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Parallel Computational Chemistry:

an Overview of NWChem

David E. Bernholdt

1.1 Introduction

Computational chemistry has a long and venerable history, and with the help of improvements in compu-
tational methodology, and in computers themselves, is has been transformed into a virtually indispensable
tool, used by a large cross-section of the discipline. The ability to model \real world" chemical systems with
the necessary sophistication to obtain chemically meaningful results has helped produce a remarkable level
of synergy between computational and experimental treatments of chemical problems. This, in turn, has
fueled further interest in expanding the role of computational chemistry to even larger, more sophisticated,
and more demanding simulations.

Vector supercomputers played a prominent role in the rise of computational chemistry, as chemists went
beyond simple ports of existing codes, restructuring them and making important advances in algorithms. To-
day, few vector-based computers are still produced, but modern commodity CPUs make good use of the of the
optimizations and algorithms originally designed for vector machines. The cutting edge of high-performance
computing has shifted over to parallel computers, based on those same commodity CPUs, and computational
chemistry is of course following. Numerous packages can make e�ective use of modestly sized shared memory
parallel systems, but fewer are available for the high-end systems which use distributed memory architec-
tures (including those in which each node is a shared memory multi-processor). The two inter-related issues
primarily responsible for this situation are ease of programming and scalability of algorithms.

Computational chemistry methods tend to be computationally complex, and resource intensive (memory
and disk as well as CPU), so parallelizing chemistry methods can be challenging, especially if scalability
to large numbers of processors is required. In a shared-memory environment, programming is relatively
straightforward, and reasonable parallel algorithms can provide adequate performance and scalability for
many applications { su�cient for the modestly-sized shared resources typically available within a research
group, department or university. However the largest and most complex problems require the largest mas-
sively parallel processors (MPPs), which are presently distributed memory systems. Chemistry algorithms
scalable to hundreds or thousands of processors are far more challenging, and often too complex to be imple-
mented within the message passing programming models widely used in distributed memory environments.

In this chapter, I present an overview of the NWChem software package[1, 2, 3, 4, 5, 6, 7, 8] as a repre-
sentative of the current state of the art in highly-scalable fully-distributed parallel computational chemistry
software. At it's inception the goal for the NWChem project was to deliver molecular modeling software
that provides 10 to 100 times the e�ective capability of what was currently available on conventional super-
computers. This necessitated the use of algorithms that exhibit parallel scalability; both in the size of the
computational resource and in the molecular system being modeled. Scalable applications must not only
e�ectively parallelize the requisite computations but must also utilize the aggregate subsystems of the MPP.
Algorithms must distribute data across the total system memory not limiting the the functional problem
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Figure 1.1: The NWChem architecture representing general functionality within NWChem which is built
upon layers of other modules, tools, chemistry APIs, and computational and computer science standards.
The link between NWChem and Ecce is a loosely coupled interface. The umbrella symbol identi�es some of
the software described in this section of the manuscript.

size by the e�ective memory of any single computational node. Furthermore, other MPP subsystems that
algorithms exploit (i.e. communication and secondary storage) must be utilized in a scalable fashion.

The scalable modules in NWChem span the gamut of computational chemistry methods: Hartree-Fock
or self consistent �eld (SCF), density functional theory, ab initio molecular dynamics, perturbation theory,
coupled cluster, multicon�guration self-consistent �eld (MCSCF), con�guration interaction (CI), molecular
mechanics, molecular dynamics, free energy simulations, Car-Parinello, etc. These modules have been im-
plemented in the environment provided by a collection of supporting modules providing basic computational
capabilities and fundamental services required for chemical computations. In the remainder of this chapter,
I will describe the architecture of the NWChem package, and several critical supporting modules. I will con-
clude with descriptions of several of the chemistry methods in NWChem, focusing on their implementation
in the NWChem environment and their performance.

1.2 The NWChem Architecture

In order to meet the original goals of the project, the initial NWChem development team recognized that
NWChem would be a fast-growing code, in which ease of development (a short learning curve) and the ability
to rapidly prototype algorithms would be critical to its success. Consequently, we chose a highly structured
approach to the design of the package, using object oriented (OO) design throughout[9]. In deference to the
fact that relatively few chemists have experience with truly object oriented languages, we chose to implement
the OO design of NWChem in a combination of Fortran77 and C. Since these languages do not provide the
kind of enforcement mechanisms that are built into OO languages, such an approach relies on the developers
themselves to enforce the OO design, but overall we have found it to be quite e�ective. Newcomers to the
code who are unfamiliar with OO design concepts can easily pick up the basics required to work successfully
in the NWChem environment, and are quickly productive since they can work in familiar languages.

