CHAPTER 18

MESH GENERATION

Joe F. Thompson

Bharat K. Soni

Mississippi State University

NSF Engineering Research Center

Mississippi State, MS 39762

1. Introduction

Mesh generation is an essential infrastructure element (an enabling technology (for the computational simulation of field phenomena such as fluid mechanics, heat and mass transfer, structural mechanics, plasmadynamics, electromagnetics, and all other such physical processes that occur over a region of space. Mesh generation is the means by which a physical field is discretized into a collection of discrete points or volumes on which the governing equations can be represented and then solved computationally. The mesh thus provides the framework on which the solution is computed and subsequently visualized.

Fundamentally, mesh generation operates by distributing points throughout the volume of the physical region, as well as on the boundary surfaces. Connection of the points forms the mesh and subdivides the physical region into a filling set of discrete volume elements. The governing equations may be represented discretely on the points, with derivatives being represented by finite differences, or in the more fundamental integral form on the volume elements, with integrals being represented by discrete sums. In either case, the resulting set of simultaneous algebraic equations constitutes a matrix problem which is solved computationally by some direct, factored or iterative method.

The time required for mesh generation is much more a question of person-time than computation time. Thus, there is also the need to make the mesh generation process easier for the user.

The real needs in mesh generation emerge as the following:

· capability for bigger meshes, i.e., more points;

· compatible data structure with solution codes;

· more ease of user operation, i.e., more automation;

· macros, editing, and script-based operation capability.

All facets of mesh generation have recently been addressed (from the standpoint of application and best practices (in the Handbook of Grid Generation, edited by Drs. Joe Thompson and Bharat Soni of Mississippi State University and Nigel Weatherill of the University of Wales, Swansea, published by CRC Press in January 1999. The present chapter will, therefore, defer to that work for details and focus on examples of application and aspects of parallel operation.

2. MESH GENERATION STRATEGIES AND TECHNIQUES

Mesh generation strategies can be classified as Cartesian, structured, unstructured, hybrid (generalized) and meshless. The techniques employed in these strategies and the state-of-the-art and state-of-the-practice are discussed in the following sections.

2.1 Cartesian Meshes

In this approach, a network of mesh lines with uniform spacing is defined in a rectangle (2-D) or a rectangular box (3-D) in the domain in question. The size of the box is determined as a function of the dimensions of solid geometrical components associated with the simulation. The discretization associated with solid geometrical components is decoupled from the mesh. The boundary conditions implementation is established by “cutting” the pertinent interior geometrical entities with mesh lines.

This approach is the simplest and most straightforward way of discretizing the given field. The entire mesh generation process and boundary condition specification can be automated. The governing equations can be discretized using a cell-based or node-based approach; however, the cell-to-cell or node-to-node connectivity at solid boundaries/surfaces is not known a priori, which adds complexity to the discretization of the governing equations. Also, a special data structure is needed to describe conservation volumes.

The Cartesian approach has been used to solve a variety of problems [1]. Developments in computer science involving search algorithms, octree-quadtree data structures, polygon clipping schemes, and adaptive refinement [2] based on isotropic subdivision have shown potential in the application of this approach to complex configurations automatically without user intervention. However, validation and practical application of this approach to Navier-Stokes simulations involving viscous boundary layers and simulations associated with complex physics involving disparate time and length scales requires more research.

2.2 Structured Meshes

If the points are placed in a logically rectangular pattern so that adjacent points are readily recognizable, the mesh is said to be “structured.” This automatic neighbor recognition greatly simplifies both the data structure and the discrete representation of derivatives and integrals, and generally results in an orderly, sparse matrix problem. This structure comes at the price of geometric flexibility, however, and although great strides have been made in the generation of structured meshes, the most complex geometrical configurations can be difficult to treat with this approach. Although block-structured generation has extended the range of application of structured meshes to quite complicated configurations, the goal of automation has not yet been achieved. In fact, the large number of blocks that must necessarily result with most complicated configurations makes these meshes unstructured in the global sense.

The structured mesh is represented by a network of curvilinear coordinate lines such that a one-to-one mapping can be established between physical and computational space. The curvilinear mesh points conform to the solid surfaces/boundaries and, hence, provide the most economical and accurate way for specifying boundary conditions. For complicated geometrical configurations, the physical region is divided into subregions and within each, a structured mesh is generated. The resulting submeshes may be patched together at common interfaces, overlapped or overlaid (commonly referred to as a Chimera mesh). The transfer of solution information at the block interface is very critical for successful simulation.

Structured meshes can be generated algebraically or as the solution of Partial Differential Equations (PDEs). Algebraic mesh generation [3-4] is simply an interpolation of interior points from boundary points (the variants just use different kinds of interpolation. The most fundamental and versatile form (and the one now commonly incorporated in mesh generation codes (is TFI (TransFinite Interpolation). Algebraic mesh generation based on TFI is the fastest procedure for generating structured meshes and is also commonly used to generate an initial mesh in generation systems based on PDEs. Meshes generated algebraically may, however, have problems with smoothness and may overlap strongly convex portions of boundaries. Generation systems based on PDEs can produce smoother meshes with fewer problems with boundary overlap. Such generation systems are, therefore, often used to smooth algebraic meshes.

TFI can be mathematically described as a Boolean sum of interpolation projectors in all three coordinate direction:

[image: image93.wmf]a

0.

b

.1

Here, the interpolation projectors represent linear, lagrange, hermite, bezier, B-spline, NURBs or any other interpolation selected by the developer.

Since mesh generation is essentially a boundary-value problem, meshes can be generated from point distributions on boundaries by solving elliptic PDEs in the field. The smoothness properties and extremum principles inherent in some PDE systems can serve to produce smooth meshes without boundary overlap. The PDE solution is generally done by iteration, and, therefore, elliptic mesh generation is not as fast as algebraic mesh generation.

The elliptic PDEs employed for mesh generation are not unique, of course, but must be designed. This design has converged over the years to the elliptic system which forms the basis for most mesh generation codes today. This formulation incorporates control functions that are determined from the boundary point distribution to control the mesh line spacing and orientation in the field to be compatible with that on the boundary.

Evaluation of these control functions is the key factor to achieving mesh smoothness and orthogonality. This technology is well developed, and a good quality mesh can be generated for very complex arbitrary regions [5]. The elliptic system typically employed is of the form:

[image: image2.wmf]å

å

å

=

=

=

=

+

3

1

3

1

3

1

0

i

j

k

k

ij

k

j

i

r

r

r

g

x

x

x

f

 , where

[image: image3.wmf](

)

(

)

(

)

cyclic

n

m

l

k

j

i

j

i

g

g

g

g

g

kn

jn

km

jm

g

il

,

,

,

,

,

;

3

,

2

,

1

;

3

,

2

,

1

,

1

=

=

-

=

This elliptic system can be rewritten in the following form for evaluation of the control functions:

[image: image4.wmf](

)

(

)

(

)

(

)

3

,

2

,

1

0

2

3

1

3

1

3

1

3

1

3

1

=

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

-

+

å

å

å

å

å

=

=

=

=

=

q

g

g

g

g

g

g

g

i

j

k

i

j

iq

jq

ij

ij

kq

k

iq

ij

j

i

k

j

x

x

x

x

f

 Assuming orthogonality, the control functions can be derived as

[image: image5.wmf](

)

3

,

2

,

1

,

,

,

,

ln

2

1

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

=

k

cyclic

k

j

i

g

g

g

d

d

jj

ii

kk

k

k

x

f

This definition of the control functions is straight forward and has been found to be most effective with respect to improving orthogonality and smoothness in structured meshes.

An alternative approach to mesh generation via PDEs is to use a hyperbolic generation system [6] rather than an elliptic system. Elliptic equations admit boundary conditions, i.e., mesh point distributions, on all boundaries of a region. Hyperbolic systems, however, can take boundary conditions only on a portion of the boundary. Therefore, while elliptic mesh generation systems produce a mesh in the volume from point distributions of the entire boundary, hyperbolic systems generate the mesh by marching outward from a portion of the boundary. Hyperbolic mesh generation systems, therefore, cannot be used to generate a mesh in the entirety of a volume defined by a complete boundary.

