
Astrophysical N-body Simulations
Using Hierarchical Tree Data Structures

1992 Gordon Bell Prize Winner.

Michael S. Warren John K. Salmon

Theoretical Astrophysics Physics Department
Los Alamos National Laboratory California Institute of Technology

Los Alamos, NM 87545 Pasadena, CA 91125

Abstract

We report on recent large astrophysical N-body sim-
ulations executed on the Intel Touchstone Delta system.
We review the astrophysical motivation, and the numeri-
cal techniques, and discuss steps taken to parallelize these
simulations. The methods scale as O(N logN), for large
values of N , and also scale linearly with the number of
processors. The performance, sustained for a duration
of 67 hours was between 5.1 and 5.4 Gflop/sec on a 512
processor system.

1 Astrophysical and numerical background.

The process by which galaxies form is undoubtedly
among the most important unsolved problems in physics.
There is a wealth of observational data, whose quality and
quantity is ever increasing. Modern observations span the
electromagnetic spectrum from radio frequency to gamma
rays. Unfortunately, we still lack a firm theoretical under-
standing of the images put on photographic plates 40 years
ago. The answer to a question as simple as, “Why are there
two families of galaxies, spiral and elliptical?” still remains
a mystery.

Astrophysics is at a disadvantage to some of the more
terrestrial sciences. It is simply impossible to conduct ex-
periments on galaxies. An investigator can easily change
the recipe for making a superconductor. On the other hand,
the recipe for making a galaxy requires 1045 grams of mat-
ter, and several billion years of “baking”, which is far be-
yond the patience of most scientists. With the use numer-
ical methods, however, one can simulate the the behavior
of 1047 grams of matter over a span of 1010 years.

The physical laws governing the evolution of gravita-
tionally interacting particles are quite simple. Given initial
positions and velocities, all that is required are Newton’s

laws of motion and universal gravitation. The principles
are clear, but the intrinsic non-linearity of the equations has
limited analytic studies to small perturbations or restricted
symmetries. The only known way to obtain accurate three-
dimensional solutions is via numerical integration.

The first step in understanding how galaxies and stars
form is to understand the environment in which their forma-
tion occurs. Thus, we use simulations to study the shapes
and dynamics of “dark matter” halos which are known to
surround observed galaxies. For our purposes, the precise
nature of the dark matter is unimportant; the fact that it
interacts only through dissipationless gravitational forces
allows us to accurately simulate its evolution. Since dark
matter constitutes the bulk of the mass of the Universe, it
plays a dominant role in the dynamical processes involved
in galaxy formation.

The dark matter halos that we simulate are not directly
observable, but they provide the gravitational potential well
into which normal matter falls, forms stars, and emits pho-
tons which are detected by astronomers.

The fundamental physical equation governing the dy-
namics of stars, dark matter and other “dissipationless”
phenomena is the Boltzmann equation:

@tf(~x;~v; t)+~v �@~xf(~x;~v; t)+~a �@~vf(~x;~v; t) = 0; (1)

which describes the evolution of a phase-space density
function, f , with seven independent variables, ~x, ~v, t. It
is common to treat such systems on computers by particle
methods or N-body methods[1], rather than finite-element or
finite-difference methods, which cannot cope with the high
dimensionality of the problem domain. In an astrophysical
N-body simulation, the phase-space density distribution is
represented by a large collection of “bodies” (labeled by
the indices i, j) which evolve in time according to the laws

1



of Newtonian physics:

d2~xi

dt2
=

NX

j 6=i

~aij =
X

j 6=i

�
Gmj

~dij

jdij j3
; ~dij � ~xi � ~xj :

(2)
N-body simulations are essentially statistical in nature.

More bodies means a more accurate and complete sampling
of the phase space, and hence more accurate or more com-
plete results. Astrophysical simulations require very large
numbers of bodies because of the very large density con-
trasts that must be treated. Interesting phenomena occur in
the dense cores of galaxies, as well as on the fringes and
in the voids between galaxies. For example, if one is to
study the shapes of isophotes or the formation of “shells”
in the outskirts of halos, one must have enough particles
in each halo to measure the isophotes with sufficiently low
statistical noise.

Two factors govern the final state of a dynamical sys-
tem like Eqn. 2: the equations of motion that describe the
evolution, and the initial conditions which are provided as
input. In the case of astrophysical N-body simulations, an
appropriate set of initial conditions is a set of initial po-
sitions, velocities and masses for all of the bodies in the
system. It is through these initial conditions that most of
the physical hypotheses enter the system.