Figure 1.1 provides a schematic representation of the overall architecture of NWChem. The bottom two
layers depict some of the fundamental tasks that NWChem can do (compute an energy, a gradient, perform
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Newtonian dynamics, etc.) and some of the chemistry methods with which these tasks can be carried out
(i.e. MP2, SCF, DFT). These are the two layers most directly visible to the NWChem user; the remaining
modules constitute the environment or \umbrella" which allows for (relatively) easy parallel implementation
of the various chemistry methods and tasks. On the left are modules that \know something about" chemistry,
in other words those providing basic object needed for chemical calculations. On the right are modules that
provide the computational infrastructure for the NWChem: the parallel programming environment, parallel
I/O support, etc. While most of these modules were developed in conjunction with NWChem, they are
not speci�c to chemistry applications. Most are freely available separately from NWChem and have been
adopted by other software developers both inside and outside of chemistry.

At the heart of the NWChem programming environment is the Global Array parallel programming model,
which provides the developer with the appearance of a global shared memory environment in a portable
fashion. This important component of the NWChem umbrella will be described in greater detail below, along
with the PeIGS parallel eigensolver. Many other components of the NWChem programming environment
are relatively straightforward conveniences with the important function of facilitating general, portable, and
rapid development of computational chemistry software. For example, MA is a portable memory allocator,
implementing both stack and heap memory management models, which provides equal access to objects from
both Fortran and C code. It also provides support for debugging and veri�cation (especially detecting array
overwriting, and memory leaks). The run-time database (RTDB) provides a simple mechanism to allow the
storage of name/value pairs (values can be of the basic Fortran datatypes, including one-dimensional arrays;
other modules may provide convenience routines to read/write more complex data structures to the RTDB
in an opaque fashion) which NWChem uses to communicate information between high-level modules and
also as persistent storage between related jobs. The ParIO module is an abstraction layer which provides
the user with three types of �les:

� Disk-Resident Arrays (DRA) are a simple means of providing secondary storage for global arrays, the
distributed arrays provided by the global array toolkit. All operations are collective, and are therefore
open to additional optimizations on some parallel �le systems.

� Exclusive Access Files (EAF) are sets of process-private �les which can be accessed independently.
They are typically used for out-of-core computations which do not lend themselves to collective I/O
operations and the use of DRAs.

� Shared Files (SF) are shared by all processes and can be read or written in non-collective fashion at
any arbitrary location in the �le.

The ParIO library is layered on top of a \device library", ELIO (for elementary I/O), which provides a
portable interface to the �le system and allows NWChem to take advantage of special high-performance I/O
libraries which might be available on various platforms.

The chemistry-speci�c portion of the NWChem umbrella is similarly designed to facilitate the rapid
development of chemistry software. Consistent with the object oriented design philosophy used throughout
NWChem, these modules typically expose well-de�ned \application program interfaces" (APIs) to provide
the developer with access to all the information and functions of the object while hiding the speci�c data
structures. This helps protect the underlying data structures against manipulation (accidental or intentional)
which does not conform to their API { an all to common occurrence in older, less well structured chemistry
software. Another distinction from older chemistry software is that where appropriate, multiple instances of
objects are supported. This allows the developer to, for example, refer explicitly to three di�erent basis sets
to be used in di�erent aspects of a calculation by simple \handles" rather than error-prone manipulations
of a single monolithic basis set data structure. Two excellent examples in NWChem include the most
fundamental chemical objects in quantum mechanical electronic structure calculations are the de�nition of
the molecular system (the \geometry" object in NWChem) and the basis set. The geometry object is a well
de�ned, extensible API that provides all the geometrical and atomic data for the molecular system under
study (e.g., masses, atomic number, nuclear charges, applied external �eld, coordinates, etc.). The basis set
object is also a well de�ned, extensible API that provides all the basis set functionality for all NWChem
modules that utilize basis sets. The basis set object is interfaced to a library that contains a wide variety of
published basis sets. The NWChem basis set library is periodically synchronized with the EMSL basis set
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library which is available to the public via a WWW interface[10]. Currently the NWChem library has 2043
Gaussian basis sets and 462 e�ective core potentials conveniently speci�ed for the user community.