Hyperbolic generation is very useful for external flow problems and for generating component meshes in the case of overlaid meshes. The following equations are linearalized and then numerically solved to generate hyperbolic meshes:

[image: image6.wmf](

)

(

)

(

)

V

r

r

r

g

g

r

r

g

g

r

r

=

´

×

=

×

=

×

h

x

z

h

z

x

z

j

f

cos

cos

33

22

33

11

The usual practice is to enforce orthogonality by assuming (and (in these equations to be 90 degrees. Structured meshes are not generally made orthogonal, although orthogonality at boundaries is often incorporated, as has been noted above. In fact, 3D orthogonality is not generally possible without imposing certain conditions on the meshes on the boundary surfaces. Even in 2D, orthogonality imposes severe restrictions on the mesh distribution. Transformed PDEs, however, take a much more simple form on orthogonal meshes, providing some incentive for their use when feasible: with relatively simple boundary configurations and physical problems without strong localized gradients.

Various approaches are documented in the literature [7] which combine the best features of algebraic-elliptic-hyperbolic techniques to accomplish quality static and adaptive/dynamic mesh generation. Another approach which is utilized especially in two-dimensional applications is based on variational functionals [8].

A powerful and versatile alternative to block-structured meshes is the overset mesh approach (originally called Chimera, after the composite monster of Greek mythology). With this approach, individual structured meshes are generated around separate boundary components, e.g., bodies, and these separate meshes simply overlap each other in some hierarchy. Data is transferred between overlapping meshes by interpolation.

The Chimera meshes [9] offer the flexibility to address moving body problems that allow dynamic meshing.

The structured, multiblock mesh represents a widely utilized strategy for practical CFS applications. The major issue here is automation. The generation of multiblock meshes is extremely time consuming, especially for very complex geometrical configurations. User ingenuity and user experience govern the response time in mesh generation. In the past few years, various research activities [10, 11] have been dedicated to developing algorithms to perform automatic blocking and mesh generation; however, user interactions and graphical interfaces are extremely important for generation of structured meshes.

2. 3 Unstructured Meshes

“Unstructured” meshes are just that: no logical connection of adjacent points is self-evident; rather a connectivity table must be constructed and preserved for use in the numerical simulation. The representation of derivatives and integrals is also more complicated, and the resulting matrix problem is more dense and less orderly. The solution algorithm in this approach becomes more complex, but with the significant gain in the ability to treat truly complex configurations automatically.

Unstructured meshes are composed of triangles (2-D) and tetrahedra (3-D). The mesh information is represented by a set of coordinates (nodes) and the connectivity between the nodes. The explicit connectivity table specifies the connections and appropriate neighborhood information between nodes and cells.

Unstructured mesh generation is accomplished by point creation and/or point connection [12]. These methods are usually classified into three categories: quadtree-octree based subdivision algorithms, Delaunay triangulation, and advancing front methods. The subdivision-based algorithms are applicable to field simulations needing uniform cells. The Delaunay triangulation is based on the creation of Dirichlet tessellations [13] in the convex region. The advancing front scheme [14] is based, however, on the generation of triangles/tetrahedra by marching, as a front, from the initial geometry toward the interior. This process enables the generation of elements of variable size with desired stretching.

Unstructured meshes offer greater geometric flexibility and quality meshes can be generated, especially for Euler simulations. Data structures play an important role in handling unstructured meshes. The development of the AFLR (Advancing Front Local Reconnection) scheme [15] offers the best features of both Delaunay and advancing front schemes. However, unstructured meshes potentially suffer from accuracy problems due to the skewness of high aspect ratio tetrahedra in viscous regions. Additionally, as reported by Shaw [16], there are concerns regarding the efficiency of the unstructured mesh approach.

Unstructured meshes are now being utilized in CFS simulations; however, the generation of quality meshes, especially for simulation requiring high aspect ratio cells, is still a bottleneck. The major advantage of the unstructured meshes is the potential for automation and greater geometric flexibility.

2.4 Hybrid/Generalized Meshes

Structured meshes enabled the great advances in aerospace CFD in the 70s and 80s. Unstructured meshes have come to the fore in the 90s driven significantly by automotive applications. There are, of course, hybrid combinations of structured and unstructured meshes, that build on the strengths of each. Further, generalized grid algorithms have been developed that remove all restrictions on cell topology.

The hybrid/generalized meshes allow polygonal cells with differing numbers of sides. The usual practice is to generate structured meshes near solid components where high-aspect ratio cells are required and to fill in the remaining void with an unstructured mesh. Finite volume algorithms using generalized meshes to numerically simulate CFS problems are now appearing in the literature [17]. This approach offers a greater potential for geometric flexibility and high quality meshes with automation, especially in the regions where high-aspect ratio cells are needed. The generation of such generalized meshes, however, is a formidable task and algorithms are still being developed. An example of a hybrid/generalized mesh is demonstrated in Figure 1 where a hybrid (structured/unstructured mixed cells) mesh around multi-element airfoil and a complex vehicle is demonstrated.

[image: image7.wmf]
Figure 1. An example of a hybrid mesh.

Experience would seem to indicate that no one mesh generation technique is optimum for all problems. It is attractive, therefore, to explore utilizing a generalized mesh approach in which modules for the generation of structured and unstructured meshes can be combined within one data structure and software framework to provide a comprehensive mesh capability. Such a system has been developed for applications in two dimensions and is now widely used within a research environment [17]. Depending upon the problem at hand, either a structured, unstructured or hybrid (combination of structured and unstructured) mesh can be used. As with mesh types, it also seems clear that for maximum flexibility and efficiency, several forms of mesh adaptivity will be required for general flow problems. It follows, therefore, that for a generalized mesh and flow system, all mesh types should be available for use and that these should be coupled with modules for mesh adaptation using h-refinement, derefinement and point movement.
 2.5
Meshless Methods

The meshless method of mesh generation facilitates the numerical treatment of governing equations without requiring explicit connectivity between points. A cloud of points is placed in the field and the discretized numerical scheme is developed based on the points registered in the neighborhood of each point. The development of this technology is in its infancy and has a long way to go before its utilization in practical industrial applications. However, techniques for simulating Euler flows have been developed by various researchers [18-19].

3. Mesh Generation Process and Geometry Preparation

[needs references 20 and 21?]
Regardless of which strategy is being considered, creation of a computational mesh requires:

1. Computational Mapping: Establishing an appropriate mapping from physical to computational space allowing proper multiblock strategies, in the case of structured and hybrid meshes, or establishing an ordering of nodes, in the case of unstructured meshes and hybrid meshes.
2. Geometry Generation: Defining an accurate numerical description of all solid components (surfaces) in conjunction with associated computational mapping criteria and a desired distribution of points.
3. Computational Modeling: Generating an “appropriate” mesh around these surfaces according to some criteria, usually with a specified multiblock strategy, point distribution, smoothness, and orthogonality in the case of structured meshes and desired background mesh representative of point distribution in the case of unstructured meshes.
The relationship of the geometry to the mesh generation process is analogous to the relationship between boundary conditions and the solution of the governing fluid flow equations. An accurate construction of the geometry with the proper distribution of points usually consumes 85 to 90 percent of the total time spent on the mesh generation process. The geometry specification associated with mesh generation involves:

1. determination of the desired distribution of mesh points, which depends upon the expected flow characteristics;

2. evaluation of boundary segments and surface patches to be defined in order to resolve an accurate mathematical description of the geometry in question;

3. selection of the geometry tools to be utilized to define these boundary segments/surface patches;

4. following an appropriate logical path to blend the aforementioned tasks obtaining the desired discretized mathematical description of the geometry with properly distributed points.

