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Abstract-- In this paper we propose a novel model for multiscale quantization of multidimensional images. The approach is based on the hierarchical clustering technique, derived from the statistical physics model of free energy (9, 10(. The algorithm is derived and discussed with respect to the image quantization applications: 1) the space-motion quantization of image streams, and 2) the space-color quantization of multispectral images. The group vectors for image motion and image color are computed on the adaptively selected windows of computation, as contrasted to the block-size windows. For every value of the distortion energy, or the scale parameter, minimal number of space-motion and space-color clusters is obtained, optimizing the accuracy of the computation of the group vectors with the density of sampling an image by the group windows. The algorithm is suitable for the implementation in parallel computer architectures. 

The results of quantization of image sequences are shown for two different sequences of images. The results of quantization of color images by our algorithm are compared with 3 image compression techniques: 1) wavelets, 2) discrete cosine transform (DCT), and 3) quad tree (QT). Contextual information of spatial coherency of the data is used in the segmentation process, in our algorithm. As a result, the images are compressed with much better spatial resolution and much smaller number of parameters by our algorithm, as compared to the other techniques, for any error level of compression selected. For a larger error level of compression selected, major spatial features are color-coded with our algorithm, although, the images appear less colorful in the comparison to those compressed with the other techniques. 

Index terms-- Clustering, vector quantization, image compression, image motion.

I. Introduction

Information theoretical formulation of statistical mechanics was introduced by the work of Jaynes (6(, and the principle of maximum entropy was proposed as an inference procedure. A large variety of applications benefited from the established duality of the probabilistic interpretation. Clustering techniques are applied in many problems (like pattern recognition, learning, source coding, image and signal processing (3, 5, 9, 10, 11, 16() where a priori knowledge about the distribution of the data is not available. Simply stated, the goal is to partition a given data set into different categories such that the data points in each category are as compact as possible. This tool is widely used for analyzing multidimensional data in diverse disciplines such as engineering, biology, social science, and astronomy.

The probabilistic inference in clustering is used in this work based on the maximum entropy principle. Various approaches to the probabilistic and fuzzy inference in clustering are presented in literature (5, 12, 16(. The motivation for the approach taken here is in developing the algorithm with the structure suitable for the implementation in parallel computer architectures by adaptively segmenting the input data space. The computation of the clustering parameters becomes more effective on adaptively selected, local windows of computation in our clustering algorithm, as contrasted to the other techniques.

Contextual information of the spatial coherency of the data is used in the segmentation process. Distinct image features become segmented on a certain scale, in our algorithm, and the probability distribution of the data is restructured in accordance to the new structure of the image features, for which the lower scales of the computation are performed. Computation of the space-feature vector parameters can be used in coding, analysis and segmentation of multidimensional data, such as multispectral images and motion information from image sequences, which are considered in this work.

We introduce the algorithm for multiscale processing of data with the special attention given to the estimation of the motion vectors from image streams, and to the processing of multispectral images. Image motion has been an important problem in computer vision and image analysis since the results can be applied in the analysis of scene segmentation, coding, shape recovery, target tracking, or as a module in parallel algorithms for the recovery of the information about scene, integrating several visual cues (9, 14, 17(. Accurate computation of displacement parameters from one image frame to the next is, however, a very difficult task. We use the group windows, in the algorithm, to trade off between the density of the measurement windows and the accuracy of the estimation procedure. In the case of the coding of multispectral images, the application of the algorithm for multiscale processing enable us to adaptively segment the spectral content of an image among the selected group windows. In those regions where the spectral content varies more we need to select smaller group windows than in relatively flat regions of the image. Optimal quantization of multispectral images is important in image archiving, coding and transmission, as well as for the spectral signature recognition.

The spatial segmentation of the image sequences and multispectral images is performed while using the Green function, parameterized with the scale parameter, as a smoothing function in the segmentation process. On a larger spatial scale, a larger extent of spatial integration of discriminant function is performed, while it becomes effectively more local in space as we decrease the spatial scale of segmentation. As a result, much better spatial resolution of images, compressed with our algorithm, is obtained in comparison with the other image compression techniques. Major spatial features of multispectral images are optimally color-coded on every level in the hierarchy of scales, and the resolution in colors increases linearly with the scale of computation in our algorithm. 