Other modules encapsulate various chemistry-speci�c computations which used by the main chemistry
methods rather than being invoked directly at the user level. Perhaps one of the most widely used within
NWChem is the integral evaluation module (\int api"). This module computes integrals of the (usually
Gaussian) basis functions, possibly belonging to di�erent basis sets, with various operators, an operation
which is central to all quantum mechanical electronic structure methods. The module provides a uniform in-
terface to �ve separate integral evaluation codes with di�erent capabilities and strengths. The choice of which
method of integral evaluation to use is normally made within the module based on details of the requested
computation, but it can also be explicitly controlled by the software developer, or even by the NWChem
user if the need arises. Because these codes are hidden behind a uniform interface, all modules which use
the integral package can bene�t immediately from the introduction of new methods and optimizations.

The NWChem umbrella modules are not set in stone. Though we tried to design from from the start with
the necessary 
exibility and generality, inevitably there have been occasions which require existing objects
to be modi�ed or extended. In general, the most substantial changes have been extensions of functionality,
and rarely are signi�cant changes required in existing application code. Implementation of new chemistry
methods within NWChem will sometimes occasion the extension of the functionality of the existing umbrella
or the development of new supporting modules. New modules are also sometimes created by abstracting the
repeated use of the same or similar functionality in di�erent places.

1.3 NWChem Parallel Computing Support

1.3.1 The Global Array Toolkit

The Global Array (GA) Toolkit[11, 12, 13] implements the primary parallel programming model used within
NWChem, though traditional message passing is also available and is used as needed. GAs provide a
portable shared memory programming programming environment, which is implemented using native one-
sided communications on distributed memory systems, and the common System V interface on true shared
memory systems. The shared memory programming environment is important for two reasons. In the �rst
place, it is much easier for the software developer to deal with, thus shortening the learning curve and
facilitating development. Second, and more fundamentally, many sophisticated, highly scalable chemistry
algorithms (and those in other �elds) are extremely complex when written in message-passing form; others
may be impossible to implement in the message-passing model because of the coordination required among
processors.

Another important feature of the global array model is the fact that it explicitly exposes the memory hier-
archy to the programmer. Speci�cally, global arrays distinguish between \local" and \remote" memory with
di�erence latency and bandwidth characteristics. This is di�erent from most shared memory programming
environments, in which all memory is presumed to have the same access characteristics, but we have found
the distinction quite useful because it helps software developers create algorithms that work well on both
distributed and shared memory systems. It is also easy to integrate this distinction into the non-uniform
memory access (NUMA) hierarchy with which the most programmers are already familiar: registers, cache,
local memory, remote memory, etc. (Note that the Disk Resident Array component of the ParIO module
described above can be thought of as extending the hierarchy one more level, to disk storage.)

At the simplest level the programming model o�ered using GA assumes that all \remote" memory access
is the rate limiting step and that local memory access is much faster. Memory access using GA provides
one-sided or asynchronous access to global data elements. Using the GA programming model, algorithms can
be designed with knowledge of data locality, that can be tuned for many di�erent computational resources
to essentially cover the worst case scenario. This may require multiple algorithmic implementations to cover
di�erent ranges of bandwidth and latency. For example, consider the situation where one has two algorithms
for a speci�c kernel in an application. The �rst algorithm has low latency requirements and the second
algorithm can tolerate latency but with a factor of four in computation. The second algorithm would likely
be the mainstream choice to work on \all" machines. The �rst algorithm could be turned \on" after testing
the viability on each system as the application is ported. This is obviously not limited to two algorithms.

Global arrays themselves are multidimensional arrays which are distributed among processors in blockwise
fashion. The distribution can be completely speci�ed by the programmer, and may be regular or irregular, or
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a GA convenience routine can be used to quickly create a regular blocked distribution. Data may be accessed
locally or remotely using block-oriented \put", \get" and \accumulate" functions. It is also possible for the
programmer to inquire as to boundaries of the local block a global array, and to obtain direct access to the
appropriate region of memory. This makes it convenient to write data parallel operations using GAs. By
knowing the locality of data, programmers can explicitly manage the nature of the memory hierarchy for their
parallel algorithm. The operations mentioned above can be used in asynchronous or one-sided fashion by any
processor. Other GA functions are collective, including creation and destruction of GAs, synchronization,
and high-level linear algebra and convenience routines. The GA library also includes interfaces to a variety
of external linear algebra libraries, including the PeIGS parallel eigensolver described below.