The parametric-based Non-Uniform Rational B-Spline (NURBS) is a widely utilized representation for geometrical entities in CAD/CAM/CAE systems. The convex hull, local support, shape preserving forms, affine invariance, variation diminishing properties of NURBS are extremely attractive in engineering design applications. The IGES format has become the defacto standard IO (input/output) for exchanging data between various CAD/CAM and CAE systems. Recently, the IGES entities 126 and 128 have become increasingly popular in mesh generation, computational field simulations (CFS) and in general computer aided engineering analysis and simulation systems.

Most of the geometrical configurations of interest to practical CFS problems are designed in CAD/CAM systems and are available to analysts in an IGES format. The geometry preparation, which is considered as the most critical and labor intensive part of CFS, involves the discrete-sculptured definition of all boundaries/surfaces with a desired point distribution and smoothness and orthogonality criteria associated with the domain of interest.

The NURBS-based geometry preparation for addressing complex CFS problems encountered in industrial environment involves:

i. transformation of widely utilized explicitly/implicitly/discretely defined IGES geometric entities into common data structures involving NURBS;

ii. surface reparametrization for poorly defined surfaces and repairing of faulty surfaces (most common faults involve gaps, overlaps and undesired discontinuity between neighboring surface patches) and pertinent geometric entities;

iii. geometrical operations allowing projections, intersections (surface-surface intersections), composition, union, and other related transformations essential for surface mesh generation with desired topological criteria; and

iv. mesh point distribution with desired stretching and quality criteria on domain boundaries/surfaces.

The algorithms for transforming geometric entities into NURBS, composition of curves and surfaces and their respective NURBS definitions, mesh point distribution, and surface/volume reparametrization are well documented in the literature.

4. Adaptive Mesh Generation

There are three basic strategies that may be employed in dynamically adaptive meshes [8] coupled with the PDE of the physical problem. The first approach is to redistribute a fixed number of points. In this approach, points move from regions of relatively small error to regions of large error. While the global order of the approximation cannot be increased by such movement of points [8], it is possible to improve the approximation locally. As long as the redistribution of points does not seriously deplete the number of points in other regions, this is a viable approach [5?,6?]. The second approach involves local refinement. In this approach, points are added (or removed) locally in a fixed point structure in regions of relatively large error. There is, of course, no depletion of points in other regions and, therefore, no formal increase of error occurs. However, the computer time and storage increase with refinement and the data structures can be difficult to implement. This approach is well suited to unstructured meshes [15?,18?]. In the last approach, the solution algorithm is changed locally to a higher-order approximation in regions of relatively large error. This, again, increases the formal global accuracy but involves great complexity of implementation in flow solvers. This approach has not had any significant application in CFD in multiple dimensions.

4.1 Structured Mesh Adaptation

With structured meshes, the adaptive strategy based on redistribution is by far the most simple to implement, requiring only regeneration of the mesh and interpolation of flow properties at the new mesh points at each adaptive stage. No modification of the flow solver is required unless time accuracy is desired. Time accuracy can be achieved, as far as the mesh is concerned, by simply transforming the time derivatives by adding convective-like terms that do not alter the basic conservation of PDEs.

Adaptive redistribution of points traces its roots to the principle of equidistribution of error [22] by which a point distribution is set so as to make the product of the spacing and a weight function constant over the points:

[image: image8.wmf]constant

x

w

=

D

With the point distribution defined by a function
[image: image9.wmf]i

x

,where
[image: image10.wmf]x

varies by a unit increment between points, the equidistribution principle can be expressed as

[image: image11.wmf]constant

wx

=

x

This one dimensional equation can be applied in each direction in an alternating fashion [23]. A direct extension to multiple dimensions using algebraic [24], variational, and elliptic [25] systems has been developed.

4.1.1 Weight Function

The weight function is a very important part of the adaptive process. A generalized weight function applicable to various flow field characteristics has been developed. The weights are computed in all computational directions and then coupled adaptation is applied. A linear combination:

[image: image12.wmf]å

å

=

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

=

1

,

1

1

j

N

j

j

j

disf

wtf

w

l

l

where N = number of flow variables (e.g. pressure, temperature, density, etc.)

[image: image13.wmf]j

l

(weighting factor associated with flow parameter
[image: image14.wmf]0

³

j

l

[image: image15.wmf]j

w

(
[image: image16.wmf](

)

j

j

j

j

j

j

j

j

j

j

j

j

k

q

k

q

k

q

1

-

+

-

+

=

Å

b

a

b

a

b

a

[image: image17.wmf]j

q

(scaled gradient of the flow variable J such that
[image: image18.wmf]1

0

£

£

j

q

[image: image19.wmf]j

k

(scaled curvature values of the flow variable j such that
[image: image20.wmf]1

0

£

£

j

k

wtf (weight factor that enhance the total effect of high weighted areas

disf (distribution factor that can keep the original distribution
[image: image21.wmf]1

,

0

,

1

0

£

+

£

£

j

j

b

a

is formulated as a weight function utilizing the boolean sum of contributions from scaled gradients and curvatures. The value of the contribution is controlled by the weight factors and is at a maximum when gradients and/or curvature values are at a maximum. An appropriate scaling scheme [24] for the weight factors,
[image: image22.wmf]i

j

b

a

and

has been developed to insure a proper distribution.

4.1.2 Algebraic Technique

The redistributed algebraic mesh is generated by utilizing a surface/volume distribution mesh as the reparametized space associated with NURBS surface/volume representation. The application of the inverse NURBS formulation [24] allows reevaluation of control points which influences the fidelity of solid surface geometry during the redistribution process.

4.1.3 Elliptic Technique

The elliptic generation system:

[image: image23.wmf]å

å

å

=

=

=

=

+

3

1

3

1

3

1

0

i

j

k

k

kk

ij

k

j

i

r

P

g

r

g

x

x

x

where
r
: position vector

[image: image24.wmf]ij

g

: contravariant metric tensor

[image: image25.wmf]i

x

: curvilinear coordinate

[image: image26.wmf]k

P

: control function

is widely utilized for mesh generation [26]. The control of the characteristics and distribution of a mesh system can be achieved by varying the values of the control functions
[image: image27.wmf]k

P

 in Equation (4) [26]. The application of the one-dimensional form of Equation 4 with Equation (2) results in the definition of control function in three dimensions.

[image: image28.wmf](

)

3

,

2

,

1

=

=

i

W

W

P

i

i

x

These control functions were generalized by Eiseman [23] as

[image: image29.wmf](

)

(

)

3

,

2

,

1

3

1

=

=

å

=

i

W

W

g

g

P

i

i

j

ij

ij

i

i

x

In order to conserve the geometrical characteristics of the existing mesh, the definition of control functions is extended as

[image: image30.wmf](

)

(

)

3

,

2

,

1

=

+

÷

ø

ö

ç

è

æ

=

i

P

c

P

P

wt

i

i

geometry

initial

i

where
[image: image31.wmf]÷

ø

ö

ç

è

æ

geometry

initial

P

: control function based on initial mesh geometry

[image: image32.wmf](

)

wt

P

 : control function based on gradient of flow parameter

[image: image33.wmf]i

c

 : constant weight factors

These control functions are evaluated based on the current mesh at the adaptation step and can be formulated as

[image: image34.wmf](

)

(

)

(

)

(

)

(

)

3

,

2

,

1

1

1

=

+

=

-

-

i

P

c

P

P

n

wt

i

n

i

n

i

where

[image: image35.wmf](

)

(

)

(

)

(

)

(

)

3

,

2

,

1

0

0

1

=

+

÷

ø

ö

ç

è

æ

=

i

P

c

P

P

wt

i

i

geometry

initial

i

A flow solution is first obtained with an initial mesh. Then the control function
[image: image36.wmf]i

P

 is evaluated in accordance as indicated above, which is a combination of the geometry of the current mesh and the weight functions associated with the current flow solution.