In the case of the estimation of the motion vectors from image streams, the multiscale algorithm enables us, also, to solve the so-called aperture problem.  Sufficient texture content is required in order to robustly compute motion vector for a window of pixels. Two questions have to be answered before we select these group windows: what is the criteria of having sufficient texture for a window of pixels, and what size of the window we choose. To answer these questions we start off by intuitive reasoning of what constitute good image invariants to be traced from one frame to the next with a reasonable accuracy. Due to the aperture problem we know that we can not trace the window of pixels with the uniform intensity, while if we have a straight edge, we can only determine the motion component orthogonal to that edge. On the other hand if a window contains strong surface markings, like a corner for example, we can uniquely find the displacement parameters for that window and therefore solve the aperture problem. However, we still have to address the question of the first-order deformation of intensity due to the noise in the system, resulting in shortening/dilation in the image points sampling introduced by the rotation of camera. An appropriate window size is required to suffice for the estimation of the introduced parameters.

Tomasi and Kanade (17(, in their algorithm, used a fixed size windows to estimate motion vectors. Also, the MPEG algorithm (13( for coding of pictures is based on the block-size windows to estimate the codevectors. We base our algorithm on adjustable size windows to suffice for the estimation of the group vectors. The goal is to minimize the variation in robustness of the estimate of  group vectors across the selected group windows, that cover the whole image space.

The method of quantization of images by hierarchical clustering is derived in Section II for the sequences of images. The application of the algorithm for the quantization of the multispectral still images is analogous to that of the cooling procedure of the algorithm. The results of the application of the algorithm are shown in Section III for the sequences of two images and for color images. The results are discussed in Section IV. The other image compression techniques for color images are compared with our technique. Concluding remarks are given in Section V.

II. Method

A. Maximum Entropy Inference

The principle of maximum entropy inference states the following: among all the probability density functions (PDF), that satisfy a given set of constraints, choose that that maximizes the entropy. The chosen PDF is agreeable with all the knowledge available (a priori knowledge, or that obtained by the estimation), and at the same time keeps the maximal uncertainty towards anything else (a posteriori knowledge, or the future results of the estimation). This, also, means that such a chosen PDF is maximally unbiased toward any future solution that includes the future knowledge obtained about the problem. Any other PDF is biased toward some of the possible solutions. 

We define a cluster here with its computed group vector representative y, and the selected group window of computation, W. Let d(x, y) denotes a distortion measure introduced by a data point x to the representation y. The distortion energy, or variance V of a cluster is defined by:
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Claim:

The PDF that maximizes the entropy:
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is the Gibbs distribution:
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where Z is the partition function, and  ( is a Lagrange multiplier.

Proof:

We want to find:
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For a particular data point x*, if we differentiate the above expression and set the result of differentiation equal to zero, we get:
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The data point x* belongs to the cluster in probability: 
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The constant e-1-( normalizes the PDF for the window of computation W, and therefore:


[image: image8.wmf](

)

(

)

(

)

(

)

.

,

,

,

å

-

-

-

=

=

W

y

x

d

y

x

d

y

x

d

e

e

Z

e

x

P

b

b

b


B. Space-Motion Quantization of Image Sequences


If we limit our attention to an image sequence of small inter-frame displacements we derive first the necessary condition for computing the common motion vector for a window of pixels. Then, we shall describe derivation of the algorithm for multiscale processing of images.


Let I(x, t) denote the image brightness of some scene point x = (x, y) at time t. Also, let assume that the scene point (x, y) projects onto a new point (x+(x, y+(y) at time (t+(t). The brightness change model for computing small image point displacements, based on the gradient method (4(, can be written as:
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and for a feature point corresponding to a window of pixels W, we can write,
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or in a more compact form,
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where h = I(x, t) - I(x, t+(t), g = [(I/(x (I/(y] and, d = [dx dy]T. For a unique time frame period of image sampling we can conveniently substitute displacement vector with an image motion vector d =
[image: image12.wmf]v

r

= [u v]T, where u and v correspond to the x and y components of the motion vector.