At the present epoch, the Universe is obviously highly
irregular. Galaxies and stars as well as scientists and their
supercomputers constitute huge,non-linear deviations from
the large-scale uniformity in the distribution of matter. Nu-
merous observations (perhaps the most compelling is the
remarkable uniformity of 3� K cosmic background radia-
tion) imply that the matter in the universe was far more
uniformly distributed in the distant past. This is fortunate
because it allows us to use linear approximations and ana-
lytic methods to study the evolution of matter in the early
universe. Different hypotheses about the nature of the dark
matter (e.g., cold or hot), the origin of the fluctuations (e.g.,
quantum fluctuations in an inflationary early universe), and
the values of various global parameters, (e.g., the fraction
of the mass of the Universe made up of baryons) can be
folded together to produce statistical descriptions of the
fluctuations that prevailed until the growth of fluctuations
became non-linear.

These descriptions generally take the form of a power
spectrum. By using Fourier transform techniques, we can
create instances of particular power spectra in the form
of particle positions, velocities and masses, i.e., in a form
suitable as initial conditions for Eqn. 2. Then, by using nu-
merical techniques, we can integrate Eqn. 2 until the present
day, and compare the results statistically with observation
(subject to the caveat that one cannot directly observe the
dark matter which is simulated).

Direct implementation of the system of equations in
Eqn. 2 is a trivial programming exercise. It is simply a
double loop. It vectorizes well and it parallelizes easily
and efficiently. It has been used for many years to study
astrophysical systems. Unfortunately, it has an asymptotic
time complexity of O(N 2). Each of N left-hand-sides is a
sum of N � 1 right-hand-sides. The fact that the execution
time scales as N 2 precludes the use of Eqn. 2 for values of
N larger than a few tens of thousands, even on the fastest
parallel supercomputers.

A number of approximate methods have been used
which reduce the overall time, and allow simulation of
systems with larger values of N . Methods employing an
adaptive tree data structure have been popular in recent
years because the resulting time complexity is O(N logN)
or O(N), and is relatively insensitive to the spatial distri-
bution of particles [2, 3, 4]. N-body simulations which use
adaptive tree data structures are referred to as treecodes.

The fundamental approximation employed by treecodes
may be stated as:

X

j

Gmj
~dij

jdij j3
�

GM~di;cm

d3
i;cm

+ : : : ; (3)

where ~di;cm = ~xi�~xcm is the vector from ~xi to the center-
of-mass of the particles that appear under the summation
on the left-hand side, and the ellipsis indicates quadrupole,
octopole, and further terms in the multipole expansion.
Generally, we use the quadrupole approximation, which re-
quires a second term on the right-hand side. The monopole
approximation, i.e., Eqn. 3 with only the first term on the
right-hand side, was known to Newton, who realized that
the gravitational effect of an extended body like the Earth
(consisting of some 3 � 1051 protons and neutrons) can be
approximated by replacing the entire system by a point-
mass located at the center of mass. The resulting simplifi-
cation is enormous: a factor of 1051 if one wishes to know
the force on a falling apple or satellite.

The approximation of Eqn. 3 is not always valid. In
fact, it doesn’t converge at all if the point at which the
force is desired is inside a sphere that circumscribes the
other masses. Generally, the approximation is better if the
measurement point is far from the other masses. The scale
by which one should judge “near” and “far” is simply the
diameter of the sphere that encloses the mass points.

At this point it is convenient to introduce a data struc-
ture that represents the distribution of matter on all length-
scales. Suppose the particles are organized into a spatial,
oct-tree. The root of the tree corresponds to a cube that en-
closes all the bodies in the simulation. Non-terminal nodes
in the tree have up to eight daughters, corresponding to the
eight sub-cubes that result from cutting the parent in half
in each dimension. Any cell containing only one body is

2



Figure 1: A two-dimensional tree with 10000 bodies uni-
formly distributed on the unit-disk.

terminal. A two-dimensional example is shown in Fig. 1.
Furthermore, suppose that each internal cell in the oct-tree
contains the total mass of the bodies in it, their center-of-
mass and their quadrupole moments. Then it is possible
to compute the force on any body by recursively travers-
ing the tree according to the procedure outlined in Fig 2.
Although it is not obvious from this brief description, the
number of times Eqn. 3 is evaluated during a traversal of
the tree is proportional to logN . Computing the forces on
all N bodies requires traversing the tree N times and is
thus O(N logN) in time.