(textual references needed for Figures 2 and 3 or remove them)
[image: image37.png]
Figure 2
[image: image38.png]
Figure 3
[image: image39.png]
4.2 Generalized Mesh Adaptation

In the generalized mesh approach, algebraic and elliptic partial differential equation methods [27] have been used for the generation of structured meshes and Delaunay triangulation has been used for unstructured meshes of triangles. It is possible, by utilizing a combination of these techniques, to generate high quality meshes for a variety of aerospace configurations. A data structure based upon a modified quadtree format has been used to combine, in a unified form, the different mesh types.

4.2.1 Generalized Meshes -- Flow Algorithm

A finite-volume algorithm to solve the equations for viscous compressible flows on generalized meshes has been developed. It is based upon the Runge-Kutta scheme of Jameson [28]. This approach has been well documented. Here, only aspects of our implementation which make it applicable to all mesh types will be highlighted.

The flow of a viscous compressible fluid is governed by the Navier-Stokes equations. They represent conservation of mass, momentum and energy. For two-dimensional, unsteady flow, the integral form is

[image: image40.wmf](

)

0

=

-

+

¶

¶

ò

ò

ò

W

¶

W

Gdx

Fdy

wdxdy

t

where x, y, are the Cartesian coordinates, and the integrals are taken over a control volume (, with boundary ((. The flux tensor can be split into inviscid (I) and viscous (V) contributions, such that
[image: image41.wmf]v

v

G

G

G

F

F

F

+

=

+

=

1

1

and

. The conserved variable is
[image: image42.wmf](

)

[

]

T

e

v

u

w

r

r

r

r

,

,

,

=

 where
[image: image43.wmf]e

v

u

and

,

,

,

r

 are the density, components of velocity and energy, respectively. Further details of the equations are not relevant to this discussion and can be found elsewhere.

The flux integral above is approximated by defining a residual
[image: image44.wmf]j

R

. Several possible interpretations can be given. The option selected is to treat the residual on an element-by-element basis and, hence, the residual, as the net flux for each cell, is

[image: image45.wmf](

)

(

)

[

]

å

=

D

-

D

=

m

i

j

x

wj

G

y

wj

F

R

1

where the summation is carried out over the m edges that define the cell j, with
[image: image46.wmf]x

D

and
[image: image47.wmf]y

D

consistent with an anticlockwise line integration around the cell. It is noted that this definition for the residual is dependent upon the number of edges that define the cell and not specifically on whether the cell is a triangle or quadrilateral. This statement motivated Jameson to construct an edge-based data structure in which the flux across an edge in a mesh is sent, with the appropriate sign, to the two cells which it separates. Such a data structure is ideal for an algorithm for generalized meshes.

To ensure stability, it is necessary to augment the governing flow equations with terms which represent artificial dissipation. Two terms,
[image: image48.wmf]1

o

D

, a diffusive Laplacian smoothing to capture shock waves, and
[image: image49.wmf]2

o

D

, a bi-harmonic diffusive smoothing acting as a low-level background dissipation to reduce odd-even decoupling, are introduced. A simple way to introduce these dissipation operators is to construct a Laplacian operator by taking the difference between the values at a given cell and its nearest neighbors. This objective is accomplished by looping over all edges. Recycling along edges, the values for the Laplacian, leads to a form for the bi-harmonic contribution. For cell o we have

[image: image50.wmf](

)

(

)

(

)

å

å

å

=

-

=

-

=

-

=

-

=

m

i

o

i

ko

o

m

i

o

i

ko

o

m

i

o

i

ko

o

w

w

E

E

E

D

w

w

D

1

1

1

2

2

1

1

1

where

,

,

e

e

e

with the summations over the m edges of cell o and the
[image: image51.wmf]1

ko

e

and
[image: image52.wmf]2

ko

e

 are coefficients which incorporate pressure sensors. These two terms are then summed to produce the dissipative term, which is added to the residual. Again no assumption is made in this formulation about the type of cell. In a similar way, the edge data structure can be used to compute the areas of cells and the time appropriate for the explicit scheme in a general manner. The area, for example, of a region bounded by ((is

[image: image53.wmf]ò

W

¶

=

xdy

A

which can be approximated as

[image: image54.wmf]å

D

=

edges

y

x

A

,

where x and (y are interpreted as edge quantities.

Given the solution and residuals for a point at time level n, the solution at the new time level n+1 is obtained from the multi-stage scheme. For example, a three stage scheme is

[image: image55.wmf](

)

(

)

(

)

A

w

tR

w

w

A

w

tR

w

w

A

w

tR

w

w

n

n

n

2

2

1

1

1

2

1

and

,

6

.

0

,

6

.

0

D

-

=

D

-

=

D

-

=

+

where (t is the time step and is taken as the minimum of the time steps admitted by the Courant number for each cell, and A is the corresponding area of the control volume. The time integration is again seen to be independent of the geometrical shape of the cell.

From the outline given, it can be seen that a general algorithm can be constructed which, given the edge-based data structure, will be applicable to any generalized mesh. The incorporation of mesh adaptation, also does not afford any major problems. H-refinement on a structured mesh leads to the introduction of nodes which are not fully connected and are termed ‘hanging nodes.’ These types of nodes can also be introduced on h-refined triangular meshes if a particular subdivision strategy is used.

4.2.2 Generalized Meshes -- H-Refinement and Derefinement

[refs for this section?]
[image: image1.wmf]z

h

x

x

z

z

h

h

x

z

h

x

z

h

x

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

+

-

-

-

+

+

=

Å

Å

The basic subdivisions for a structured quadrilateral mesh are shown in Figure 4. Repeated application of these or combinations of these subdivisions results in meshes which contain polygonal cells. However, these cells are treated as a collection of edges and the flow algorithm is not aware of the order of the polygons.

[image: image86.wmf]VISION

Figure 5 shows the strategy which has been adapted for the subdivision of triangles.

[image: image87.wmf][image: image88.wmf]Type 1

Type 2

Type 3

The order of the polygon does not interfere with the operation of the algorithm. However, the discontinuity in spacing caused by embedding can result in unsmooth solutions on these mesh interfaces. The rapid change of the size of the mesh influences the flow solver, in both the computation of fluxes and the artificial diffusion terms, and therefore, they need to be modified accordingly. With reference to Figure 6, a typical weighting which can be used in the computation of the variable at the edges from the cell center data is

[image: image56.wmf](

)

1

1

aw

bw

b

a

w

o

edge

+

+

=

[image: image89.wmf]a

0.

b

.1

[image: image90.wmf]Type 1

Type 2

Type 3

4.2.3 Generalized Meshes - Node Movement

In addition to h-refinement, node movement has been found to be necessary for an efficient implementation of mesh adaptation. Node movement can be applied in the form

[image: image57.wmf])

(

)

å

å

=

=

+

-

+

=

M

i

io

M

i

n

o

n

i

io

i

n

o

n

c

r

r

c

r

r

1

1

1

0

v

where
[image: image58.wmf](

)

1

0

,

,

+

=

n

r

y

x

r

 is the position of node 0 at relaxation level
[image: image59.wmf]io

C

n

,

1

+

is the adaptive weight function between nodes i and 0 and (is the relaxation parameter. An adaptive weight function,
[image: image60.wmf]io

C

, is used which takes the form

[image: image61.wmf]0

0

2

1

f

f

f

f

+

-

+

=

i

i

io

k

k

C

where (is the driving variable e.g. pressure, density, Mach number, etc.,
[image: image62.wmf]1

k

 and
[image: image63.wmf]2

k

 act to damp out noise and
[image: image64.wmf]2

k

 amplifies the gradients along the edges. In practice, this is implemented in a form which guarantees positive area cells after movement, even in regions close to a wall, which for vixcous meshes can have very small volumes.