The residue ( in the equation (1) can be locally minimized by setting the result of differentiation equal to zero:
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Assuming 
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 to be constant within the selected window W, we have,
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Or, equivalently, it can be written as a 2(2 matrix equation:

G
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where 
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As we can see, in order to solve the equation (2), the matrix G must be nonsingular. Also, we want to select a robust feature, particularly if it is to be tracked through the sequence of images. We propose an algorithm for the selection of features across the hierarchy of scales as described below.

1) Hierarchical Clustering of Motion Vectors on Spatial Windows of Computation


The dynamics of the process of clustering, in our algorithm, is derived from the model of “free energy”, originally used in statistical physics to model different complex systems. In this section we shall describe the mathematical model of the computation of the group vectors, as well as the points of discontinuities, when new clusters emerge from the existing clusters, optimizing the distortion energy among the clusters. Free energy describes the state of a cluster for a given parameter (,
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At the equilibrium, the cluster settles in the state that minimizes its free energy. 

We give the definition of the distortion measure d = z2 for the two cases of application of the algorithm: 1) when estimating the clusters of motion vectors (u v(, by using two consecutive image frames I(1) and I(2), and 2) when estimating the clusters of group vectors (r g b( on adaptively selected group windows, for a frame of images: 
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I1=I(x, y, t) and I2=I(x, y, t+dt) are the two consecutive points of the motion field at the spatial point (x, y), and (Iu, Iv) are the image gradients in the x and y directions. In the second case, (Ir Ig Ib) defines the spectral content of an image at the spatial point (x, y). The parameters of a cluster are: computed group vector ((u v( for the case 1, or (r g b( for the case 2), and selected group window of computation, W. 

We limit our attention to an image sequence of small inter-frame displacements. Derivation of the algorithm will be described here by using the distortion measure z2 defined as for the case 1, in the rest of the text.  Derivation of the algorithm for the case 2 is analogous to that given in (10(.

On the scale of the whole motion field, W (the largest scale), we start with the motion field estimate from the initial point (u, v, () = (0, 0, 0), by defining the equation of motion:
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The nonlinear map, given in (3), exhibits no chaotic behavior (18(. This gives a fixed-point iteration:
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For a given parameter (, this map is stable if the Hessian of the free energy,
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is positive definite. We “cool” the system of equations (increasing () up to the point when it becomes unstable. The point in scale (c, when some nonconvex component becomes dominant in the estimation process indicates the point of instability of the map (3).  This is the point of discontinuity in the algorithm, which is followed with the procedure of phase transition - splitting of the cluster. 

The cooling procedure is defined by the equation:
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At the equilibrium point,
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if the Hessian of the free energy is positive definite, we compute:


[image: image27.wmf](

)

5

,

v

V

v

r

r

¶

¶

-

=

d


and update,
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Note that this way we keep the integral:
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and,
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if we neglect the higher order terms. At the same potential level the equilibrium point moves away by the change of the parameter ( (6), as with the change of the direction of computation (5), what is expressed by the equation of continuation (7). This way local minimum is avoided as the equilibrium point escapes potential barrier in the free energy landscape. 

If the Hessian of the free energy is negative definite for some of the clusters, at the critical value of the scale parameter, (c, the condition of phase transition is reached and we split that cluster along the principal component vector corresponding to the maximal singular value of the scatter matrix:
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according to:
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where the vector (Eu Ev( is the principal component vector corresponding to the maximal singular value of the scatter matrix, and (eu ev(=z(Iu/(Iu2)avg.  Iv/(Iv2)avg.( is the point error vector, as will be shown below.

The smoothing effect is obtained by summing up the projections of the error vectors multiplied by the Green function in equation (8). The parameter ( here plays the role of the spatial extent of integration. On a lower value of the scale parameter (, the group windows are formed by using a larger extent of the spatial integration of the 

Figure 1: A tree structure of the distribution of clusters.

projections of error vectors. As we gradually increase (, the smoothing process becomes effectively more local in space.