2 Parallelism.

Astrophysical treecodes represent a formidable chal-
lenge for parallel computation. The difficulties stem from
some fundamental properties of the problem:

� The distribution of bodies is highly non-uniform.

� The distribution of bodies is dynamic.

� The data structures are adaptive, and moderately com-
plicated.

� Each body needs both global and local data for its
update.

The non-uniformity of the data precludes use of a regular
spatial decomposition. Instead, we adopted the technique
of orthogonal recursive bisection, ORB [5], whereby space

cm

(a)

(b)

(c)

Figure 2: Schematic representation of the recursive struc-
ture of a treecode. (a) The exact force on a body is the
result of a summation over all particles in a cell. (b) If the
multipole approximation is valid, then the summation can
be replaced by a single evaluation of Eqn. 3. (c) Other-
wise, the cell is subdivided into eight daughters, and the
procedure, i.e., steps (b) and (c), is recursively applied to
the daughters.

is recursively divided in two, and half the processors are
assigned to each domain until there is one processor as-
sociated with each rectangular domain. In order to avoid
wasting time due to load imbalance and idle processors, it
is crucial to divide space into domains with equal work-
loads. The fact that the simulations are dynamic makes it
impossible to precompute the decomposition or the com-
munication pattern as would be the case with an irregular
but static problem.

Complex data structures present problems as well. Stan-
dard notations like Fortran90 or High Performance Fortran
cannot readily represent a distributed adaptive tree. More
importantly, exactly what one means by a “distributed adap-
tive tree” is not immediately obvious. It certainly depends
on what one intends to do with the data structure. An an-

3



Figure 3: The locally essential tree for a processor whose
domain is in the lower left corner of the system which gives
rise to Fig. 1.

swer comes from consideration of the last difficulty: the
need for both global and local data in the update of each
body.

Specifically, every body sees only a fraction of the com-
plete tree. The distant parts are seen only at a coarse level
of detail, while the nearby sections are seen all the way
down to the leaves. The crucial observation is that nearby
bodies see similar trees. In fact, if one considers all the
bodies in an ORB domain, one can construct the union of
all the trees they see. This union is called the locally es-
sential tree. It is the data that will be required to compute
the forces on every body in the domain. A locally essential
tree, for a processor whose domain is the lower-left corner
of Fig. 1 is shown in Fig. 3. A strategy is now clear, at least
in principle:

� Obtain the locally essential tree in every processor.

� Proceed exactly as in the sequential case, traversing
the tree once for each particle.

The fact that the second step is exactly the same as in
the sequential case is significant. It constitutes the bulk of
the time used by the algorithm, and it is useful to be able to
write highly tuned sequential assembly language without
regard to communication, synchronization or other parallel
issues.

The problem now is to obtain the locally essential tree.
The key is to use the recursive structure provided by the
ORB. The result of ORB is a set of log2 P spatial bisectors

and corresponding partitions of processors. Locally essen-
tial data can be routed to its correct location by looping
over the bisectors, and repeatedly determining which local
data is part of a locally essential tree on the other side of
the cut. Every processor identifies its own exportable data,
and then exchanges that data with a processor in the com-
plimentary partition on the other side of the bisector. After
log2 P exchanges, every processor is in possession of its
locally essential tree.

The determination of which data to send is intimately
related to how the data will be used. It is crucial that
one can determine, a priori, which parts of a tree in local
memory will also be needed in the evaluation of forces on
an unspecified remote processor. Returning to the origi-
nal algorithm, we find that this determination is, in fact,
possible. The sequential algorithm asks: Is this multipole
acceptable for the evaluation of the force at a particular
location? The parallel algorithm must also ask: Is this
multipole acceptable for the evaluation of the force at any
point in a rectangular parallelepiped (i.e., in a processor’s
domain)? The sequential algorithm prescribes that the first
question is answered by computing a ratio of distance to
cell-size. We can answer the second by using the same
criterion with a redefined distance: the distance from the
edge of the cell to the boundary of the rectangular domain.

3 Recent simulations.

Our parallel N-body code has been evolving for several
years, and on several platforms. At press time, the fastest
available platform is the Intel Touchstone Delta at Caltech,
on which the simulations reported here were run. We have
also run significant simulations on an Intel ipsc/860, Ncube
machines, and the Caltech/JPL Mark III [6, 7, 8, 9, 10, 11].

