that
independent line integrals be performed around each island in the calculation.
The model was reformulated in surface-pressure form, where the solution of
the resulting equations does not require line integrals around islands and is
better conditioned than the mathematically equivalent stream-function repre-
sentation. An additional change to the original model reference? [Implicit
free-surface method for the Bryan-Cox-Semtner ocean model, ?77] re-
laxed the ‘rigid-lid’ approximation which suppressed surface-gravity waves (and
allowed longer time-steps) in the BCS model.

In addition to a more efficient code on either a vector or parallel architecture,
this reformulation brought several remarkable benefits:

1. islands were treated with simple, point-wise boundary conditions, thereby
allowing all island features to be included at a particular resolution;
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2. unsmoothed bottom topography could be used without adverse effects on
convergence; and

3. a free-surface boundary at ocean-air interface made the sea-surface height
a prognostic variable and allowed direct comparison with Topex-Poseidon
satellite altimeter data.

Satellite data has become a key feature in the verification and validation of
global ocean models [?].

Answering challenges to society. Computational science has just begun to
make an impact on problems with direct human-interest and on systems whose
principal actors are not particles and aggregations of particles, but rather are
humans and collections of humans. Perhaps the most oft-asked and rarely-
answered question about scientific computing concerns predicting the weather.
However, there are some things that can be said. Hurricane tracks are being
more accurately predicted [?], which directly reduces the cost of evacuations
and which indirectly reduces loss of life. This increased fidelity is equal parts
computation and observation - more accurate and detailed data on hurricane
wind-fields is available using dropwindsondes ? which report not only the me-
teorological variables of interest, but also an accurate position by using GPS.
Another significant development over the last decade has been the Advanced
Regional Prediction System [?] developed by the NSF Science and Technology
Center for the Analysis and Prediction of Storms [www.caps.out.edu].

However, basically this work still concerns modeling of physical systems, in
this case severe weather, which have significant impact on society. A more dif-
ficult job is effectively modeling society itself, or a piece thereof. For example,
the Environmental Protection Agency (EPA) requires detailed environmental
impact statements [reference???] prior to any significant change in metropoli-
tan transportation systems. In order to meet this regulatory requirement, the
Department of Transportation commissioned a development of a transportation
model. The result, TRANSIMS, models traffic flow by representing all of the
traffic infrastructure (e.g. streets, freeways, lights, stop signs), developing a
statistically consistent route plan for the area’s population, and then simulating
the movement of each car, second by second. The principal distinction here is
that we believe that precise mathematical laws exist that accurately character-
ize the dynamics and interplay of physical systems. No such systems of laws,
with the possible exception of Murphy’s, is contemplated for human-dominated
systems.

Its not the hardware, stupid. The focus has often been on computing
hardware. The reasons are straight-forward: they cost a lot of money and take
a lot of time to acquire; they have measurable, often mysterious except to the
fully initiated, properties; and we wonder how close they are getting to the most
famous computer of all, HAL. However, if we contrast the decade of the Crays
to the tumultuous days of the MPPs, we realize that it was the consistency
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of the programming model, not the intricacies of the hardware, that made the
former ‘good old’ and the latter ‘interesting’.

A case in point is seismic processing [?]. Schlumberger acquired two, 128-
node CM-5s to provide seismic processing services to their customers. They were
successful simply because it was possible, in this instance, to write an efficient
post-stack migration code for the CM-5, provide commercial quality services to
their customers, all within the 2-4 year operational window of any given high-
end hardware platform [check with John Ingram???]. Those programs or
businesses that could not profitably, or possibly, write new applications for each
new hardware system were forced to continue in the old ways. However, the
Schlumberger experience teaches us an important lesson: a successful high-end
computing technology must have a stable, effective programming model which
persists over the lifetime of the application. In the case of Stockpile Stewardship,
this is on the order of a decade.

In conclusion, applications have taught us much over the last ten years.

1. Entire disciplines can move to firm scientific foundation by using scalable,
parallel computing to expand and elucidate mathematical theories, thus
allowing comparison with observation and experiment.

2. High-end computing is beginning to make an impact on everyday life, on
society by providing more accurate, detailed, and trusted forecasts and
predictions, even on human-dominated systems.