4.2.4 Generalized Meshes - Adaptation Criterion

For the present solution, adaptive mesh generation procedure, an error indicator is required that detects and locates appropriate features in the flowfield [29]. In order to provide flexibility in isolating varying features, multiple error indicators are used. Each can isolate a particular type of feature. The error indicators are set to the negative and positive components of the gradient in the direction of the velocity vector as given by

[image: image65.wmf](

)

)

[

]

0

,

.

min

1

u

V

e

Ñ

=

[image: image66.wmf](

)

)

[

]

0

,

.

max

2

u

V

e

Ñ

=

and the magnitude of the gradient in all directions normal to the velocity is given by

[image: image67.wmf](

)

V

V

u

V

V

u

e

×

Ñ

×

-

Ñ

=

3

where V is the velocity vector and u is any suitable flow property. Typically, density is used as the basis for the error indicator. The first two error indicators represent expansions and compressions in the flow directon and the third represents gradients normal to the flow direction. The indicators can be scaled by the relative element size. Length scaling can improve detection of weak features on a coarse mesh with the present procedure. Each error indicator is treated independently, allowing particular features in the flowfield to be isolated. For each error indicator, an error is determined from

[image: image68.wmf]s

m

e

c

e

e

×

+

=

lim

lim

where
[image: image69.wmf]lim

e

 is the error limit,
[image: image70.wmf]m

e

is the mean of the error indicator,
[image: image71.wmf]s

e

is the standard deviation of the error indicator, and
[image: image72.wmf]lim

c

 is a constant. Typically, a value near 1 is used for the constant. The error indicators are used to control the local reduction in relative element size during mesh generation.

An example of the mesh adapatation using the weighted Laplacian approach is shown in Figiure 7. An unstructured mesh for a scramjet engine geometry is considered for this purpose. The inlet Mach number is taken to be 3 and the resultant pressure distribution together with initial mesh are shown in Figure 7(a). The weight function is calculated based on the conserved variables and it is plotted in Figure 7(b). The resultant adapted mesh and the solution on the adapted mesh are shoen in Figure 7(c) and (d). It can be seen from the pictures that the shocks and expansion fans are captured clearly as compared to unadapted mesh.

[image: image73.png] [image: image74.jpg]
 (a) Initial Mesh and Pressure Distribution (b) Initial Mesh and Weight Functions

[image: image75.jpg] [image: image76.jpg]
(c) Adapted Mesh (d) Pressure Distribution on the Adapted Mesh

Figure 7. Mesh Adaptation for Unstructured Mesh Using Weighted Laplacian Approach

5. Parallel Mesh Generation

Interest in parallel mesh generation is directly related to the need for more points and for the mesh data structure to be compatible with parallel operation of PDE solution codes. Structured mesh generation is not nearly as computer-intensive as are the PDE solutions done on the mesh. Therefore, there is no real need for parallel operation of the structured mesh generator just to increase the speed of the mesh generation code. It is storage that creates the real need for multi-processor operation of the structured mesh generation code. However, this is not true for unstructured mesh. Simulation applications where unstructured remeshing is required due to geometry movements/deformations, mesh generation may consume more than 50% of CPU time taken to solve associated PDEs.

The call for parallel mesh generation is, thus, actually reflective of the need to increase the storage available and to have the mesh compatible with parallel PDE solution codes. Additional incentive for speeding-up the mesh generator appears only for unstructured meshes.

With the advent of powerful parallel computers, computational field simulation on several millions of points has become a common practice. The usual practice is to generate the mesh in a sequential manner and split the mesh later for the simulation of the field problems in parallel machines. The drawback of this approach is that the overhead due to file I/O and data movement between these stages is about 90% of the total execution time. In order to avoid this problem and to speed up the mesh generation process, the mesh generation and partitioning problems have been cast into a single paradigm.

The two most widely used unstructured mesh generation approaches are the Delaunay triangulation and the advancing front method. In the case of Delaunay triangulation, a new point is introduced into an existing triangulation based on the boundary discretization, and the new point is connected to the existing point such that it satisfies the Delaunay properties [13]. In the case of the advancing front method, new elements are added one at a time. These two approaches can be parallelized efficiently. The two existing heuristics for mesh partitioning are (1) global or direct and (2) local or incremental [30]. In the first case, the full information about the mesh is required before partitioning the mesh. But in the latter approach, the partitioning starts with an initial partitioning which is iteratively refined. This incremental approach is more suitable for parallel unstructured mesh generation.

The parallel Delaunay triangulation starts with the partitioning of an initial coarse mesh. The Bowyer-Watson algorithm, which is used to reconnect the points after the addition of new points in the process of Delaunay triangulation, is purely local in nature and enables the user to add points simultaneously in different domains without disturbing the global Delaunay property. When new points are inserted in different domains or submeshes, the void created by the addition of new points are triangulated separately. In some cases addition of points near the interface of one subdomain makes the tetrahedron in the neighboring domain non-Delaunay. In these cases, the cavities extend to two or more blocks and are re-triangulated. The new elements are assigned to blocks which have a smaller number of predicted elements in each block. The prediction of the number of elements is done using (1) the current number of elements, (2) the current number of bad elements and (3) the current mesh quality of each block that share the interface cavity [30].

A parallel advancing front mesh generation in the shared memory paradigm has been reported in Lohner and Cebral [31]. In the advancing front algorithm, one element at a time is introduced by eliminating the face in the front that produces the smallest element. Different elements can be added simultaneously using different processes if the elements added are sufficiently far enough apart. An octree is used to split the domain into different boxes and elements are introduced into these boxes using different processors. During this process, the boxes that contain the regions where the smallest new elements are being added is considered. After the boxes are meshed, a new octree is generated and the process is repeated. The large number of active faces in the advancing front from different boxes is reduced by shifting the boxes slightly and remeshing them [31].

Load balancing is obtained by grouping different boxes such that the total load in each process is the same. This process is done using a marching cube procedure [31]. Depending on the list of active faces and the size of the box, the box is divided into a number of small cubes called voxels. An average surface normal is estimated for each voxel that cuts the active front. Depending on this normal, the rest of the voxels are marked as inside or outside the domain. The workload in each box is estimated based on the number of expected elements in each of the voxels that are inside the domain. Using this information, different boxes are grouped together such that each process will have approximately the same work load.

6. Mesh Software

URLs can be added
ADMesh version 0.95

A program for processing triangulated solid meshes. Currently, ADMesh only reads the STL file format that is used for rapid prototyping applications, although it can write STL, VRML, OFF, and DXF files.

Automatic Mesh Generation of CAD and Discrete Data Models

A collection of quadtree-/octree-based mesh generation tools.

BAMG

A mesh generator for isotropic or anisotropic triangular meshes.

CAGI (Computer-Aided Grid Interface) version 1.0

A mesh generation package with a NURBS database.

CAMINO (Cardinal's Advanced Mesh INnovation with Octree)

An Octree process & device simulation.

EAGLE Mesh Generation Code

Eglin Arbitrary Geometry Implicit Euler multiblock mesh generation code and steady-state flow solver system.

EAGLEView Mesh Generation Code

Interactive surface and mesh generation software that combines the surface and volume mesh generation codes of EAGLE under one GUI.

EasyMesh version 1.4

Two-dimensional quality mesh generator, constrained Delaunay triangulations.

FELISA (Unstructured Volume Mesh Generator and Inviscid Flow Solution Package) version 1.1

A surface and volume triangulation and mesh adaption software.

femmesh

A UNIX/OpenWindows program designed to interactively generate 2D FEM meshes composed of 3-noded triangular elements.

FIST (Fast, Industrial-Strength Triangulation)

A robust polygon triangulation code (ear clipping), can handle many kinds of degenerate data.

GAMAG

A new, fast and easy-to-use 2D triangular mesh generator, especially designed to handle complex geometries.

GENIE++

Part of a family of software to GENerate computational meshes for Internal-External flow configurations. GENIE++ generates 3D, structured, multi-block meshes

GiD: Academic Version

A universal, adaptive and user-friendly graphical user interface for geometrical modeling, data input and visualization of results for all types of numerical simulation programs. The academic version is completely functional but meshes are limited to 700 2D elements and 3000 3D elements.