In conjunction with the normal message passing programmingmodel, GA is a fully functional and portable
parallel programming model that is suitable for a wide range of applications. It is not however suitable for
all applications. General guidelines with respect to algorithmic design and usability imply that GA would
be appropriate for applications:

� with dynamic and irregular communication patterns,

� with a need for 1-sided access to shared data structures,

� when data locality is important,

� when a message passing implementation is too complicated,

� with a need for high-level operations on distributed arrays for out-of-core array based algorithms,

� where simulations are driven by dynamic load balancing,

� when portable performance is important.

GA is not necessarily appropriate for algorithms that:

� have systolic or nearest neighbor communications,

� require synchronization and point-to-point message passing (e.g., Cholesky factorization),

� can be e�ectively parallelized using interprocedural analysis and compiler parallelization,

� can use existing parallel constructs of a programming language and robust compilers are available.

Parallel Linear Algebra: PeIGS

PeIGS is a collection of commonly used linear algebra subroutines for computing the eigensystem of the
real standard symmetric eigensystem problem Ax = �x and the general symmetric eigensystem problem
Ax = �Bx. A and B are dense and real matrices with B being positive de�nite. � is an eigenvalue
corresponding to the eigenvector x. PeIGS can also handle associated computations such as the Cholesky
factorization of a positive de�nite matrices in packed storage format and linear matrix equations involving
lower and upper triangular matrices in distributed packed row or column storage.

The numerical algorithms implemented are \standard" (c.f., References [14] and [15]) with the exception of
the subspace inverse iteration and reorthogonalization scheme for �nding basis vectors for degenerate eigen-
subspaces[16, 17] and the Dhillon-Fann-Parlett algorithm for computing eigenvectors of a real symmetric
tridiagonal matrix[18].

The current version of PeIGS has some unique features not found in any other eigensystem library:

� The Dhillon-Fann-Parlett inverse iteration algorithm.

� Guaranteed orthonormal eigenvectors in the presences of large clusters of degenerate eigenvalues.

� packed storage for matrices.

� small scratch space requirements.
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Table 1.1: Time for the solution of the tridiagonal matrix of rank 966 on a single IBM RS6000/590
processor[18]. The tridiagonal matrix was generated via Householder reduction of the �tting basis set,
overlap matrix from a resolution of the identity, second-order M�ller-Plesset (RI-MP2) simulation of a 
uo-
rinated biphenyl.

Method Time (s)
PeIGS 3.0 6
PeIGS 2.0 126
eispack 32
LAPACK: bisection + inverse iteration 112
LAPACK: QR 46
LAPACK: divide and conquer 20

Figure 1.2: The performance of PeIGS using a
tridiagonal matrix (rank 966) which was gener-
ated via Householder reduction of the �tting basis
set, overlap matrix from an RI-MP2 simulation of
a 
uorinated biphenyl.

The second feature is particularly important in quantum chemistry applications, where degenerate eigenval-
ues are common and orthogonality is critical.

The performance of PeIGS in sequential mode is impressive. The data in Table 1.1 compares the current
version of PeIGS with other standard solvers. The parallel performance of the three major components and
the total time to solution is shown in Figure 1.2. The solution of the tridiagonal problem is scalable and
fast; however at this point, the householder reduction and it's back transform (i.e., producing the tridiagonal
representation) is the identi�ed bottle neck accounting for over 90% of the serial performance of the solver
and up to 65% at 128 nodes.

Internally, PeIGS uses the traditional message-passing programming model and a column-wrapped dis-
tribution of the matrices. In NWChem the interface to PeIGS is hidden behind a GA based API, where
the necessary data reorganization is conveniently hidden from the application programmer. The data trans-
formation from the GA based global storage to that required for optimal PeIGS performance is very fast
compared to the O(N3/P) time required for the eigensolution operations.

1.4 NWChem Chemistry Modules

NWChem implements a broad range of computational chemistry methods, emphasizing quantummechanically-
based methods. There is insu�cient space to describe all of them in detail, but I will provide a list of
NWChem's current capabilities here, and focus on a more detailed discussion of two methods: Hartree-Fock
self-consistent �eld (SCF), and the resolution of the identity approximation to second-order many-body
perturbation theory (RI-MP2).
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1. Molecular electronic structure
The following quantum mechanical methods are available to calculate energies, and analytic �rst deriva-
tives with respect to atomic coordinates. Second derivatives are computed by �nite di�erence of the
�rst derivatives.

� Self Consistent Field (SCF) or Hartree Fock (RHF, UHF, high-spin ROHF). Code to compute
analytic second derivatives is being tested.

