Web Computing

The Internet or World Wide Web offers many opportunities for computing in Science and Engineering, which we cover in this new column. In this introductory offering, we will review some of these possibilities where we interpret the charge quite broadly. We invite comments on omissions and areas of particular interest so we can develop themes of greatest interest to the readers.

Web Clients as a Computing resource

At the recent SC00 conference in Dallas (http://www.supercomp.org/), the keynote talk by Steve Wallach explained how it would be possible to combine optical interconnects with the inevitably improving microprocessor technology to build supercomputers with petaflop (10^15 operations per second) performance within the coming decade. Of course, exactly the same technology trends imply that the total computing power of clients interconnected by the Web will be some thousand times greater -- exaop performance as we once discussed (http://old-npac.csit.fsu.edu/users/gcf/01/terri/SCCS_784/index.html, Fox, G., and Furmanski, W. ``Petaops and Exaops: Supercomputing on the Web'' in IEEE Internet Computing, 1:2, 38-46, 1997). We further remark that most of the CPU cycles are "wasted" as desktop machines sit patiently waiting while their owner chats on the phone, drinks coffee or sleeps. Thus SC00 saw several commercial companies supporting what Larry Smarr called Megacomputing in a panel discussion and what industry mysteriously terms peer-to-peer computing (http://www.peer-to-peerwg.org/). Now instead of purchasing a new departmental machine one can send one's computing tasks into the Internet cloud to be computed between keystrokes on some web client. This powerful idea promises cheaper computing of greater total performance. Of course this model has its limitation -- the Internet cloud cannot easily support the large-scale parallel computations of our current teraflop and future petaflop dream. The Internet cloud has loosely coupled machines with often lower communication bandwidth and always much higher latency than the classic Massively parallel machine (MPP). Still there are many problems, which can be formulated as a multitude of largely independent tasks -- examples are factorization of large numbers as needed to break RSA cryptography and searching biological databases for patterns. We can examine these technologies and explore those applications and algorithms that can exploit megacomputing. Some of the key issues of security and fault tolerance are also fair game for our column.

XML, Java Grande and Distributed Objects

The Internet has developed many technologies, which can contribute to more powerful programming environments. Good examples are XML (http://www.xml.org/) as the basis of new scientific data standards and Java as a new scientific programming language. We can discuss MathML, which will the basis of a web-enabled mathematics with a universal expression of mathematical equations which can be rendered in documents, whiteboards, instant messengers and other productivity tools. We can study the emergence of ScienceML which will express scientific data and enable greater interoperability of programs whose input and output will no longer be the cryptic 2I5,2F10.4 but the more understandable <MYDATA YEAR=1999 NUM_ITERATIONS=10 POROSITY=0.03 DEPTH=10 DEPTH_UNITS=METERS>Specify my ecology</MYDATA>

Nobody knows what the programming language in 2010 will be but to borrow a well-known cliché, it surely will not be Fortran or even called Fortran. One can debate for a long time the tradeoffs between the software engineering advantages of languages like C++ and Java versus the simplicity and high performance of Fortran. However the next generations of students will be immersed in the Internet from cradle on. They will learn about Internet technologies and see their power. The best of these students will not choose computational science unless this field adopts the very best information technology; students will learn Java at high school and will not be happy to switch to Fortran for science and engineering computing.

Although Java was originally popularized in the form of applets to develop dynamic clients, its main application in industry is to build portable middleware -- large server side applications to support database access and other e-commerce applications. Thus it makes sense to examine if Java could be used to code large numerical simulations. There are several problems one can identify and these have been studied in conferences and forums of the Java Grande group (http://www.javagrande.org/) Problems include the lack of a complex data type and rectangular arrays in Java; further there is the need for Java bindings to libraries in areas from mathematical functions to parallel message passing. The Java floating-point rules inhibit well-known compiler optimizations while commercial offerings currently do not include Java compilers -- just interpreters -- albeit very clever so called just in time systems that use dynamic compilation. Progress has been made even though it is hard to impact the commercial Java activities with the concern of a field that is one percent or so of the total computer market. We can discuss this as well as the progress in C++, which has successfully tackled the issues of performance and expressivity needed for computational science.

The C++ and Java languages are supported by powerful development environments, which could form the basis of better scientific programming systems. Further industry has built distributed objects models (CORBA, Java with RMI and Jini, COM and SOAP(XML)) that appear very helpful in the management of large scale software and data systems. The important integration of distributed object and Internet technologies is often called the object web. This provides a powerful model of distributed systems, which underlies modern web computing.

Perhaps we could discuss some of these points in future columns.

Computational Science Portals

Above we have discussed the possible role of web-linked clients and object web technologies in computing. Here we look at the use of web systems to produce integrated environments to support computing. These used to be called problem solving environments or workbenches but in the web-lingo, we usually call them portals to ride the commercial thrusts that bring us the Yahoo portal (to everything) and Enterprise Information Portals. The latter is a some $10B a year business to provide web-based corporate information systems accessing databases, e-mail, web pages with a variety of communication tools. Note here we use the adjective web to describe a distributed networked system using Internet or object web technologies. In the computing field, one builds a portal by assembling a network of web servers and clients and uses them as an interface to computing resources. This approach (see for example https://hotpage.npaci.edu/, http://www.cactuscode.org, http://www.gatewayportal.org/) provides the user with a single web interface allowing such capabilities as job submission and monitoring, access to information resources on the application, visualization, and linkage of applications via data streaming or files. Such portals can also support communication tools such as (scientific) whiteboards, audio-video conferencing etc. One can often choose both the application to run and at varying levels of detail, ways of modifying it such as web-input of parameters, choice of libraries etc.

Such portals can be considered as the front-ends to computational grids (http://www.gridforum.org), which are formed by a network of computational resources typically, thought of in a more structured fashion than the megacomputer discussed earlier. There is a growing use of object web technologies in such grids. (http://www.globus.org/cog/)

Please tell me any web computing topics that strike you as interesting. Above I showed how this term could be looked at from three different points of view -- stressing the computer, the technologies or the systems of the web.