GJK-engine

The "heart" of SOLID, a general-purpose software library for collision detection of 3D objects. GJK-engine is a fast and robust implementation of the Gilbert-Johnson-Keerthi algorithm. SOLID uses the GJK algorithm for testing intersections, determining common points, and computing pairs of closest points of convex objects. The GJK-engine is released as a separate library, without the API and bounding-box structures of SOLID. The library is written in standard C++ and relies on STL. Currently, it compiles under GNU g++ version 2.8.1 and Visual C++ 5.0. The source code and documentation is released under the terms of the GNU Library General Public License.

GEOMESH/LaGriT

Unstructured finite element mesh generation for geological applications.

geompack

A mathematical software package written in standard Fortran 77 for the Generation Of 2-D and 3-D triangular/tetrahedral finite element Meshes using GEOMetric algorithms.

GMSH (Geometry Mesh and Post Processing)

A Delaunay-based mesh generator, generates adapted meshes for lines, surfaces and volumes.

MeshTool

A Tool for Structured and Unstructured Mesh Generation.

GRUMMP

Generation and Refinement of Unstructured, Mixed-Element Meshes in Parallel

IBG

Octree-based triangular and tetrahedral element mesh generation

LaGriT

An unstructured mesh generation and optimization software package used for semiconductor device modeling, computational fluid dynamics, and porous flow modeling.

Mesh-Maker version 0.2

A program for generating unstructured meshes over a pre-specified topography.

Meshme3D

An automatic mesh generator in 3D. Uses Delaunay-Voronoi methods to generate a 3D tetrahedral element mesh using the surface mesh as an input.

Meshtools

A Matlab toolbox of functions for the generation and manipulation of 2-D triangular element meshes

mesh2d

Triangular/tetrahedral mesh generators, suitable for parallel implementation. An efficient combination of Delaunay and advancing front methods.

Mesh++

An object oriented unstructured mesh generator, comes with a geometry modeler module.

MG (Mesh Generator) version 4.0

A system for the generation of 3D finite element meshes with interactive graphics capabilities.

NCSA MinMaxer Overview

A two-dimensional triangulation tool with an optional graphic user interface. The program implements several optimal two-dimensional triangulation algorithms and can be used to aid mesh generation and visualization.

NGP (National Grid Project) version 3.0

Comprehensive numerical mesh generation software system at developed at the National Science Foundation ERC for CFS at Mississippi State University.

PMAG (Parallel Multiblock Adaptive Grid System)

Mesh generation system based on the solution of elliptic partial differential equations. Also capable of generating smooth orthogonal meshes on complex multiblock domains.

PSUE

Parallel Simulation User Environment with 3D unstructured mesh generation.

Qhull

A general dimension code for computing convex hulls, Delaunay triangulations, Voronoi vertices, and halfspace intersections.

QMG version 1.1
Finite element mesh generation in two and three dimensions (triangles/tetrahedra), integrated into MATLAB.

SD Super Delaunay

A fully dynamic constrained Delaunay triangulation engine for real-time triangulation.

SolidMesh

Unstructured mesh generation system that enables the user to create both 2D and 3D unstructured meshes. Surface meshes can be created in parametric space on the NURBS or by using a 3D point insertion method iterating between parametric space and physical space.

3DMAGGS (Three-Dimensional Multiblock Advanced Grid Generation System)

Elliptic volume mesh generator used to generation computational domains for CFD analysis of aerodynamic vehicles.

TIGER

Mesh generation software that exclusively generates 3D structured meshes for all classes of turbo machines with external, internal and external-internal flow fields.

UNAMALLA version 2.0

Mesh generation over irregular polygonal regions using discrete functionals.

VGM (Volume Grid Manipulator)

Alters, adapts, smooths, and even generates surface and volume meshes based on existing 2D and 3D data. VGM bridges the gaps between CAD systems, mesh generation packages and a deliverable/usable high fidelity surface or volume mesh to be used for CFD simulations.

7. Mesh Configurations

[image: image77.png]
Figure 8. Space Shuttle Launch Vehicle Chimera Mesh System

(Courtesy of R. Gomez/NASA JSC [32])

[image: image78.png]
Figure 9. Particle Trace on V22 Osprey Blade-Tip

(Courtesy of R Meakin/NASA ARC [33])

[image: image79.jpg]
Figure 10. Hybrid Mesh for a Cross-Section of a Wing Configuration

[image: image80.png]
Figure 11. Generalized Mesh for a Space Shuttle-like Geometry

[image: image81.png] [image: image82.png]
Figure 12. SR-71 Mesh: Unstructured mesh containing 6.99 million tetrahedra, approximately 4.2 million cells in the boundary layer.
The mesh shown in Figure 12 was made using VMESHns and required 4 days to complete (geometry acquisition to completed mesh). The power of unstructured meshes is demonstrated with this case: there are 120,360 surface triangles on the SR-71 body but only 1,029 triangles on the outer boundaries. The symmetry plane contained 50,179 triangles [34].

[image: image83.png] [image: image84.png]
[image: image85.png]
Figure 13. 18C with JDAM Mesh
Figure 13 shows an unstructured mesh generated using VMESHns that contains 6.62 million tetrahedral cells. The symmetry plane and a fuselage station are shown to the left. The top right figure shows the mesh clustering near the stores in carriage. The bottom inset is a close-up of the JDAM; notice the geometric complexities modeled including the strake and the notches in the strakes. The right inset shows the surface triangulation on the JDAM, fuel tank, pylons and part of the wing [35].

8. Mesh WEB Sites

International Society of Mesh Generation

http://www.isgg.org
Association of Computing Machinery

http://www.acm.org/
CFD Online

http://www.cfd-online.com/
Mesh and Mesh Generation on the Web

http://www-users.informatik.rwth-aachen.de/~roberts/meshgeneration.html
Meshing Research Corner

http://www.andrew.cmu.edu/user/sowen/mesh.html
NASA’s Steering Committee for Surface Modeling and Mesh Generation

http://geolab.larc.nasa.gov/SMAGG/
Paul Heckbert’s Collection of Mesh Generation Links

http://almond.srv.cs.cmu.edu/afs/cs/user/ph/www/mesh.html
NSF Engineering Research Center for Computational Field Simulation

http://www.erc.msstate.edu
Numerical Mesh Generation – Foundations and Applications

http://www.erc.msstate.edu/education/meshbook/index.html
9. Future Trends in Mesh Generation Technology & Critical Needs

9.1
The Pacing Obstacle - Geometry/Mesh Generation

Computational simulation in engineering analysis and design requires that the geometrical configuration be represented accurately by software, and that this representation allows ease of modification in order to enable the simulation to function efficiently and effectively in multidisciplinary design optimization cycles. Also required is the efficient generation of a mesh covering surfaces and filling the volumetric regions to form the infrastructure on which the computational solution is accomplished.

The representation of the geometrical configuration and the generation of the mesh are intimately coupled. This task continues to be the pacing item in the application of computational simulation in engineering analysis and design in industry - requiring too much person-time to produce the geometry/mesh for new or modified configurations, and thus significantly delaying and lengthening the design process.

In general, 80-90% of the mesh generation labor is usually spent on the geometry preparation and surface mesh generation. In most CFS applications, these surfaces are defined in the CAD/CAM system as a composite of explicit or implicit analytical entities, semi-analytical parametric entities, and/or a sculptured discrete set of points. The standard common interface for geometry exchange is IGES (International Graphics Exchange Standard) which is based on the curves and surfaces definition of geometric entities. These entities are not suitable for the treatment of trimmed curves which widely appear in industrial CAD definitions. Research concentration has been placed in the past few years on using CAGD (Computer Aided Geometric Design) techniques and NURBS (Non-Uniform Rational B-Splines) for modeling geometrical entities. NURBS allow a common data structure to represent all geometrical entities with various other (shape preserving, local control, convex hull, etc.) desirable properties. The CAD industry, however, is moving in the direction of using solid modeling based geometrical entities. A new international standard, STEP, is under development for solid modeling based on entities. The ultimate goal should be to develop mesh technology based on solid models.

