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IIIB-11:Computational Finance

Overview
This field has grown rapidly and many physics and applied mathematics techniques have proven to be very useful in it. The ability to calculate the value of complex financial packages allows one to make accurate buy-sell decisions quickly and this gives a competitive advantage to the organization with the most sophisticated simulations. This is particularly true for derivative financial instruments, which are often complex functions of the basic variables such as stock prices and interest rates. Further a portfolio contains many different instruments -- often combined in clever ways to hedge one's investment so that it will keep its value in a variety of different future scenarios. Thus computational finance needs both large-scale simulation and efficient optimization techniques. Further powerful modeling systems are needed so as to be able to conveniently support many different estimation modules (corresponding to the diversity of instruments) within a given simulation framework. This encourages the use object oriented approaches using C++ or perhaps Java. There is a lot of interest in neural networks and related powerful data mining methods to understand patterns. The financial industry produces and uses an incredible amount of data, which must be processed both quickly and in a fault-tolerant fashion. The fiscal consequences of even a few minutes downtime of a major exchange are very serious. The financial value of this application implies that much of the best work in the field is viewed as proprietary and not available in the open literature.

Simulation Framework

One needs to calculate one or more functions at some future time by integrating over the possible future values of the underlying variables. These future values are given by models based on the past behavior of the stock. This can be captured in some cases by the volatility or standard deviation of the stock. The simplest model is perhaps the Black-Scholes equation, which can be derived from a Gaussian stock distribution, combined with an underlying "no-arbitrage" assumption. This asserts that the stock market is always in equilibrium instantaneously and there is no opportunity to make money by exploiting mismatches between buy and sell prices. In a physics language, the different players in the stock market form a heat bath, which keeps the market in adiabatic equilibrium.

The are several approaches to choosing the future paths for more complex cases where analytic methods are insufficient. In the binomial method, one chooses two possible next steps at each point and further arrange these so that neighboring points overlap -- as one steps from t to t+(t, one goes from N to N+1  (and not 2N) points in one dimension. This method is not particularly computationally intense and straightforward to parallelize. It gives reliable results in many basic computations. The most complex simulations will use a variant of Monte Carlo methods, which give maximal flexibility and power at the cost of enormous increase in needed simulation time. This can predict arbitrary functions and makes no assumptions. It can easily be parallelized, as each path to the future is independent. There is one important type of computation, which is particularly difficult for the Monte Carlo methods. These involve "American" options and similar derivative instruments where the holder of this security can choose to exercise it at any time. Unfortunately this implies that at every Monte Carlo step one should in principle perform a new simulation to decide if the option will be exercised. One must circumvent this difficulty either by approximations or by using hybrids of binomial and Monte Carlo formulations where there are enough nearby points to allow exercise decisions to be reliably estimated with a point by point ":no-arbitrage" computation. This inevitably correlates the choice of paths and correspondingly gives more complex simulations which are harder to parallelize. Important pricing models can be reduced to the finite difference solution of partial differential equations based on the Black-Scholes equation.