� Gaussian orbital based Density Functional Theory (DFT), using many local and non-local exchange-
correlation potentials (RHF and UHF) with formal O(N3) and O(N4) scaling.

� MP2 including semi-direct using frozen core and RHF or UHF reference.

� Complete active space SCF (CASSCF).

The following methods are available to compute energies only. First and second derivatives are com-
puted by �nite di�erence of the energies.

� CCSD(T), with RHF reference.

� Selected-CI with second-order perturbation correction.

� MP2 fully-direct with RHF reference.

� Resolution of the identity integral approximation MP2 (RI-MP2), with RHF and UHF reference
(analytic �rst derivatives are being implemented).

For all methods, the following operations may be performed:

� Single point energy

� Geometry optimization (minimization and transition state)

� Molecular dynamics on the fully ab initio potential energy surface

� Numerical �rst and second derivatives automatically computed if analytic derivatives are not
available.

� Normal mode vibrational analysis in Cartesian coordinates.

� Generation of an electron density �le for graphical display.

� Evaluation of static, one-electron properties.

� Electrostatic potential �t of atomic partial charges (CHELPG method with optional RESP re-
straints or charge constraints)

In addition, interfaces are provided to:

� The COLUMBUS multireference CI package

� The natural bond orbital (NBO) package

� Python scripting language

� The POLYRATE package for the computation of chemical reaction rates

2. Pseudopotential plane-wave electronic structure
The following modules are available to compute the energy, minimize the geometry and perform ab

initio molecular dynamics using pseudopotential plane-wave DFT with local exchange-correlation po-
tentials.

� Fixed step length steepest descent

� Car-Parinello (extended Lagrangian dynamics)
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With

� LDA and LSDA exchange-correlation potentials (Vosko et. al.)

� (G point) Periodic orthorhombic simulation cells

� Hamann and Troullier-Martins norm-conserving pseudopotentials

� Modules to convert between small and large plane-wave expansions

3. Periodic system electronic structure. A module (Gaussian Approach to Polymers, Surfaces and Solids,
GAPSS) is available to compute energies by periodic Gaussian based DFT with many local and non-
local exchange-correlation potentials.

4. Molecular dynamics The following classical molecular simulation functionality is available:

� Single con�guration energy evaluation

� Energy minimization

� Molecular dynamics simulation

� Free energy simulation (multistep thermodynamic perturbation (MSTP) or multicon�guration
thermodynamic integration (MCTI) methods with options of single and/or dual topologies, double
wide sampling, and separation-shifted scaling)

NWChem also has the capability to combine classical and quantum descriptions in order to perform:

� Mixed quantum-mechanics and molecular-mechanics (QM/MM) energy minimization and molec-
ular dynamics simulation

� Quantum molecular dynamics simulation by using any of the quantum mechanical methods ca-
pable of returning gradients.

The classical force �eld includes:

� E�ective pair potentials (functional form used in AMBER, GROMOS, CHARMM, etc.)

� First order polarization

� Self consistent polarization

� Smooth particle mesh Ewald (SPME)

� Twin range energy and force evaluation

� Periodic boundary conditions

� SHAKE constraints

� Consistent temperature and/or pressure ensembles

1.4.1 Hartree-Fock Self-Consistent Field

The Hartree-Fock self-consistent �eld module is an essential functionality for NWChem or any quantum chem-
istry package. The NWChem SCF module and associated gradient module computes energies, wave functions,
and gradients for closed-shell restricted Hartree-Fock (RHF), restricted high-spin open-shell Hartree-Fock
(ROHF), and spin-unrestricted Hartree-Fock (UHF). The algorithms are designed around using the aggregate
memory available on the parallel supercomputer or cluster.

The construction of the Fock matrix. is the most time-consuming part of any SCF calculation[19, 20],
and is iterated until the wavefunction reaches self-consistency. The \Fock build" provides an interesting
illustration of the form which parallelism often takes in computational chemistry. The most computationally
demanding part of the Fock matrix is de�ned by

F��  D��f2(��j��)� (��j��)g (1.1)
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where D is the density matrix, and the (��j��) are the so-called two-electron integrals. The integrals are
de�ned by

(��j��) =

Z
��(r1)��(r1)

1

jr1 � r2j
��(r2)��(r2)d

3r1d
3r2 (1.2)

where r1 and r2 are the positions of the two electrons, and the f��(r)g are the basis functions, usually a
linear combination of Gaussian functions.