The statistics quoted below are based on internal diag-
nostics compiled by our program. Essentially, we keep
track of the number of interactions computed. Each
monopole interaction costs 29 flops, each quadrupole
interaction costs 77 flops and each evaluation of the
opening criterion costs 6 flops (using the Livermore
Loops prescription of 1 sqrt = 4 flops, 1 division = 4 flops
and 1 comparison = 1 flop). The flop rates follow from the
interaction counts and the elapsed wall-clock time. The
flop counts are identical to the best available sequential
algorithm. We do not count flops associated with decom-
position or other parallel constructs. The reported times
are for the entire application, including I/O, communica-
tion, program initialization, etc. Overall, we see about 15%
of the time spent in parallel overhead (communication, load
imbalance, etc.), which corresponds to a parallel efficiency
of about 87%.

4



3.1 An 8.78 million body simulation.

In March 1992, we ran a simulation with 8,783,848 bod-
ies on 512 processors for 780 timesteps. The simulation
was of a spherical region of space 10 Mpc (Megaparsec)
on a side; a region large enough to contain several hundred
typical galaxies. Our simulation ran continuously for 16.7
hours, and carried out 3:24�1014 floating point operations,
for a sustained rate of 5.4 Gflop/sec. Had we attempted the
same calculation with a conventional O(N 2) algorithm, it
would have taken almost 3000 times as long to obtain an
equivalent answer. We created 15 checkpoint files totaling
4.21 Gbytes. Had we saved all the potentially useful inter-
mediate data, it would have required 273 Gbytes. A single
checkpoint from this simulation exceeds 280 Mbytes. It is
impractical to analyze the results on anything other than a
parallel supercomputer. To that end, we have ported some
of our analysis software to the Delta, and have isolated indi-
vidual halos for further analysis. The 700 individual halos
in this simulation have anywhere from 1,000 to 130,000
bodies, making them comparable in size to “state-of-the-
art” isolated halo models running on Crays and other vector
supercomputers. The Delta allowed us to evolve several
hundred large halos simultaneously, in a realistic environ-
ment, providing us with much needed statistics, as well as
information concerning environmental effects on evolution
which cannot be obtained from isolated halo models.

3.2 Two 17.15 million body simulations.

In June 1992, in response to the recently announced mea-
surement of the microwave background anisotropy by the
COBE satellite [12, 13], we ran two large simulations of the
Cold Dark Matter model of the Universe. The COBE mea-
surement has constrained the last remaining free parame-
ters left in this popular theory, and allows us to produce
initial conditions in which the power spectrum of initial
fluctuations is completely specified, including the overall
amplitude. These are, by any measure, the largest N-body
simulations ever run 1. The results of the simulations are
being analyzed. When compared with other observational
constraints we hope they will provide compelling evidence
either for or against the model

The simulations represented regions with diameter
250 Mpc and 100 Mpc, and had 17,158,608 and 17,154,598
bodies, respectively. The individual particles each repre-
sented about 3:3 � 1010 M� and 2:0 � 109 M�, respec-
tively, so that galaxy-size halos are expected to form with

1A simulation with 17 million bodies has been reported [14] using a
different approximation which suffers from limited spatial resolution. It
ran for over 600 hours on an IBM vector supercomputer. In contrast, our
simulation, with marginally larger N , had twenty times the linear spatial
resolution, and ran in one twentieth the time.

tens to thousands of individual particles; enough to obtain
reasonable statistics concerning the distributions and cor-
relations of sizes. The spatial resolution was 20 kpc in both
cases. They ran for 597 and 667 timesteps, in 23.5 and 28.6
hours, respectively, and wrote 21 and 27 data files for a total
of 11.53 and 13.72 Gbytes. They respectively performed
4:33� 1014 and 5:32� 1014 floating point operations, sus-
taining rates of 5.2Gflop/sec and 5.1Gflop/sec.