Let's analyze now the entries of the scatter matrix of the map in (4). After few lines of derivation we have,
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And by the symmetry of the partial derivatives,
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We can further simplify the notation by deriving the normalized sensitivity coefficients. We have,
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and we write,
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And by the symmetry,
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We can now write the scatter matrix in the form of the normalized sensitivity coefficients as:
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The cooling procedure makes an adaptive multiscale algorithm for processing of multidimensional data. The algorithm produces a tree of splitting clusters, that gives a representation of data in the hierarchy scale. In Figure 1 is shown a tree structure with 5 clusters, corresponding to the leaves of the tree. The cluster with the group window equal to the whole image frame, W0, corresponds to the root of the tree. At the critical value of the scale parameter (c0, the computed cluster vector representative is y0.  The root cluster is splitted in two at the critical value of the scale parameter (c0. The structure of the tree is formed at the 
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Figure 2: LZ motion, and 3: RX motion. (a) The first image in sequence. (b) 10 clusters of the space-motion quantization. Distinct gray level values are used for labeling of the group windows. (c) The error of clustering vs. the scale parameter ( of computation.
increasing values of the scale parameter (c0<(c1<(c2<(c3, splitting one of the clusters, that reaches the critical value of computation, in two. The depth of the tree and the number of the clusters, corresponding to the leaves of the tree, are determined by the error value of the coding scheme.

The estimation of the code vectors for every node of the tree is obtained with separately defined maps, as in Eq. (3), and on the selected group windows of computation, what makes this algorithm suitable for the implementation in parallel computer architectures. For a longer sequence of images we propose in (11( melting some of the unstable clusters when a new image is presented in image stream, and renewed application of the cooling procedure in obtaining a new distribution of clusters. We intend to investigate this processing scheme in our future work. 

III. Results

A. Image Sequences


For the image motion quantization, gray scale sequences of images of small inter frame displacements are used. Therefore, brightness change model, based on the gradient method can be applied, and it has been used in our algorithm in defining the distortion measure z2=(I1-I2-Iuu-Ivv)2. We shall explain how the selection of spatial windows of image motion quantization depends of the spatial content of image gradients (Iu, Iv), in an image, and on the strength of the image motion signal (u, v), for such a defined distortion measure, in our algorithm.


Two sequences of the same, “Tiger” (480x512) images are used to show the results of image motion quantization. The Left-Z motion is shown in Figure 2, and the Right-X motion in Figure 3. The first images in the sequences of two images are shown in Figures 2.(a) and 3.(a), for the LZ and RX motions, respectively.


The computation of image motion vectors starts with the value of the scale parameter (=0, computing the average displacement parameter (u0, v0) of the whole image frame (W0 – the root window, in Figure 1). The value of the scale parameter is monotonically increased up to the point when the process reaches the critical value of the scale parameter (c0, and the point of the formation of new group windows of computation, by using the discriminant function, given in Eq. (8).
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Figure 4: Multispectral image quantization. The space-color clustering is shown for: (a) 4 clusters, (b) 5 clusters, (c) 10 clusters, and (d) 90 clusters. (e) The original image. (f) The error of space-color clustering vs. the scale parameter ( of computation.


We continue next with the convex minimization of the free energy and the estimation of the group vectors y1 and y2 on separately defined maps, as in Eq. (3), on the selected group windows of computation W1 and W2. The hierarchical clustering algorithm is applied here for the formation of the tree structure of the distribution of clusters ending with 10 clusters that correspond to the leaves of the tree. Distinct gray level values are used for labeling of the group windows, shown in Figures 2.(b) and 3.(b), for the LZ and RX motions, respectively.

The distortion energy of the whole image is used to describe the error of computation, 
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. For the LZ and RX sequences, the error of computation vs. the scale parameter ( is shown in Figures 2.(c) and 3.(c), respectively.

B. Multispectral Still Images

A colorful image, “Flowers” (362x500), from the Matlab’s library of images is chosen for the purpose of illustrating the multispectral still image quantization by our algorithm. The distortion measure, applied in the algorithm, is chosen to be the squared distance of an image point spectral vector to the space-color group vector, z2=(Ir-r)2+(Ig-g)2+(Ib-b)2. The corresponding map for the space-color group vector computation:
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results in the scatter matrix,
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to be equal to the cluster covariance matrix multiplied by the scale parameter.


Therefore, the covariation of the spectral data is used in the algorithm for the selection of the space-color clusters distribution, in contrast to processing different colors of the image data independently, what has been used in the other techniques (see below). Using the information of  the synergies of the multidimensional data has been shown [10], also, to greatly reduce the dimensionality of the coding and control problems in biological systems. Selection of the spatial features and computation of the feature vectors is intended, here, to be used in image coding applications. In Figure 4, we show the results of the hierarchical clustering of image data for 4, 5, 10, and 90 clusters computed (Figures 4.(a)-(d)). The original image is given in Figure 4.(e).