The cost of the Fock build scales with the number of integrals, which is formally O(N4) for N basis
functions. The NWChem SCF module was designed with a goal of 10,000 basis functions, so that the Fock
and density matrices would be 10,000�10,000 and the number of two-electron integrals is formally 1016

(neglecting permutational symmetries of the indices and other factors).
Evaluation of the integrals occurs in irregular blocks, according to details of the basis set structure, so

that a block may contain anything from a single integral to 10,000 integrals or more. The cost of each block
is also highly variable and can only be crudely estimated in advance; it averages 500 FLOPs per integral
value. Their cost, combined with permutational symmetries among indices makes it most e�cient to drive
the Fock build with a loop over the unique integrals, making the four di�erent contributions dictated by
those symmetries at one time rather than duplicating integral evaluation. In NWChem, integral evaluation is
dynamically distributed across the processors (controlled by an atomic read-and-increment counter) without
regard to the distribution of the global arrays containing the density and Fock matrices. Each processor
fetches into a local bu�er the four patches of the density matrix it needs to contract with the integral block it
has been assigned, and puts the results into another set of local bu�ers which are accumulated into the proper
places in the Fock matrix global array when the integral block is completed. To minimize communications,
multiple integral blocks are aggregated into parallel tasks (maintaining a roughly 100 tasks per processor
to insure load balance), and intelligent caching is used to avoid unnecessary communications for density
and Fock matrix patches. Because of the irregular distribution, dimensions and timings of the parallel
tasks, programming the Fock build using message passing, this algorithm would be extremely challenging
to implement in a message passing environment, requiring synchronization between sender and receiver[21].
However using the one-sided communications of the GA model, it is straightforward; and the fact that the
NUMA nature of the parallel processor is exposed to the programmer leads to the aggregation of integral
blocks, and the use of intelligent caching, both of which provide signi�cant performance gains.

The integrals do not change from one iteration of the SCF algorithm to the next, and may be stored or
recomputed. Many SCF codes o�er either \conventional" or \direct" modes, in which the integrals are either
stored on disk and reused or are recomputed every iteration (the relative e�ciency of these two approaches
depends on both hardware performance factors, and on the particular molecule and basis set). NWChem
provides a more 
exible \semi-direct" algorithm, which includes memory as well as disk storage, and can
span the entire range from fully disk- (or memory-) based to full recomputation according to available disk
and memory space, or directly under user control. In addition to the fully distributed Fock build, a replicated
data algorithm (Fock and density matrices replicated; integral evaluation distributed across the machine)
is also implemented to take advantage of those situations where available memory and the molecule under
study allow this approach. The convergence algorithm is the quadratic SCF[19] with both preconditioning
and line search mechanisms built in.

Figure 1.3 shows the speed-up obtained for a modi�ed crown-ether complex running on an IBM SP
system using the semi-direct algorithm and taking advantage of the local secondary storage on the system.
The 105 atom system, shown in Figure 1.4, has 1342 basis functions, and the calculation was completed in
5.7 hours on 240 nodes (160 MHz).

1.5 Resolution of the Identity Second-Order Many-Body Perturbation Theory
(RI-MP2)

The RI-MP2 method is the result of applying the so-called \resolution of the identity" (RI) integral ap-
proximation [22, 23, 24] to the traditional second-order many-body perturbation theory method [25], often
abbreviated MP2. MP2 is the simplest method to include the e�ects of dynamic electron correlation, which
are important to the proper description of many chemical phenomena, and it is also the most widely used
correlated method. MP2 calculations can be systematically improved upon by going to higher orders of
perturbation theory or to coupled cluster methods [25].



CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 10

Figure 1.3: The scaling of the semi-direct SCF
module for a modi�ed crown ether system on an
IBM SP, 160 MHz nodes, 512 MB memory per
node, 3 GB of disk per node. 15 MB/sec/node
sustained read bandwidth was achieved.

Figure 1.4: The modi�ed crown ether system, with
105 atoms, 1343 basis functions using the Dunning
augmented cc-pVDZ basis set, and 362 electrons

The MP2 energy can be simply expressed (in spin orbital form), as

E(2) =
1

2

X
i;j;a;b

(iajjb)[(iajjb)� (ibjja)]

�i + �j � �a � �b
; (1.3)

with the f�pg being the SCF orbital energies. The integrals are the same as in the SCF method, but
transformed from the original \atomic orbital" (AO) basis to the \molecular orbital" (MO) basis which is
one of the products of the SCF calculation. Given the MO basis integrals, the energy expression above costs
O(N4) to evaluate, but the transformation of the integrals from the AO to MO basis has a cost of O(N5),
which dominates the calculation.