4 Supporting software.

High performance computing is not easy. The i860 pro-
cessor promises extraordinary performance, but compiled
code rarely if ever achieves that performance. Unfortu-
nately, the field of N-body simulations does not possess
a recognized set of abstractions like the BLAS for lin-
ear algebra. Thus, there is no highly tuned commercial
software available for carrying out the inner loops of our
calculations. In the quest for performance, we have written
the inner force calculation loops entirely in i860 assem-
bly language. Two routines were necessary, for monopole
and quadrupole interactions, which constitute roughly 1000
lines of machine instructions. By arranging the calculations
to proceed three at a time the code was fully pipelined, even
including a Newton-Raphson inverse square root. In this
manner, we achieve at least one addition or multiplica-
tion per clock cycle (notwithstanding cache delays). The
assembly coded monopole and quadrupole interaction rou-
tines run at about 22 Mflops/sec/node; a factor of eight
better than obtained with the C compiler.

Portability is an extremely important issue. The Delta is
neither the first nor the last parallel supercomputer that will
run our N-body code. We have found that we can achieve
an acceptable degree of portability by disciplined use of a
few very simple communication primitives (essentially the
cshift routine from CrosIII [15]) and a well-defined model
of I/O (essentially cubix [16] with some modifications).
We have developed our own ANSI C implementation of
these primitives, and we have ported them to all of the par-
allel processors at our disposal. Other systems are avail-
able which ostensibly provide the same level of portability.
However, we believe that our efforts have been paid back
many times over in increased functionality, convenience,
and control over the timing of bug-fixes and upgrades. Per-
haps most important, the same libraries allow us to compile
and run our code on a network of workstations, with all the
conventional debugging and performance tools available.
The end result is the ability to produce advanced software
with less time debugging, and more time to produce scien-
tific results.

We have also written a substantial amount of analysis
and visualization software, which accounts for many more

5



lines of code than the parallel treecode itself. As the simu-
lations have become larger, it has been necessary to write
more and more of the analysis software so that it will run
on a parallel machine. An example is the algorithm which
identifies the location and size of individual halos in a cos-
mological simulation, which required us to implement a
general parallel quicksort.

A final auxiliary software effort is the Self-Describing
File format (SDF). We have found that the structure of our
data files changes fairly frequently. In order to avoid the
task of re-writing all our data input routines every time
we compute another physical parameter, we have designed
a file-format in which the structure of the binary data is
described by an ascii header at the beginning of the file.
Since the header is interpreted at runtime, old software
doesn’t even have to be recompiled to read new data files.
This idea is, of course, not new, but to our knowledge, SDF
is more expressive than other similarly motivated software
(HDF and FITS in particular) and is also the only such
software running in a parallel environment.

5 The future.

Scientific software is never complete. The problems of
interest evolve and grow as new observations, new theories
and new simulations emerge. After a few years of expe-
rience with a particular simulator, it is worthwhile to start
afresh, creating a new code that incorporates the lessons la-
boriously learned from the old, as well as introducing new
“physics”, and new numerical techniques.

An entirely new treecode algorithm has been running
for several months and is nearly ready for production The
new hashed oct-tree (HOT) algorithm represents a major
advance in style and sophistication. One of the limitations
of the current production code is the complexity involved
in determining locally essential data. The use of indepen-
dent timestep integration methods which advance particles
according to the local timescale is problematical with the
old code. HOT can accommodate independent timestep
integration schemes as well as an important new class of
cell opening criteria [17] for which it is difficult to predict,
a priori, which cells are required in a rectangular domain.
HOT will also support O(N) methods [4], which involve
interactions between cells, in addition to the cell-body and
body-body interactions which prevail in the O(N logN)
methods we have used until now. The critical value of
N at whichO(N) methods outperform O(N logN) meth-
ods is far from clear because the “constants” depend so
strongly on both the specific problem and the most mun-
dane of implementation details. However, by extending the
error-estimates in [17] to describe the interactions present
in O(N) algorithms, we believe that superior performance

can be achieved for realistic values of N .
The HOT method labels each possible cell with a key

(a 64 bit integer derived from the spatial coordinates) and
uses indirection through a hash table to locate data. Data
stored in remote processors, as well as local data, can be
requested through the hash-table inquiry routines. Mini-
mizing latency, and tolerating the irreducible remainder by
continuing with other work, are critical to the efficient func-
tioning of the method. Thus, the inner loop of the algorithm
is modified so that processing can continue while requests
for non-local data are serviced in the “background”. In this
manner, locally essential data is acquired automatically, as
it is needed, without a penalty from communication latency,
and without requiring the ability to assemble a locally es-
sential tree a priori.