[image: image91.wmf]VISION

[image: image92.wmf]
A multitude of general purpose mesh generation codes to address complex structured-unstructured mesh generation needs are newly available in the public domain or as proprietary commercial codes. The mesh generation strategies, especially in the structured-unstructured area, are well developed and validated. Rapid turnaround, geometric flexibility, accuracy, affordability, and robustness are the key requirements that must be addressed for CFS to play its rightful role in industrial multidisciplinary design environments; however, the present mesh generation process needs to address various issues to fulfill these requirements. A chart representing these issues and their past, present and future states with ultimate goals is presented in Figure 14.

The major concern is response time. In general, only for the simplest of configurations can a geometry be prepared and mesh be generated quickly or easily to fulfill industrial needs. The ultimate industrial goal [36] is to perform complex mesh generation in one hour and the entire field simulation in one day. Today, with a clean geometry definition in a desired format, a structured multiblock mesh (for a Navier-Stokes simulation) around complex aircraft can be developed within 2-3 weeks. An unstructured mesh, however, can be developed in a day (for an Euler simulation) and a Cartesian mesh could be developed in a matter of hours (for an Euler simulation). The unstructured and Cartesian mesh strategies fulfill today's industrial need for Euler simulations. The demand for simulations in industry, however, is for complex turbulent Navier-Stokes models with chemical reactions and multi-phase multi-species physics which is provided by a simulation system allowing structured, multiblock meshes. The unstructured-Cartesian technology, in the context of field simulation, is still being developed for complex physics. The response time chart represents the average time required to perform mesh generation, sensitivity analysis (mesh generation with minor geometrical-distribution perturbation) and the expectations of industry.

In view of the affordability and accuracy requirements, it is important to develop quality meshes based on field characteristics (adaptive meshes) and/or based on the movement of geometrical components in the field (moving meshes). There is an increasing demand for dynamic (adaptive/moving) meshes. The dynamic mesh algorithms, at present, are limited to simple configurations. Techniques are needed to enhance the applicability of adaptive schemes pertaining to complex configurations. The dynamic meshing capability, however, is inherent in the construction of unstructured and Cartesian meshes.

The industrial environment is also rapidly moving into parallel/distributed computing with object oriented environment. CFS must play its role in this computing environment by contributing to industrial Multidisciplinary Design and Analysis Optimization (MDAO) applications. One goal for the mesh generation community, with respect to MDAO applications, should be to develop algorithms for automatic and intelligent meshes (without visual interactions) for complex configurations.

In spite of repeatedly citing the geometry/mesh problem by industry as continually being the major pacing item as the capability of computational simulation has advanced, this fundamental obstacle remains: cross-cutting applications in DoD, DoE, and industry in general.

The geometry/mesh concerns have been less of a factor in many of the scientific Grand Challenges where the focus was more on complex physics than on complex geometry. In engineering analysis and design, however, geometry can be complex and is of overriding importance, and, thus, at the heart of the entire problem.

The computational realization of geometrical representation and mesh generation may be said to be a major “engineering” Grand Challenge that is yet to be addressed adequately by any initiative and to be a major obstacle impacting directly on both economic competitiveness and national security.

There is evidence that progress in the geometry/mesh area in Europe may be ahead of that in the US, because of a concerted effort focused on this problem. Effort in the US has been fragmented because no coordinated initiative has addressed the geometry/mesh problem. Although the geometry/mesh element of computational simulation is common across the interests of all federal agencies concerned with engineering analysis and design, support for effort on this problem has been only through relatively small and uncoordinated research funding scattered over various agencies resulting in both ineffective and potentially duplicative results.

10. DESIDERATA

The major driving factors in comprehensive mesh generation codes must first be automation and then graphical user interaction. Since design is the paramount application, the efficacy of a mesh code is measured primarily by the person-time it takes to generate a series of geometrically related meshes for complex configurations. The coupling with CAD systems on the front end and with solution systems on the back end, must be seamless and effective. The ideal is not to make it easy for a person to generate a mesh but rather to remove the person from the process - not to make it interactive, but to make it automatic.

Present mesh generation codes enable and rely on extensive graphical user interaction rather than automation, and, therefore, require considerable user experience and effort. The goal of an automated mesh generation system that will produce a suitable mesh with little user interaction and effort has not yet been achieved in any current code, commercial or freeware.

Mesh generation tools must be designed to be applied by design engineers rather than mesh generation specialists. There is also the problem of the more powerful of these mesh codes requiring considerable training and experience for effective use. This latter factor sometimes causes users to continue to use tools that are less powerful but familiar, in the press of time constraints to get solutions done, rather than moving to newer and more effective tools.

Mesh generation systems must be capable of handling large-scale variations as those occurring in high Reynolds-number flow, and this precludes any approach not encompassing large aspect ratio cells with good numerical properties.

There is a clear need for interaction with commercial CAD vendors. CAD codes were developed before the onset of mesh generation technology and widespread application. In order to become truly effective in multidisciplinary design optimization, CAD tools must be redesigned to target computational analysis as well as tooling and material formation.

Additionally, there is the fact that comprehensive mesh codes are very large software systems, but the real market is not yet large enough to encourage development to the extent that has been attained by commercial CAD systems. The development of an entirely new mesh code is a multi-year, multi-million dollar effort.

All of this argues for the creation of a toolbox or library for geometry/mesh generation: a set of interfacing components that are reliable and readily usable which can be assembled to effectively and efficiently address the demands of different applications and different users of computational simulation for engineering analysis and design in DoD, DoE, and industry.

This geometry/mesh toolkit/library should have the following characteristics:

· Object-oriented for modularity;

· Java-based for portability.

· Scalable parallel operation.

· Incorporation of existing useful components.

· Extendable to incorporate emerging technology.

· Automated operation, with user intervention.

User-configurable for compatibility with applications.

Built-in web-based training facility and documentation.

And it should incorporate the following features:

Interface with CAD systems, solution systems, and visualization systems.

Internal CAD capability for geometry generation, repair, and modification.

Block-structured meshes: including overset and hybrid.

Unstructured meshes: both tetrahedral and hexahedral.

Surface and volume mesh systems.

Quality assessment, display, and control.

Dynamic adaptive coupling with solution systems.

Macros, editing, and script-based operation capability.

The development of this geometry/mesh generation toolkit/library system should proceed as follows:

1.
Establishment of collaborative framework.

2.
Definition of all needed capability - with DoD/DoE/industry users.

3.
Encapsulation of all capability into components (objects/operations).

4.
Identification of existing components.

5.
Identification of components to be developed.

6.
Design of library infrastructure and data structure.

7.
Design of documentation and training structure.

8.
Implementation.

REFERENCES

[1]
Melton, J.E., Berger, M.J., Aftosmis, M.A., and Wong, M.J., “3D Applications of a Cartesian Grid Euler Method,” AIAA 95-0853, January 1995.

[2]
Berger, M.J., “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” Journal of Computational Physics, 53: 484-512, 1984.

[3]
Gordon, W.J. and Thiel, L.C., “Transfinite Mappings and Their Application to Grid Generation,” Numerical Grid Generation, Thompson, J.F. (ed.), North Holland, Amsterdam, 1982.

[4]
Soni, B.K., “Grid Generation for Internal Flow Configurations,” Computer & Mathematics with Applications, Vol. 24, No. 5/6, pp. 191-201, September 1992.

[5]
Thompson, J.F., “A General Three-Dimensional Elliptic Grid Generation System on a Composite Block Structure,” Computer Methods in Applied Mechanics and Engineering, 64, 377-411, North Holland, 1987.

[6]
Steger, J.L. and Chausee, D.S., “Generation of Body-Fitted Coordinates using Hyperbolic Partial Differential Equations,” SIAM Journal of Scientific Computation, p. 431, 1980.