The RI approximation represents the two-electron integrals in the form [24]

(pqjrs) =
X
�;�

(pqj�)V �1
��(�jrs) (1.4)

involving three-center two-electron integrals

(pqj�) =

Z
�p(r1)�q(r1)

1

jr1 � r2j
��(r2)d

3r1d
3r2 (1.5)

and two-center two-electron integrals

V�� =

Z
��(r1)

1

jr1 � r2j
��(r2)d

3r1d
3r2; (1.6)

where upper case greek indices denote functions from a \�tting basis" introduced by this approximation.
Essentially, the �tting basis f��(r)g is used to approximate the product space of the AO basis (f�i(r)�j (r)g).
To obtain the RI-MP2 energy[22, 26], Eq. 1.4 is simply substituted into the MP2 energy expression (Eq. 1.3)

E(2) =
1

2

X
i;j;a;b;�;�

(iaj�)V �1
��(�jjb)[(iaj�)V

�1
��(�jjb)� (ibj�)V �1

��(�jja)]

�i + �j � �a � �b
: (1.7)

The RI approximation has several important strengths. Most obviously, it replaces a fourth-rank tensor
(two-electron integrals) with a combination of third- and second-rank quantities, dramatically reducing the
volume of data which must be computed, stored, and manipulated. Second, as the AO basis set gets larger
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(for a �xed molecule) the product space will be increasingly redundant, making it possible to (nearly) span
the space with a �tting set that is smaller, in relative terms. In a sense, the RI approximation could be said
to \take advantage of" the use of large basis sets.

RI-MP2 calculations occur in two steps: the integral transformation, followed by the energy evaluation[26,
27]. The general form of the integral transformation can be written as

(aij�0) = (aij�)V
�

1

2

�� = C�aC�i(��j�)V
�

1

2

�� (1.8)

where the indices � and � represent the AO basis and C is the SCF eigenvector matrix, which de�nes the
transformation from AOs to MOs. The V �

1

2 term comes from rewriting Eq. 1.4 in a symmetric form that
further simpli�es integral handling, as �rst suggested by Rendell and Lee [28]. This step requires O(N4)
operations as opposed to the O(N5) for the exact MP2 transformation. The �rst two transformation steps
(C�a and C�i) are handled, in succession, locally to each processor. The �tting basis index is distributed
across processors, so that each node generates AO integrals for all � and � and a subset of �. In order
to make the matrix multiplications more e�cient, the integral blocks are aggregated in a local bu�er sized
according to the available memory before the two transformations are applied. The results are accumulated
into a global array with ai as the combined row index and � as the column index, distributed in the same
fashion as the integral evaluation loop (making the accumulate a local operation). The third transformation
step is carried out as a parallel matrix multiplication (ga dgemm) of the GA just produced with another GA

holding V �
1

2 (computed using GA and PeIGS routines). If there is insu�cient total memory available to
complete the entire transformation in a single pass, multiple passes are made based on the i index.

The primary data structure of the energy evaluation phase is a fourth-rank tensor representing quantities
like the (approximate) four-center two-electron integral (iajjab). It is organized as a supermatrix with row
and column indices i and j, each element of which is a complete matrix labeled by a and b. The calculation
is performed as a loop over i and j, blocked according to available memory. All of the GAs of this type
are distributed across the machine in regularly sized blocks. For given i and j blocks, the �rst step of the
energy evaluation is to produce the approximate integrals (iajjb) according to Eq. 1.4. It is implemented
straightforwardly by reading in blocks of transformed three-center integrals corresponding to the i and
j ranges required and multiplying them in parallel with ga dgemm in a step costing O(N5). Given the
approximate (iajjb), the remaining operations (formation of (iajjb) � (ibjja), application of denominators,
and the evaluation of the actual energy contributions) are carried out almost entirely in data parallel fashion
{ each process working with the portion of the data it \owns". As in the exact MP2, these remaining
operations cost O(N4).

The RI-MP2 method illustrates a di�erent use of the GA toolkit than the SCF algorithm described
above. The RI-MP2 integral transformation uses many of the same concepts as the Fock build, but in this
case constitutes a small portion of the computational e�ort. The dominant cost in the RI-MP2 calculation
is a simple call to the GA matrix multiplication routine. And the remainder of the calculation involves
mostly data parallel operations implemented variously with standard GA calls, as adaptations of standard
GA routines speci�c to this application, or built from the lower-level utility routines provided by the GA
toolkit.