Treecodes are by no means restricted to astrophysics.
Many of the data generation and synthesis tasks associated
with our simulation data can be expressed using hierar-
chical data structures, albeit not with gravitational inter-
actions. Molecular dynamics simulations with charged or
polar species (e.g., ions, water) are limited by the same
O(N 2) behavior as our gravitational simulations. Com-
putational fluid dynamics using the vortex method requires
solution of an N-body problem with a force law that is sim-
ilar to that in gravity. Reaction-diffusion equations can be
transformed into a computational problem with a similar
structure. Even further afield are uses of spatial tree data
structures in data compression, image processing, visual-
ization and database searching. Our HOT implementation
is far more flexible than the current production code. We
believe it will not only be adaptable enough to satisfy our
own needs for data analysis tasks, but will also enable us to
collaborate with scientists in other disciplines to investigate
broader uses of parallel treecodes.

Acknowledgments

We thank the CSCC and the CCSF for providing compu-
tational resources. JS wishes to acknowledge support from
the Advanced Computing Division of the NSF, as well as
the CRPC. MW wishes to acknowledge support from IGPP
and AFOSR.

References

[1] R. W. Hockney and J. W. Eastwood, Computer Simulation
Using Particles. New York: Mcgraw-Hill International,
1981.

[2] A. W. Appel, “An efficient program for many-body simula-
tion,” SIAM J. Computing, vol. 6, p. 85, 1985.

[3] J. Barnes and P. Hut, “A hierarchical O(NlogN) force-
calculation algorithm,” Nature, vol. 324, p. 446, 1986.

6



[4] L. Greengard and V. Rokhlin, “A fast algorithm for particle
simulations,” J. Comp. Phys., vol. 73, pp. 325–348, 1987.

[5] S. B. Baden, Run-time Partitioning of Scientific Continuum
Calculations Running on Multiprocessors. PhD thesis, U.C.
Berkeley, 1987.

[6] J. K. Salmon, P. J. Quinn, and M. S. Warren, “Using parallel
computers for very large N-body simulations: Shell forma-
tion using 180k particles,” in Proceedings of 1989 Heidel-
berg Conference on Dynamics and Interactions of Galaxies
(A. Toomre and R. Wielen, eds.), New York: Springer-
Verlag, 1990.

[7] M. S. Warren, P. J. Quinn, J. K. Salmon, and W. H. Zurek,
“Dark halos formed via dissipationless collapse: I. Shapes
and alignment of angular momentum,” Ap. J., vol. 399,
pp. 405–425, 1992.

[8] M. S. Warren and J. K. Salmon, “A parallel treecode for
gravitational N-body simulations with up to 20 million par-
ticles,” baas, vol. 23, no. 4, p. 1345, 1991.

[9] M. S. Warren, W. H. Zurek, P. J. Quinn, and J. K. Salmon,
“The shape of the invisible halo: N-body simulations on
parallel supercomputers,” in After the First Three Minutes
Workshop Proceedings (S. Holt, V. Trimble, and C. Bennett,
eds.), New York: AIP Press, 1991.

[10] D. P. Fullagar, P. J. Quinn, and J. K. Salmon, “N-body sim-
ulations of a4 isophote deviations in elliptical galaxies,” in
Proceedings of ESO/EIPC Workshop on the Structure, Dy-
namics and Chemical Evolution of Early-Type Galaxies (I. J.
Danziger, ed.), (Munich), European Southern Observatory,
1992.

[11] C. Grillmair, Dynamics of Globular Cluster Systems. PhD
thesis, Australia National University, 1992.

[12] C. L. Bennett et al., “Preliminary separation of galactic and
cosmic microwave emissions for the COBE DMR,” COBE
preprint 92-05, Goddard Space Flight Center, 1992.

[13] G. F. Smoot et al., “Structure in the COBE DMR first year
maps,” COBE preprint 92-04, Goddard Space Flight Center,
1992.

[14] E. Bertschinger and J. M. Gelb, “Large cosmological N-
body simulations,” Computers in Physics, vol. 5, no. 2,
p. 164, 1991.

[15] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and
D. Walker, Solving Problems on Concurrent Processors.
Englewood Cliffs, NJ: Prentice Hall, 1988.

[16] J. K. Salmon, “CUBIX: Programming hypercubes without
programming hosts,” in Hypercube Multi-Processors 1987
(M. Heath, ed.), pp. 3–9, Philadelphia: SIAM, 1987.

[17] J. K. Salmon and M. S. Warren, “Skeletons from the treecode
closet,” J. Comp. Phys., 1992. (in press).

7