[7]
unknown
[8]
Brackbill, J.U., “An Adaptive Grid with Directional Control,” Journal of Computational Physics, Vol. 108, p. 38, September 1993.

[9]
Chimera ref.

[10]
Autoblock ref.
[11]
Autoblock ref.
[12]
Unstructured ref.
[13]
Voronoi, G., “Nouvelles Applications des Parametres Continus a La Theorie Des Formes Quadratiques, Rescherches sur les Parallelloedres Primitifs,” J. Reine Angew. Math., Vol. 134, 1908.

[14]
Lohner, R. and Parikh, P., “Three-Dimensional Grid Generation by the Advancing-Front Method,” International Journal of Numerical Methods of Fluids, 8, 1135-1149, 1988.

[15]
Marcum, D.L., “Generation of Unstructured Grids for Viscous Flow Applications,” AIAA 95-0212, 33rd Aerospace Sciences Meeting and Exhibit, January 9-12, 1995, Reno, NV.

[16]
Shaw, J.A. “Hybrid Grids.” Handbook of Grid Generation. Thompson, J.F., Soni, B.K., and Weatherill, N.P., (Eds.), CRC Press, 1999.

[17]
Koomullil, R. P., Soni, B.K., and Chih-Ti, H., “Navier-Stokes Simulation on Hybrid Grids,” AIAA 96-767, also presented at the 34th Aerospace Sciences Meeting, January 15-18, 1996, Reno, NV.

[18] Batina, John T., “A Gridless Euler/Navier-Stokes solution algorithm for complex-aircraft applications,” AIAA 93-21107, also presented at the 31st Aerospace Sciences Meeting, January 11-14, 1993, Reno, NV.

[19] Liu, Jenn-Long and Su, Shen-Jwu, “A potential gridless solution method for the compressible Euler/Navier-Stokes equations," AIAA 96-0526.

[20]
Soni, B.K., and Weatherill, N.P., “Geometry-Grid Generation,” Computer Science and Engineering Handbook, CRC Press, pp.791-816, 1996.

[21]
Thompson, J.F., Soni, B.K., and Weatherill, N.P., (Eds.), Handbook of Grid Generation, CRC Press, 1999.

[22]
Brackbill, J.U. and Saltzman, J.S. “Adaptive Zoning for Singular Problems in Two Dimension,” Journal of Computational Physics, Vol. 46, p. 342, 1982.

[23]
Eiseman, P.R. “Alternating Direction Adaptive Grid Generation,” AIAA Paper 83-1937, 1983.

[24]
Soni, B. and Yang, Jiang, “General Purpose Adaptive Grid System,” AIAA 92-0664, AIAA 30th Aerospace Sciences Meeting, Reno, NV, January 1992.

[25]
Thompson, J.F. “A Survey of Dynamically-Adaptive Grids in the Numerical Solution of Partial Differential Equations,” Applied Numerical Mathematics, Vol.1, p.3, 1985.

[26]
Thompson, J.F, Warsi, Z.U.A., and Mastin, C. W., Numerical Grid Generation: Foundations and Applications, North-Holland, Amsterdam, 1985.

[27]
Marchant, M.J. and Weatherill, N.P., “The Construction of Nearly Orthogonal Multiblock Grids for Compressible Flow Simulation,” Communications in Numerical Methods in Engineering, Vol. 9, 567-578, 1993.

[28]
Jameson, A., Baker, T.J. and Weatherill, N.P. “Calculation of Inviscid Transonic Flow Over a Complete Aircraft,” AIAA Paper 86-0103, 1986.

[29]
Weatherill, N.P., Hassan, O. and Marcum, D.L., “Adaptive Inviscid Flow Solutions for Aerospace Geometries on Efficiently Generated Unstructured Tetrahedral Meshes,” AIAA Paper 93-0341, January 1993.

[30]
Chrisochoides, N., and Nave, D., “Simultaneous Mesh Generation and Partitioning for Delaunay Meshes”, Proceedings of the 8th International Meshing Round table, pp. 55-66, South Lake Tahoe, CA, October 10-13, 1999.

[31]
Lohner, R., and Cebral, J.R., “Parallel Advancing Front Grid Generation,” Proceedings of the 8th International Meshing Roundtable, pp. 67-74, South Lake Tahoe, CA, October 10-13, 1999.

[32]
Gomez, R.J., and Ma, E.C., “Validation of a Large Scale Chimera Grid System for Space Shuttle Launch Vehicle”, AIAA Paper 94-1859, January 1994

[33]
McCroskey, W.J., Beader, J.D., Meakin, R.L., Raghavan, V., and Srinivasan, G.R., “Aerodynamic and Acoustics of Rotorcraft”, NAS Technical Summary, Numerical Aerodynamic Simulation Program, March 1992-February 1993.

[34]
Tomaro, R. F. and Wurtzler, K. E., “High Speed Configuration Aerodynamics: SR-71 to SMV”, AIAA Paper 99-3204, June 1999.

[35]
Tomaro, R. F., Strang, W. Z. and Witzeman, F. C., “A Solution on the F-18Cfor Store Separation Simulation Using Cobalt60,” AIAA Paper 99-0122, January 1999.

[36]
Thompson, J.F., “A Reflection on Grid Generation in the 90's: Trends, Needs, and Influences,” International Numerical Grid Generation in Computational Field Simulations, B.K. Soni, J.F. Thompson, J. Hauser and P.R. Eiseman (Eds.), P. 1029, Proceedings of the 5th International Grid Generation Conference, ERC Press, 1996.

� EMBED PowerPoint.Slide.8 ���

� EMBED MSDraw.Drawing.8.1 ���

� EMBED MSDraw.Drawing.8.1 ���

� EMBED MSDraw.Drawing.8.1 ���

Figure � SEQ Figure * ARABIC �4�. Types of quadrilateral subdivision.

Figure � SEQ Figure * ARABIC �5�. Subdivision of a triangle.

Figure � SEQ Figure * ARABIC �6�. Weighted average for the computation of edge values from cell centered values.

Figure � SEQ Figure * ARABIC �14�

1
30

_1008422774.unknown

_1008506434.unknown

_1008508212.unknown

_1008583567.unknown

_1008584202.unknown

_1008584598.unknown

_1008746650.unknown

_1008758293.unknown

_1008584637.unknown

_1008593505.unknown

_1008744970.unknown

_1008584656.unknown

_1008584612.unknown

_1008584311.unknown

_1008584551.unknown

_1008584255.unknown

_1008583749.unknown

_1008583908.unknown

_1008583950.unknown

_1008584138.unknown

_1008583772.unknown

_1008583624.unknown

_1008508602.unknown

_1008508780.unknown

_1008510164.unknown

_1008510226.unknown

_1008509997.unknown

_1008508661.unknown

_1008508463.unknown

_1008508487.unknown

_1008508252.unknown

_1008507663.unknown

_1008507827.unknown

_1008508201.unknown

_1008507801.unknown

_1008507461.unknown

_1008507604.unknown

_1008507454.unknown

_1008504083.unknown

_1008505311.unknown

_1008505558.unknown

_1008506181.unknown

_1008505440.unknown

_1008504293.unknown

_1008505224.unknown

_1008504251.unknown

_1008423539.unknown

_1008423730.unknown

_1008423822.unknown

_1008423595.unknown

_1008422932.unknown

_1008423479.unknown

_1008422850.unknown

_1008421715.unknown

_1008422555.unknown

_1008422706.unknown

_1008422732.unknown

_1008422593.unknown

_1008422474.unknown

_1008422525.unknown

_1008422272.unknown

_988616018.unknown

_1008420878.unknown

_1008421668.unknown

_1008419708.unknown

_988614642.unknown

_988615506.ppt

_988529623.unknown

_988529987.unknown

_988459366.ppt

VISION

_988529413.unknown

_982695694.doc
[image: image1.png]