In Figures 4.(a) and (b) are shown the results of the hierarchical clustering of image data when the brownish cluster in Figure 4.(a, a') reaches the critical value of the computation, (c3, and passes through the process of phase transition, and the formation of the two new group windows of computation out of the joint one. When the two new clusters settle at the equilibrium points of the maps, as in Eq. (10), the resulting color vectors of the clusters give them more reddish color, to the first, and more yellowish color, to the second cluster, what can be seen in Figure 4.(b, b'). The other clusters haven’t noticeably changed the appearance of the colors with the change of the scale of computation.


The space-color clustering of the image data has been performed up to the point of formation of 90 clusters, 
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Figure 5: Comparison of the techniques for color image compression. In all of the techniques the error level of compression is matched with the space-color clustered image. The number of compression parameters is obtained for: (a) wavelets: p_r=3358, p_g=3310, p_b=3272, (b) DCT: p_r=2012, p_g=1875, p_b=1548, and (c) QT: p=4132. (d) P=10 space-color clusters quantization.

corresponding to the leaves of the resulting tree of the hierarchy of clusters. The image with 90 space-color clusters computed is given in Figure 4.(d). In Figure 4.(c) is shown the image with 10 space-color clusters computed, and it has been used for the purpose of the comparison of results with the other image compression techniques.

As in the case of the image motion quantization, the distortion energy of the whole image is used to describe the error of computation. In Figure 4.(f) is given the error of computation for the space-color clustering vs. the scale parameter (. 


For the purpose of comparing different image compression techniques, the summed square distance function is used to indicate the error level of the compressed images,
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The error level of the image with 10 space-color clusters computed is E1=230x106, and this value is matched with the other techniques. This image is shown again in Figure 5.(d) for the purpose of comparing with the results of the other image compression techniques.

The Matlab’s image processing tool is used for analyzing the data. The wavelets’ functions wavedec2 and wdencmp are used for wavelets decomposition and compression of the data. The sym2 filter is used in decomposing the image to the level of N=3. The wavelets’ coefficients are globally, hard thresholded with the level THR=227 for the R, G, and B, components of the image, separately, to match the error level of compression, E1. As a result, the number of nonzero approximation coefficients obtained is 3358, 3310, and 3272, for the R, G, and B components of the image, respectively. The resulting compressed image is shown in Figure 5.(a).


The DCT’s coefficients of the image are obtained by the function dct2 and the coefficients with the amplitude lower than a threshold value are set to zero. The DCT’s coefficients are thresholded for the R, G, and B components of the image with the value of THR=146.5, separately, to match the error value of compression, E1. The number of

nonzero coefficients obtained is 2012, 1875, and 1548, for the R, G, and B components of the image, respectively. The resulting image is obtained by the inverse DCT function idct2, and is shown in Figure 5.(b). 


The QT technique requires a dimension of an image to be of the power of 2, so we used a middle portion of the image with the dimension of 256x256. From the image with 10 space-color clusters computed, the error level of the middle portion of the image is found to be E2=90x106. This error level is matched with the QT decomposition of the original image. The intensity image is decomposed with the Matlab’s function qtdecomp with the threshold value THR=109 to match the error level, E2. The number of quadratic windows obtained is 4132 for which the average values of the R, G, and B components are computed. The resulting image is shown in Figure 5.(c).

IV. Discussion

In the method of hierarchical clustering of images, developed in this work, convex optimization of the free energy is achieved by the adaptive selection of spatial windows of computation. The error of computation becomes relatively higher in the regions where the entries of the scatter matrix covary more than in flat regions of image. As a result, selected group windows are relatively bigger in flat regions than in the regions of the stronger variation of the data.


For the image motion quantization, a relatively higher spatial resolution of the group windows can be observed in the regions where the image gradients are more strongly present in the image, what can be seen in Figures 2.(b) and 3.(b). The entries of the scatter matrix, in Eq. (9), depend, also, on the strength of the image motion vector (u, v). A relatively higher spatial resolution of clustering of the data goes along the direction of motion, what can be best seen in Figure 3.(b) for RX motion, where the grid portion of the image is segmented with a better spatial resolution in the horizontal direction than in the vertical.