3. New approaches to familiar problems, taken in order to access high ca-
pacity, large memory parallel computers, can have tremendous ancillary
benefits beyond mere restructuring of the computations.

4. A persistent programming model for scalable, parallel computers is abso-
lutely essential if computational science and engineering is to realize even
a fraction of its remarkable promise.

5. The increase in the accuracy, detail, and volume of observational data goes
hand in hand with these same improvements in the computational arena.

1.4 Software and Algorithms

As we indicated at the beginning of this Chapter, the widespread acceptance of
parallel computation has been impeded by the difficulty of the parallel program-
ming task. First, the expression of an explicitly parallel program is difficult—in
addition to specifying the computation and how it is to be partitioned among
processors, the developer must specify the synchronization and data movement
needed to ensure the the program computes the correct answers and achieves
high performance.

Second, because the nature of high-end computing systems changes rapidly,
it must be possible to express programs in a reasonably machine-independent
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way, so that moving to new platforms from old ones is possible with a relatively
small amount of effort. In other words, parallel programs should be portable
between different architectures. However, this is a difficult ideal to achieve
because the price of portability is often performance.

The goal of parallel computing software systems should be to make parallel
programming easier and the resulting applications more portable while achieving
the highest possible performance. This is clearly a tall order.

A final complicating factor for parallel computing is the complexity of the
problems being attacked. This complexity requires extraordinary skill on the
part of the application developer along with extraordinary flexibility in the de-
veloped applications. Often this means that parallel programs will be developed
using multiple programming paradigms and often multiple languages. Interoper-
ability is thus an important consideration in choosing the development language
for a particular application component.

The principal goal of the Center for Research on Parallel Computation
(CRPC) has been the development of software and algorithms that address
programmability, portability, and flexibility of parallel applications. Much of
the material in this book is devoted to the explication of technologies developed
in CRPC and the community to ameliorate these problems. These technologies
include new language standards and language processors, libraries that encap-
sulate major algorithmic advances, and tools to assist in the formulation and
debugging of parallel applications.

In the process of carrying out this research we have learned a number of hard
but valuable lessons. These lessons are detailed in the next few paragraphs.

Portability is elusive. When CRPC began, every vendor of parallel systems
offered a different application programming interface. This made it extremely
difficult for developers of parallel applications because the work of converting
an application to a parallel computer would need to be repeated for each new
parallel architecture. One of the most important contributions of CRPC was
an effort to establish cross-platform standards for parallel programming. The
MPI and HPF standards are just two results of this effort.

However, portability is not just a matter of implementing a standard inter-
face. In scientific computing most users are interested in portable performance,
which means the ability to achieve a high fraction of the performance possible
on each machine from the same program image. Because the implementations
of standard interfaces were not the same on each platform, portability even for
programs written in MPI or HPF was not automatically achieved. Typically
the implementor would need to spend significant amounts of time tuning for
each new platform.

This tuning burden extended to programming that used portable libraries,
such as ScaLAPACK. Here the CRPC approach was to isolate the key perfor-
mance issues in a few kernels that could be rewritten by hand for each new
platform. Still the process was tedious.
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Parallelism isn’t everything. One of the big surprises on parallel comput-
ers was the extent to which poor performance arises because of factors other
than insufficient parallelism. The principal problem on scalable machines other
than parallelism is data movement. Thus, the optimization of data movement
between processors is a critical factor in performance of these machines. If this
is not done well, a parallel application is likely to run poorly no matter how pow-
erful the individual processors are. A second and increasingly important issue
affecting performance is the bandwidth from main memory on a single processor.
Many parallel machines use processors that have so little bandwidth relative to
the processor power that the processor cycle time could be dialed down by a
factor of two without affecting the running time of most applications. Thus as
parallelism levels have increased, algorithms and software have had to increas-
ingly deal with memory hierarchy issues, which are now fundamental to parallel
programming.

Algorithms are not always portable. An issue impacting portability is
that an algorithm does not always work well on every machine architecture.
The differences arise because of number and granularity of processors, connec-
tivity and bandwidth, and the performance of the memory hierarchy on each
individual processor. In many cases, portable algorithm libraries must be pa-
rameterized to do algorithm selection based on the architecture on which the
individual routines are to run. This makes portable programming even more

difficult.