Figure 1.5 shows the parallel speedup of a large RI-MP2 calculation on an IBM RS/6000 SP parallel
computer (120 MHz Power2 Super CPU, 512 MB RAM, 5 GB local scratch disk per node)[27]. The calcu-
lations were part of a study of the relative energetics of the four conformations of tetramethoxycalix[4]arene
(Fig. 1.6)[29], in which this 68 atom molecule was treated with a modi�ed aug-cc-pVTZ AO basis (just cc-
pVTZ on the hydrogens) and the corresponding aug-cc-pVTZ-�t2-1 (cc-pVTZ-�t2-1 on H) �tting basis (2460
AO basis functions, 8260 �tting functions) [30, 31]. The total wall clock time for the RI-MP2 calculation
ranged from 55.6 hours on 16 nodes to 4.7 hours on 128 nodes. The overall scaling is quite good { the line is
fairly straight, and at 128 nodes show no sign of saturation. The jumps in the curve are clearly associated
with jumps in the integral transformation speedup. The overall speedup it is uniformly at or above the
\ideal" linear speedup line, primarily due to the fact that as the graph is presented, the 16-node calculation
is implicitly assumed to be 100% e�cient. If the actual e�ciency (<100%) at 16 nodes were known, it would
shift the entire curve downwards. The apparently extraordinary speedup of the transformation arises from
the fact that 16 nodes (the reference point) the algorithm is forced to make �ve passes through the integrals
to complete the transformation. As more nodes are added, the algorithm uses the additional memory as well
as CPU, so that the number of passes required drops to one by 66 nodes.
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Figure 1.5: Parallel speedup of RI-MP2 calcu-
lations on tetramethoxycalix[4]arene on the IBM
RS/6000 SP computer[27]. All speedups are ref-
erenced to the 16-node timings.

Figure 1.6: The four conformations of
tetramethoxycalix[4]arene[29]. The molecule
is composed of four anisoles linked at the meta
position by methylene bridges and conformations
di�er in the relative orientation of the anisoles.

1.6 Summary and Futures

I have presented an overview of NWChem as an example of the state of the art in fully-distributed parallel
computational chemistry software package. The Global Array programming model is at the heart of almost
all of the parallel algorithms in NWChem, and parallel linear algebra libraries such as PeIGS have also
proven extremely important both for ease of development and performance. I have sketched the parallel
algorithms behind two chemistry methods in NWChem, SCF and RI-MP2, which illustrate the importance
of the GA programming model as well as its 
exibility. Both methods have been demonstrated to be scalable
to hundreds of processors, and work e�ciently on distributed memory parallel systems, as have the other
methods implemented in NWChem.

The development of NWChem continues in conjunction with a variety of projects. Most of the work
currently centers on extending and enhancing chemistry methods already in NWChem, and implementing
new methods based on the needs of the user community. While the requirements of the chemistry have always
been the primary driver for the development of NWChem's computational infrastructure, it is possible to
suggest some of the ways that NWChem might change in the near future, from a computational viewpoint:

� Increasing use of scripting languages at the top levels of the package. The object oriented scripting
language Python[32, 33] is already incorporated into NWChem, so that Python scripts can be used to
drive some calculations. An interface to the GAs has been created, and interfaces to other NWChem
modules are under development. The use of scripting languages as (part of) the high-level control
structure of a package like NWChem makes it easier for users to perform more complex calculations
that would otherwise require unmaintainable \one-o�" modi�cations to the source of NWChem itself.

� With the recent release of version 3.0 of the GA Toolkit, general multidimensional arrays became
available (previously, GA supported only two-dimensional arrays). Because they are new, they have
not yet been used extensively in NWChem chemistry modules. However they promise to be particularly
useful in high-level correlated methods (perturbation theory and coupled cluster methods especially)
where the primary data structures are tensors of rank 4 and 6. Expressing these data structures in their
natural multidimensional form o�ers opportunities for the introduction of block-structured sparsity and
automatic rearrangement of data to make tensor contractions more e�cient.

� The current trend in large MPPs is a distributed memory system composed of multiprocessor shared
memory nodes. While GAs can already take advantage of this type of system, the parallel algorithms
in NWChem are not currently designed with explicit consideration of this new layer in the NUMA
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hierarchy { they assume that all memory not \local" is essentially equally \remote". One can imagine
several di�erent ways in which algorithms in NWChem might be adapted to incorporate this deeper
memory hierarchy. It will be interesting to see which are most e�ective in terms of both performance
and ease of development.
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