The scatter matrix of the multispectral image clustering, in Eq. (11), equals the covariance matrix of a cluster’s spectral data. The spatial resolution of the group windows increases with the depth of the tree, representing the hierarchy of clusters. On every resolution level of clustering the background color is represented with a relatively larger spatial window, what can be seen in Figures 4.(a)-(d), as a result of relatively lower variation of the spectral data in the background.


The colors of the newly formed windows can significantly differ from that of the joint window, since the color vectors are computed in the domains of the newly created windows of computation. The original group window is divided along the principal component vector corresponding to the maximal singular value of the scatter matrix. In the discriminant function:
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the zero point on the direction of the maximal principal component, [Er Eg Eb], correspond to the group vector of the joint cluster, [r g b]. The projections of the color vectors [Ir Ig Ib] that belong to the newly created windows are located on the opposite sides of the color vector of the joint cluster, [r g b], along the principal component vector, [Er Eg Eb]. The Green's function enables appropriate spatial integration of the error vectors at the given point in scale, (. This explains the formation of the reddish and the yellowish windows in Figure 4.(b), out of the brownish window in Figure 4.(a).

In the cooling process we progressively compute more accurately the group vectors. In the process of phase transition, the group window of the cluster for which the condition of phase transition is reached is divided in two newly created windows, according to the rules given in Eqs. (8) and (12). This way we achieve a minimax optimization of the error function. For every value of the scale parameter, a minimal number of the space-motion and space-color clusters is obtained optimizing the accuracy of the computation of the group vectors with the density of sampling an image by the group windows. 


The distortion energy of the whole image is used to show the error of computation in the applications of space-motion quantization (Figures 2.(c) and 3.(c)), and space-color quantization (Figure 4.(f)). The regions of the linear decrease of the error of computation correspond to the process of cooling of the free energy of the system. The points of the abrupt decrease of the error correspond to the points of phase transitions. When two smaller group windows are created out of the joint window, the corresponding group vector maps become more effective on the new windows of computation, what is reflected in the abrupt decrease of the error of computation.


Major space-color features are optimally coded for every level of the error of compression selected, by our algorithm. The image with 90 space-color clusters computed, in Figure 4.(d), appears almost visibly indistinguishable from the original image, although it contains about 1,000 times less colors than the original image. Also, our approach makes the clustered images suitable for the run-length encoding scheme of the series of binary images. In the comparison with the other image compression techniques, much less parameters are needed in compressing the image with our algorithm than with the other techniques, for every level of the error of compression selected. For a larger level of the error of compression selected, much better spatial resolution of the space-color features in the image are obtained by our algorithm, what can be seen in Figure 5. The color resolution increases linearly in our algorithm of hierarchical space-color clustering. The visual appearance of the images compressed on a lower resolution by our algorithm can be improved by adding an error metric based on the data from human psychophysics [15], to our error function.

V. Concluding Remarks


In this paper, we have described a novel model for multiscale quantization of multidimensional images by hierarchical clustering. The application of the algorithm has been described with respect to the image motion quantization and the quantization of multispectral images. The group vectors are computed on the adaptively selected spatial windows of computation. We have used the group windows to trade off between the density of the measurement windows and the accuracy of the estimate of the group vectors. 

For every value of the distortion energy or the scale parameter, the minimal number of the space-motion and space-color clusters is obtained, optimizing the accuracy of the computation of the group vectors with the density of sampling an image by the group windows. The minimax optimization is achieved along the hierarchy of the scales of computation, progressively always decreasing the uncertainty of the estimation process. Spatial segmentation is performed while using the Green function, parameterized with the scale parameter, as a smoothing function in the segmentation process. As a consequence, much better spatial resolution and mach smaller number of parameters of compressed images are obtained by our algorithm than with the other image compression techniques.


This approach enable us to apply melting of some of the unstable clusters [11] when a new image is presented in the image stream, and renewed application of the cooling procedure, for a longer sequence of images. We also intend to investigate a parallel computer implementation of the algorithm, in our future work.
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