Community acceptance is essential to the success of software. Tech-
nical excellence alone cannot guarantee that a new software approach will be
successful. The scientific community is generally conservative in the sense that
they will not risk their effort on software strategies that are likely to fail. To
achieve widespread use, there has to be the expectation that a software system
will survive the test of time. Standards are an important part of this, but cannot
alone guarantee success. A case in point is High Performance Fortran (HPF).
In spite of the generally acknowledged value of the idea of distribution-based
languages and a CRPC-led standardization effort, HPF failed to achieve the
level of acceptance of MPI because the commercial compilers did not mature in
time to gain the confidence of the community.

Good commercial software is rare at the high end. Because of the
small size of the high-end supercomputing market, commercial software pro-
duction is difficult to sustain unless it also supports a much broader market
for medium-level systems, such as symmetric multiprocessors. OpenMP has
succeeded because it targets that market, while HPF was focused on the high
end. The most obvious victim of market pressures at the high end are tools—
tuners and debuggers—which are usually left until last by the vendors and often
abandoned. This has seriously impeded the widespread acceptance of scalable
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parallelism and has led to a number of community-based efforts to fill the gap
based on open software. Some of these efforts are described in later chapters.

1.5 How to Use This Book

This book is aimed at students and practitioners of technical computing who
need to understand both the promise and practice of high performance and par-
allel computing. It can be used as a resource by both computer science and
application researchers. It and the attached web site can be used in computa-
tional science and parallel computing education and training. The principal goal
of this book is to make it easy for those entering the field of parallel computing
with a good background in applications or computational science to understand
the technologies available and how to apply them.

Over the last ten years, while CRPC has been at the forefront of research
on parallel computation, the field has matured significantly. The authors of the
individual chapters each describe the field from their experiences in this time of
great change. In the process, they cover key contributions from researchers both
within and outside CRPC. The book is aimed at the users of high performance
systems whose architectures span the range of small desktop SMP’s and PC
clusters to the high-end supercomputers costing $100M or more. The book sets
context within this scenario and describes the external forces from the Internet
to the HPCC Presidential Initiative that have brought this to pass.

For the most part, the book focuses on software technologies and numerical
algorithms, along with the large-scale applications enabled by them. In each
area, the discussion contains a general discussion of the state of the field followed
by detailed descriptions of key technologies or methods. In some cases such as
MPI for message passing, this is the dominant approach whereas in others such
as the discussion of problem solving environments, the authors choose systems
representing key concepts in an emerging area.

The book is organized into four major sections. This first section provides
a tutorial introduction to the field of parallel computers and computing. It is
followed by detailed sections on parallel applications and of software and algo-
rithm technologies. The final section discusses futures from both a technology
and application perspective. There is a related web site with a set of community
resources, CRPC papers and links to other sites of interest.

The application section is designed to help new users learn if and how high
performance techniques can be applied in their area. It consists of an overview
of the process by which one identifies appropriate software and algorithms and
the issues involved in implementation. Some twenty vignettes briefly describing
successful approaches to use of parallel systems in different areas illustrate these
general comments. These have been chosen to cover a broad range of both scien-
tific areas and numerical approaches. This overview material is complemented
by three in-depth studies in the areas of computational fluid dynamics, envi-
ronmental engineering, and astrophysical particle simulations. The applications
are cross-referenced to the following sections, which cover in depth the needed
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software technologies and algorithms.

The computer technologies section will discuss the progress made on a va-
riety of software technologies, including message passing libraries, run-time li-
braries for parallel computing, such as class libraries for HPC++, languages
like HPF and HPC++-, performance analysis and tuning tools such as Pablo,
and high-level programming systems. The goal of this section is to provide a
survey of progress with hints to the user that will help in selecting the right
technology for use in a given application. The software technologies section also
treats numerical algorithms and covers parallel numerical algorithms for a vari-
ety of problems in science and engineering including linear algebra, continuous
and discrete optimization, and simulation. Each chapter will cover a different
algorithmic area. The goal here is to serve as a resource for the application
developer seeking good algorithms for difficult problems.

The final section of the book is a discussion of important future problems for
the high performance science and engineering community, including distributed
computing in a grid environment.
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